JPH09304363A - Method for ultrasonically detecting flaw in austenitic steel casting - Google Patents

Method for ultrasonically detecting flaw in austenitic steel casting

Info

Publication number
JPH09304363A
JPH09304363A JP8147932A JP14793296A JPH09304363A JP H09304363 A JPH09304363 A JP H09304363A JP 8147932 A JP8147932 A JP 8147932A JP 14793296 A JP14793296 A JP 14793296A JP H09304363 A JPH09304363 A JP H09304363A
Authority
JP
Japan
Prior art keywords
flaw detection
austenitic stainless
distance
flaw
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8147932A
Other languages
Japanese (ja)
Inventor
Toshiharu Takumi
俊治 工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP8147932A priority Critical patent/JPH09304363A/en
Publication of JPH09304363A publication Critical patent/JPH09304363A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide a method for ultrasonically detecting flaws in austenitic steel castings, which enables flaw detection in a certain ultrasonic wave incident direction, without being affected by the direction of the crystal growth of a structure. SOLUTION: A probe 1 which causes longitudinal ultrasonic waves containing a wide band of frequencies incident perpendicularly on the flaw detection surface of a subject for flaw detection, so as to search for any internal flaw 3. Flaw evaluation is, made based on a distance-amplitude characteristic curve chart obtained from the received waveforms of the reflected waves, to determine whether or not any internal flaw 3 exists. The frequencies of the probe 1 should preferably contain at least 0.5 to 4Mhz. A flaw detection limit distance is within at least 60mm from the flaw detection surface, or within at least 120mm, when the top and bottom surfaces 2a, 2b of the subject for flaw detection are parallel. Determination of whether or not the internal flaw 3 exists, performed during the flaw evaluation, is made based on the distance- amplitude characteristic curve chart in which the reception level at a predetermined flaw detection distance of 80%, when sensitivity is 46dB and the size of the internal flaw is ϕ6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オーステナイト系
ステンレス鋳物の超音波探傷方法に関する。
TECHNICAL FIELD The present invention relates to an ultrasonic flaw detection method for austenitic stainless castings.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋳物の超音
波探傷による内部欠陥検出は従来から重要な課題として
取り上げられて来たが、これまでは、以下のような問題
点によってこの超音波探傷による内部欠陥検出は不可能
であるとされている。 1)探傷箇所によって超音波の減衰のバラツキが大きく、
安定した測定結果が得られない。 2)探傷面の違い、すなわち、超音波を入射する方向によ
って超音波の減衰及び音速の相違が著しい。 3)探傷対象物内部における音響異方性(音速の違い)が
あり、このためエコー(反射波)が入れ替わる現象が見
られ、減衰や林状エコーが大きくて測定が困難である。 そして、上記問題点は、組織内の結晶粒界等の散乱因子
による超音波の散乱や減衰がその主要な原因であると言
われている。
2. Description of the Related Art The detection of internal defects by ultrasonic flaw detection of austenitic stainless castings has hitherto been taken up as an important issue, but until now, the internal defect detection by ultrasonic flaw detection has been due to the following problems. Is said to be impossible. 1) There are large variations in the attenuation of ultrasonic waves depending on the flaw detection point,
Stable measurement results cannot be obtained. 2) The difference in the flaw detection surface, that is, the difference in the attenuation and speed of sound of the ultrasonic wave is remarkable depending on the direction in which the ultrasonic wave is incident. 3) There is acoustic anisotropy (difference in sound velocity) inside the object to be inspected, and as a result, echoes (reflected waves) are exchanged, and attenuation and forest echo are large, making measurement difficult. It is said that the above-mentioned problems are mainly caused by scattering and attenuation of ultrasonic waves due to scattering factors such as crystal grain boundaries in the tissue.

【0003】従来から、上記の問題に対して色々な研究
機関やメーカー等で研究がなされており、オーステナイ
ト系ステンレス鋳物の結晶組織と超音波特性との関連性
について確認する必要性が指摘され、そして、この問題
を解決したいくつかの探傷方法が提案されている。例え
ば特公昭57−1788号公報では、特定の条件の下で
オーステナイト系ステンレス鋳物の探傷を可能とした超
音波探傷方法が提案されている。同公報によると、周波
数0.3〜2MHzの縦波を出射する超音波探触子を用
い、被検査対象物に超音波パルスの伝播方向が組織の結
晶成長方向に対して40°〜50°の交差角度をなすよ
うに超音波を入射することによって、斜角探傷を行なう
ようにしている。このとき、エコーの受信信号の高さが
交差角度45°付近で最大となることが確認されてお
り、これにより交差角度40°〜50°の範囲内であれ
ばエコー信号の高さは探傷方法として十分に実用可能と
している。
Conventionally, various research institutions and manufacturers have been researching the above problems, and it has been pointed out that it is necessary to confirm the relationship between the crystal structure of austenitic stainless castings and ultrasonic characteristics. Then, some flaw detection methods that have solved this problem have been proposed. For example, Japanese Examined Patent Publication No. 57-1788 proposes an ultrasonic flaw detection method that enables flaw detection of an austenitic stainless casting under specific conditions. According to the publication, an ultrasonic probe that emits a longitudinal wave having a frequency of 0.3 to 2 MHz is used, and the propagation direction of the ultrasonic pulse to the object to be inspected is 40 ° to 50 ° with respect to the crystal growth direction of the tissue. The oblique angle flaw detection is performed by injecting ultrasonic waves so as to form a crossing angle. At this time, it has been confirmed that the height of the echo reception signal becomes maximum near the crossing angle of 45 °, so that if the crossing angle is in the range of 40 ° to 50 °, the height of the echo signal is determined by the flaw detection method. It is considered to be sufficiently practical.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の探傷方法においては、被検査対象物に入射
する超音波パルスの伝播方向と組織の結晶成長方向との
交差角度が、測定結果からの内部欠陥検出精度の良否を
左右する非常に重要な要因となっているので、オーステ
ナイト系ステンレス鋳物製品を製造する際に、組織の結
晶成長方向の規則性に関する厳密な工程管理が要求され
ている。すなわち、製品製造時に組織の結晶成長方向
が、例えば板状の製品の場合には製品全体にわたって表
面に垂直な方向になるようにしたり、管状の製品の場合
には管の中心軸に向かう方向になるようにすることによ
り、一定の規則性を持たせている。このような工程管理
作業は非常に煩雑なものになり、このために超音波探傷
を可能とするオーステナイト系ステンレス鋳物製品の製
造工程の能率化が困難となっている。
However, in the conventional flaw detection method as described above, the crossing angle between the propagation direction of the ultrasonic pulse incident on the object to be inspected and the crystal growth direction of the tissue is determined from the measurement result. Since it is a very important factor that affects the accuracy of internal defect detection, strict process control regarding the regularity of the crystal growth direction of the structure is required when manufacturing austenitic stainless cast products. . That is, the crystal growth direction of the structure at the time of product manufacturing is made to be a direction perpendicular to the surface over the entire product in the case of a plate-shaped product, or in the direction toward the central axis of the tube in the case of a tubular product. Therefore, a certain regularity is given. Such process management work becomes very complicated, which makes it difficult to streamline the manufacturing process of an austenitic stainless cast product that enables ultrasonic flaw detection.

【0005】本発明は、上記の問題点に着目してなされ
たものであり、組織の結晶成長方向に左右されずに任意
の超音波入射方向での探傷を可能とするオーステナイト
系ステンレス鋳物の超音波探傷方法を提供することを目
的としている。
The present invention has been made by paying attention to the above-mentioned problems, and it is an ultra-high-quality austenitic stainless casting that enables flaw detection in an arbitrary ultrasonic wave incident direction regardless of the crystal growth direction of the structure. It is intended to provide a method for ultrasonic flaw detection.

【0006】[0006]

【課題を解決するための手段、作用及び効果】上記の目
的を達成するために、請求項1に記載の発明は、探触子
を用いて超音波をオーステナイト系ステンレス鋳物に入
射して内部欠陥3を探傷するオーステナイト系ステンレ
ス鋳物の超音波探傷方法において、広帯域周波数を含む
縦波超音波を探傷対象物の探傷面に対して垂直に入射さ
せる方法としている。
In order to achieve the above-mentioned object, the invention according to claim 1 uses a probe to inject ultrasonic waves into an austenitic stainless cast product to cause internal defects. In the ultrasonic flaw detection method for austenitic stainless castings for flaw detection of No. 3, longitudinal ultrasonic waves including a wide band frequency are made to enter perpendicularly to the flaw detection surface of the flaw detection target.

【0007】請求項1に記載の発明によると、広帯域周
波数を含む縦波超音波を出射する広帯域用探触子を使用
しているので、従来の超音波探傷方法に比べて組織の結
晶成長方向に左右されずに、どの探傷方向によっても林
状エコー等のノイズに対するS/N比が改善される。よ
って、組織の結晶成長方向に左右されることなく、結晶
方向に対して任意の超音波入射方向での探傷が可能とな
る。又、超音波入射方向が結晶成長方向によって影響を
受けなくなるので、超音波入射方向を探傷面に対して垂
直にすることが可能となる。したがって、上記広帯域用
探触子を探傷面に接続する作業が容易となり、探傷時の
作業性が改善される。この結果、オーステナイト系ステ
ンレス鋳物製品製造時に、製品の組織の結晶成長方向の
規則性を管理する必要が無くなり、製造工程及び探傷工
程の作業能率が改善される。
According to the first aspect of the present invention, since the wideband probe which emits the longitudinal ultrasonic wave including the wideband frequency is used, the crystal growth direction of the tissue is increased as compared with the conventional ultrasonic flaw detection method. The S / N ratio for noise such as forest echo is improved regardless of the flaw detection direction regardless of the flaw detection direction. Therefore, it is possible to perform flaw detection in an arbitrary ultrasonic wave incident direction with respect to the crystal direction without being influenced by the crystal growth direction of the texture. Further, since the ultrasonic wave incident direction is not affected by the crystal growth direction, the ultrasonic wave incident direction can be made perpendicular to the flaw detection surface. Therefore, the work of connecting the above-mentioned broadband probe to the flaw detection surface becomes easy, and the workability at the time of flaw detection is improved. As a result, it is not necessary to control the regularity of the crystal growth direction of the structure of the product when manufacturing the austenitic stainless cast product, and the work efficiency of the manufacturing process and the flaw detection process is improved.

【0008】請求項2に記載の発明は、探触子を用いて
超音波をオーステナイト系ステンレス鋳物に入射して内
部欠陥3を探傷するオーステナイト系ステンレス鋳物の
超音波探傷方法において、広帯域周波数を含む縦波超音
波を探傷対象物の探傷面に対して垂直に入射させ、この
反射波の受信波形から求めた距離振幅特性曲線図に基づ
いて欠陥評価し、内部欠陥3の有無判定を行なう方法と
している。
The invention according to claim 2 is an ultrasonic flaw detection method for an austenitic stainless casting in which ultrasonic waves are incident on the austenitic stainless casting using a probe to detect internal defects 3. As a method of making longitudinal ultrasonic waves incident perpendicularly to the flaw detection surface of the flaw detection target, performing defect evaluation based on the distance amplitude characteristic curve diagram obtained from the received waveform of this reflected wave, and determining the presence or absence of the internal defect 3 There is.

【0009】請求項2に記載の発明によると、広帯域周
波数を含む縦波超音波を出射する広帯域用探触子を使用
しているので、従来の超音波探傷方法に比べて組織の結
晶成長方向に左右されずに、どの探傷方向によっても林
状エコー等のノイズに対するS/N比が改善される。よ
って、組織の結晶成長方向に左右されることなく、結晶
方向に対して任意の超音波入射方向での探傷が可能とな
る。又、超音波入射方向が結晶成長方向によって影響を
受けなくなるので、超音波入射方向を探傷面に対して垂
直にすることが可能となる。したがって、上記広帯域用
探触子を探傷面に接続する作業が容易となり、探傷時の
作業性が改善される。この結果、オーステナイト系ステ
ンレス鋳物製品製造時に、製品の組織の結晶成長方向の
規則性を管理する必要が無くなり、製造工程及び探傷工
程の作業能率が改善される。又、内部欠陥の大きさと探
傷距離とその受信レベルとの関係を表す距離振幅特性曲
線図に基づいて、欠陥評価時の内部欠陥の有無判定を行
なう。このとき、実際の反射波の受信レベルをプロット
し、このプロットした点と上記距離振幅特性曲線との比
較に基づいて判定するので、欠陥評価時に内部欠陥の大
きさ(面積)が推定可能となり、合否判定が容易とな
る。したがって、探傷作業性が向上される。
According to the second aspect of the present invention, since the wideband probe which emits the longitudinal ultrasonic wave including the wideband frequency is used, the crystal growth direction of the tissue is larger than that of the conventional ultrasonic flaw detection method. The S / N ratio for noise such as forest echo is improved regardless of the flaw detection direction regardless of the flaw detection direction. Therefore, it is possible to perform flaw detection in an arbitrary ultrasonic wave incident direction with respect to the crystal direction without being influenced by the crystal growth direction of the texture. Further, since the ultrasonic wave incident direction is not affected by the crystal growth direction, the ultrasonic wave incident direction can be made perpendicular to the flaw detection surface. Therefore, the work of connecting the above-mentioned broadband probe to the flaw detection surface becomes easy, and the workability at the time of flaw detection is improved. As a result, it is not necessary to control the regularity of the crystal growth direction of the structure of the product when manufacturing the austenitic stainless cast product, and the work efficiency of the manufacturing process and the flaw detection process is improved. Further, the presence / absence of an internal defect at the time of defect evaluation is determined based on a distance-amplitude characteristic curve diagram showing the relationship between the size of the internal defect, the flaw detection distance and the reception level thereof. At this time, the reception level of the actual reflected wave is plotted, and it is determined based on the comparison between the plotted point and the distance amplitude characteristic curve, so that the size (area) of the internal defect can be estimated at the time of defect evaluation, Pass / fail judgment becomes easy. Therefore, the flaw detection workability is improved.

【0010】請求項3に記載の発明は、請求項1又は2
に記載のオーステナイト系ステンレス鋳物の超音波探傷
方法において、前記探触子の広帯域周波数は少なくとも
周波数0.5〜4MHzを含んでいることが好ましい。
[0010] The invention described in claim 3 is the invention according to claim 1 or 2.
In the ultrasonic flaw detection method for austenitic stainless castings described in (3), it is preferable that the wide band frequency of the probe includes at least a frequency of 0.5 to 4 MHz.

【0011】請求項3に記載の発明によると、広帯域用
探触子の周波数は少なくとも周波数0.5〜4MHzを含
むようにしている。これにより、オーステナイト系ステ
ンレス鋳物の組織の結晶成長方向に左右されずに、任意
の探傷方向での超音波透過性が改善され、林状エコーが
少なく内部欠陥や底面からの鮮明なエコーが得られる。
この結果、S/N比が改善され、内部欠陥の有無判定が
容易となる。
According to the third aspect of the invention, the frequency of the broadband probe is at least 0.5 to 4 MHz. As a result, the ultrasonic transmission in any flaw detection direction is improved without being affected by the crystal growth direction of the structure of the austenitic stainless casting, and there are few forest-like echoes and clear echoes from the internal defects and the bottom surface can be obtained. .
As a result, the S / N ratio is improved, and the presence / absence of an internal defect can be easily determined.

【0012】請求項4に記載の発明は、請求項1又は2
に記載のオーステナイト系ステンレス鋳物の超音波探傷
方法において、前記内部欠陥3の探傷可能な限界距離は
探傷面から少なくとも60mm以内としている。
[0012] The invention according to claim 4 is the invention according to claim 1 or 2.
In the ultrasonic flaw detection method for austenitic stainless castings described in (3) above, the limit distance for flaw detection of the internal defect 3 is at least 60 mm from the flaw detection surface.

【0013】請求項4に記載の発明によると、オーステ
ナイト系ステンレス鋳物製品の厚さが少なくとも60mm
以内であれば、広帯域周波数を含む縦波超音波を出射す
る広帯域用探触子を使用して垂直探傷することにより、
超音波入射角度が組織の結晶成長方向に影響を受けるこ
と無く探傷が可能となる。よって、オーステナイト系ス
テンレス鋳物製品製造時に、製品の組織の結晶成長方向
の規則性を管理する必要が無くなり、作業能率が改善さ
れる。
According to the invention described in claim 4, the thickness of the austenitic stainless cast product is at least 60 mm.
If it is within the range, by performing vertical flaw detection using a broadband probe that emits longitudinal ultrasonic waves including broadband frequencies,
It is possible to detect flaws without the ultrasonic incident angle being influenced by the crystal growth direction of the tissue. Therefore, it is not necessary to control the regularity of the crystal growth direction of the structure of the product when manufacturing the austenitic stainless cast product, and the work efficiency is improved.

【0014】請求項5に記載の発明は、請求項1又は2
に記載のオーステナイト系ステンレス鋳物の超音波探傷
方法において、前記探傷対象物の上面2aと底面2bが
平行な場合には、かつ、前記内部欠陥3の探傷可能な限
界距離は少なくとも120mm以内としている。
The invention described in claim 5 is the invention according to claim 1 or 2.
In the ultrasonic flaw detection method for austenitic stainless castings described in (3) above, when the upper surface 2a and the bottom surface 2b of the flaw detection target are parallel to each other, the flaw detection limit distance of the internal defect 3 is at least 120 mm or less.

【0015】請求項5に記載の発明によると、オーステ
ナイト系ステンレス鋳物製品の上面と底面が平行で、か
つ厚さが少なくとも120mm以内であれば、広帯域周波
数を含む縦波超音波を出射する広帯域用探触子を上記の
上面及び底面に垂直探傷することにより、超音波入射角
度が組織の結晶成長方向に影響を受けること無く探傷が
可能となる。よって、オーステナイト系ステンレス鋳物
製品製造時に、製品の組織の結晶成長方向の規則性を管
理する必要が無くなり、作業能率が改善される。
According to the fifth aspect of the present invention, if the austenitic stainless cast product has a top surface and a bottom surface parallel to each other and a thickness of at least 120 mm, a wide band ultrasonic wave including a wide band frequency is emitted. By performing flaw detection on the top surface and the bottom surface of the probe vertically, flaw detection is possible without the ultrasonic wave incident angle being influenced by the crystal growth direction of the tissue. Therefore, it is not necessary to control the regularity of the crystal growth direction of the structure of the product when manufacturing the austenitic stainless cast product, and the work efficiency is improved.

【0016】請求項6に記載の発明は、請求項2に記載
のオーステナイト系ステンレス鋳物の超音波探傷方法に
おいて、前記欠陥評価での内部欠陥3の有無判定は、感
度46dBで、内部欠陥3の大きさがφ6のときに所定探
傷距離での受信レベルを80%とした前記距離振幅特性
曲線図に基づいて判定する方法としている。
The invention according to claim 6 is the ultrasonic flaw detection method for an austenitic stainless casting according to claim 2, wherein the presence / absence of the internal defect 3 in the defect evaluation is 46 dB and the internal defect 3 is judged. When the size is φ6, the determination method is based on the distance amplitude characteristic curve diagram in which the reception level at the predetermined flaw detection distance is 80%.

【0017】請求項6に記載の発明によると、感度46
dBで、内部欠陥の大きさがφ6のときに所定探傷距離で
の受信レベルを80%としたときに作成された前記距離
振幅特性曲線図に基づいて、欠陥評価時の内部欠陥の有
無判定が行われる。このとき、実際の反射波の受信レベ
ルをプロットし、このプロットした点と上記φ6の距離
振幅特性曲線との比較に基づいて判定するので、欠陥評
価時に内部欠陥3の大きさ(面積)が推定可能となる。
したがって、欠陥評価の合否判定が容易となり、探傷作
業性が向上される。
According to the invention of claim 6, the sensitivity 46
In dB, the presence / absence of an internal defect at the time of defect evaluation can be determined based on the distance amplitude characteristic curve diagram created when the reception level at a predetermined flaw detection distance is 80% when the size of the internal defect is φ6. Done. At this time, the reception level of the actual reflected wave is plotted, and the judgment is made based on the comparison between the plotted point and the distance amplitude characteristic curve of φ6, so the size (area) of the internal defect 3 is estimated at the time of defect evaluation. It will be possible.
Therefore, the pass / fail judgment of the defect evaluation becomes easy, and the flaw detection workability is improved.

【0018】[0018]

【発明の実施の形態】以下、図面を参照しながら、実施
形態を説明する。図1は、本発明に係わるオーステナイ
ト系ステンレス鋳物の超音波探傷方法の説明図である。
探傷対象鋼材2はオーステナイト系ステンレス鋳物で構
成され、例えばSCS14材等である。この探傷対象鋼
材2の上面2a及び底面2bのいずれか一方を探傷のた
めの測定面(以後、探傷面と呼ぶ)とし、この探傷面に
超音波を出射する探触子1が接続される。この探触子1
としては広帯域用探触子が使用され、その超音波は少な
くとも周波数0.5〜4MHzを含む縦波である。そし
て、この探触子1は探傷対象鋼材2の探傷面に対して垂
直に超音波を入射するように接続される。更に、この探
傷面は探傷対象鋼材2の結晶成長方向に係わらずに、ど
の方向から探傷してもよい。ここで、図1に示すよう
に、探傷面を上面2aとする。探触子1から出射された
超音波は探傷対象鋼材2内を音速で直進し、内部欠陥3
によって反射したり、あるいは探傷面と対向する底面2
bによって反射する。この反射波を探触子1により受信
し、この受信信号の受信時間(出射時からの経過時間)
に基づいて探傷面からの内部欠陥3の深さや底面2bま
での高さを測定できる。ここで、探傷対象鋼材2内の伝
播音速Vは、探傷対象鋼材2内の組織の結晶粒度及び結
晶成長方向等によって左右されるものである。
DETAILED DESCRIPTION OF THE INVENTION Embodiments will be described below with reference to the drawings. FIG. 1 is an explanatory view of an ultrasonic flaw detection method for an austenitic stainless casting according to the present invention.
The steel material 2 to be inspected is composed of an austenitic stainless casting, and is, for example, SCS14 material. Either one of the upper surface 2a and the bottom surface 2b of the flaw detection target steel material 2 is used as a measurement surface for flaw detection (hereinafter referred to as flaw detection surface), and the probe 1 that emits ultrasonic waves is connected to this flaw detection surface. This probe 1
A wide band probe is used as the ultrasonic wave, and the ultrasonic wave is a longitudinal wave including at least a frequency of 0.5 to 4 MHz. Then, the probe 1 is connected so that ultrasonic waves are incident vertically to the flaw detection surface of the flaw detection target steel material 2. Further, this flaw detection surface may be flaw-detected from any direction regardless of the crystal growth direction of the steel material 2 to be flaw-detected. Here, as shown in FIG. 1, the flaw detection surface is an upper surface 2a. The ultrasonic waves emitted from the probe 1 travel straight inside the steel material 2 to be flaw-detected at the speed of sound, causing internal defects 3
Bottom surface 2 that is reflected by or is facing the flaw detection surface
reflected by b. This reflected wave is received by the probe 1, and the reception time of this reception signal (elapsed time from the time of emission)
Based on the above, the depth of the internal defect 3 from the flaw detection surface and the height to the bottom surface 2b can be measured. Here, the propagation sound velocity V in the flaw detection target steel material 2 depends on the crystal grain size and the crystal growth direction of the structure in the flaw detection target steel material 2.

【0019】そして、欠陥評価時には、図2に示すよう
な距離振幅特性曲線図を利用して評価する。同図におい
て、横軸は探傷距離を表し、縦軸は探触子1からの出射
波の振幅に対する反射波の受信レベルを表している。こ
の距離振幅特性曲線20は、直径6mm(以後、φ6と言
う)の大きさの内部欠陥3に対して探傷した場合の反射
波の受信レベルと探傷距離の関係を示しており、図2に
おける斜線部内が探傷の有効範囲を表している。実際に
欠陥評価する際は、検査対象となるオーステナイト系ス
テンレス鋳物のワークに対して、まず、おおよその欠陥
のある位置を仮探傷するために、上記距離振幅特性曲線
20を作成時の探傷測定装置の感度よりも大きな、例え
ば46dBよりも大きな感度58dBで探傷する。次に、本
欠陥評価時は、上記距離振幅特性曲線20の作成時と同
じ感度で、例えば探傷距離20mmの位置にあるφ6の内
部欠陥3が感度46dB、レベル80%で受信される条件
の下で探傷を行ない、このときの反射波の受信レベルを
図2の距離振幅特性曲線図内にプロットして判定する。
この探傷結果に基づいて、φ6の距離振幅特性曲線20
上にプロットされたときは、このプロット点に相当する
探傷距離にφ6程度の大きさ(面積)の内部欠陥3があ
ると判定でき、φ6の距離振幅特性曲線20よりも上方
にプロットされたときは、相当する探傷距離にφ6より
も大きい内部欠陥3があると判定できる。又、図2の斜
線部内で、かつ、φ6の距離振幅特性曲線20よりも下
方にプロットされたときは、φ6よりも小さい内部欠陥
3がある可能性があることが分かる。
At the time of defect evaluation, evaluation is carried out by using a distance amplitude characteristic curve diagram as shown in FIG. In the figure, the horizontal axis represents the flaw detection distance, and the vertical axis represents the reception level of the reflected wave with respect to the amplitude of the wave emitted from the probe 1. This distance amplitude characteristic curve 20 shows the relationship between the reception level of the reflected wave and the flaw detection distance when flaw detection is performed on the internal defect 3 having a diameter of 6 mm (hereinafter referred to as φ6). The effective area of flaw detection is shown inside the department. When actually evaluating a defect, first, with respect to a workpiece of an austenitic stainless casting to be inspected, first, in order to temporarily detect an approximate defective position, a flaw measuring device at the time of creating the distance amplitude characteristic curve 20. The flaw detection is performed with a sensitivity of 58 dB which is greater than the sensitivity of, for example, greater than 46 dB. Next, at the time of this defect evaluation, under the condition that the internal defect 3 of φ6 at the position of the flaw detection distance of 20 mm is received with the sensitivity of 46 dB and the level of 80% with the same sensitivity as when the distance amplitude characteristic curve 20 was created. The flaw detection is carried out with, and the reception level of the reflected wave at this time is plotted in the distance amplitude characteristic curve diagram of FIG.
Based on this flaw detection result, the φ6 distance amplitude characteristic curve 20
When plotted above, it can be determined that there is an internal defect 3 having a size (area) of about φ6 at the flaw detection distance corresponding to this plot point, and when plotted above the distance amplitude characteristic curve 20 of φ6. Can be determined to have an internal defect 3 larger than φ6 at the corresponding flaw detection distance. Further, when plotted in the shaded area in FIG. 2 and below the distance amplitude characteristic curve 20 of φ6, it can be seen that there may be an internal defect 3 smaller than φ6.

【0020】次に、上述の探傷方法による作用を詳細に
説明する。まず、結晶成長方向に係わらずに任意の方向
からでも探傷が可能な理由を説明する。図3は、上記の
受信した反射波形の例を示している。同図はオーステナ
イト系ステンレス鋳物の組織の結晶成長方向が超音波入
射方向に対して平行になっている場合、すなわち、探傷
面に対して垂直になっている場合の反射波形例である。
同図において、横軸は前述の受信時間tを表し、縦軸は
反射波の受信レベル(信号強度)を表している。本発明
者は、従来のオーステナイト系ステンレス鋳物の探傷に
使用されている特定周波数の通常用探触子では、反射波
の受信信号とノイズ信号とが同等レベルで混在して観測
されるので、底面2bからの反射波(以後、底面エコー
と言う)を明確に区別できないことを確認した。この確
認の後、広帯域用の、例えば周波数0.5〜4MHzの探
触子1を使用するとS/N比が改善され、後述するよう
にある測定条件の下で非常に鮮明に底面エコーが観測さ
れることを確認した。このときの波形は、オーステナイ
ト系ステンレス鋳物以外の一般的な金属部材を超音波探
傷した場合と同じような反射波形となり、すなわち、図
3のように底面エコーを表す波形Bが鮮明に観測され
る。もし、探傷対象鋼材2内に内部欠陥3がある場合
は、受信時間t=0の位置(探傷面に対応)と上記波形
Bの位置との間に、内部欠陥3からの反射波を表す波形
Aが観測される。このように、波形Aが観測された場合
は内部欠陥3があると判定でき、波形Aの受信時間Ta
や波形Bの受信時間Tb と前述の伝播音速Vとから、そ
れぞれ内部欠陥3までの距離や底面2bまでの距離を算
出することができる。
Next, the operation of the above flaw detection method will be described in detail. First, the reason why flaw detection is possible from any direction regardless of the crystal growth direction will be described. FIG. 3 shows an example of the received reflection waveform described above. This figure shows an example of a reflection waveform when the crystal growth direction of the austenitic stainless cast structure is parallel to the ultrasonic wave incident direction, that is, when it is perpendicular to the flaw detection surface.
In the figure, the horizontal axis represents the above-mentioned reception time t, and the vertical axis represents the reception level (signal intensity) of the reflected wave. The present inventor, in the conventional probe of a specific frequency used for flaw detection of conventional austenitic stainless castings, since the received signal of the reflected wave and the noise signal are observed mixedly at the same level, the bottom surface It was confirmed that the reflected wave from 2b (hereinafter referred to as the bottom echo) cannot be clearly distinguished. After this confirmation, if a probe 1 for a wide band, for example, a frequency of 0.5 to 4 MHz is used, the S / N ratio is improved, and the bottom surface echo is observed very clearly under certain measurement conditions as described later. I was confirmed. The waveform at this time is a reflection waveform similar to that obtained when ultrasonically flaw-detecting a general metal member other than an austenitic stainless casting, that is, a waveform B representing a bottom echo is clearly observed as shown in FIG. . If there is an internal defect 3 in the steel material 2 to be inspected, a waveform representing the reflected wave from the internal defect 3 between the position of the reception time t = 0 (corresponding to the inspection surface) and the position of the above waveform B. A is observed. Thus, when the waveform A is observed, it can be determined that there is an internal defect 3, and the reception time Ta of the waveform A is Ta.
The distance to the internal defect 3 and the distance to the bottom surface 2b can be calculated from the reception time Tb of the waveform B and the propagation sound velocity V described above.

【0021】一方、オーステナイト系ステンレス鋳物の
組織の結晶成長方向に対して直交する方向に超音波を入
射した場合は、図3のように上記波形A及び波形Bが容
易に判別可能な受信信号とはならずに、ノイズ信号がか
なり多く観測される波形となる。図4にこの場合の受信
反射波形の例を示しており、このときの探触子1も、上
記と同じ例えば周波数0.5〜4MHzの広帯域用探触子
を使用している。同図でも分かるように、受信波形の中
にはノイズ信号波形が乱立して観測されるが、このよう
なノイズ信号波形は従来から林状エコーと呼ばれてい
る。この林状エコーは、前述のように探傷対象鋼材2の
組織を構成する結晶粒界によって超音波が散乱したため
に発生するものである。したがって、林状エコーが観測
された受信波形によって内部欠陥3や底面エコーを特定
することは非常に困難となる。
On the other hand, when an ultrasonic wave is applied in a direction orthogonal to the crystal growth direction of the structure of the austenitic stainless cast product, the waveform A and the waveform B are the received signals which can be easily discriminated as shown in FIG. However, the waveform is such that a large number of noise signals are observed. FIG. 4 shows an example of the reception reflection waveform in this case, and the probe 1 at this time also uses the same wideband probe having a frequency of 0.5 to 4 MHz as described above. As can be seen from the figure, a noise signal waveform is observed in a scattered manner in the received waveform, and such a noise signal waveform is conventionally called a forest echo. This forest-like echo is generated because the ultrasonic waves are scattered by the crystal grain boundaries that form the structure of the steel material 2 to be flaw-detected as described above. Therefore, it becomes very difficult to identify the internal defect 3 and the bottom echo based on the received waveform in which the forest echo is observed.

【0022】上述のように、オーステナイト系ステンレ
ス鋳物の組織の結晶成長方向と超音波入射方向とのなす
角度によって反射波の受信波形の様子が非常に異なって
おり、この受信波形の状態が内部欠陥検出精度の良否に
影響を与えている。したがって、超音波入射方向に左右
されずに、安定した検出精度を得ることが可能な探傷方
法が求められており、本発明者は、幾つかの試験結果を
基にして、特定条件の下においてこのような安定した検
出精度を得られる探傷方法を提案している。以下に、こ
れを詳述する。
As described above, the received waveform of the reflected wave is very different depending on the angle formed by the crystal growth direction of the structure of the austenitic stainless casting and the incident direction of the ultrasonic wave, and the state of this received waveform is an internal defect. This affects the quality of detection accuracy. Therefore, there is a demand for a flaw detection method capable of obtaining stable detection accuracy without being affected by the ultrasonic wave incident direction, and the present inventor has found that, based on some test results, under specific conditions. We propose a flaw detection method that can obtain such stable detection accuracy. This will be described in detail below.

【0023】本発明者は、上記のようなオーステナイト
系ステンレス鋳物の組織の結晶成長方向と超音波入射方
向と内部欠陥との関連性を確認するために、一定の結晶
成長方向を有する試験片を幾つか製作した。すなわち、
図5に示すようなSCS14材のステンレス鋼の湯の鋳
入方向14によって、一定の結晶成長方向を有する供試
材10を作り、この供試材10から、上記鋳入方向14
に対して直交する2面と鋳入方向14に平行な4面とを
有する立方体状の試験片11を製作した。この試験片1
1において、鋳入方向14に対して直交する面の一つを
面P、又鋳入方向14に平行な面の内、互いに直交し、
かつ面Pに直交する面をそれぞれ面Q、面Rと呼ぶ。こ
こで、試験片11の一辺の長さは70mmである。この試
験片11の面P、面Q及び面Rのそれぞれを探傷面にし
て前述の探触子1を接続し、このときの反射波の受信波
形を観測した。面Pを探傷面とした場合は前述の図4で
示したような林状エコーが発生した波形となり、底面エ
コーである波形Bの観測が困難であった。又、面Qを探
傷面とした場合は図3で示したような鮮明な底面エコー
の確認ができ、このときの林状エコーは非常に小さい
(大きくても受信レベルが20%以下)状態であった。
更に、面Rを探傷面とした場合は上記のQ面探傷に比べ
て20%程度の林状エコーが観測されたものの、底面エ
コーが鮮明であり、確認が容易にできた。
In order to confirm the relationship between the crystal growth direction of the structure of the austenitic stainless cast product, the ultrasonic wave incident direction, and the internal defect, the present inventor has prepared a test piece having a certain crystal growth direction. I made some. That is,
A test material 10 having a constant crystal growth direction is made by the casting direction 14 of the SCS14 stainless steel hot water as shown in FIG. 5, and from this test material 10, the casting direction 14
A cubic test piece 11 having two surfaces orthogonal to and four surfaces parallel to the casting direction 14 was manufactured. This test piece 1
1, one of the planes orthogonal to the casting direction 14 is a plane P, and the planes parallel to the casting direction 14 are orthogonal to each other,
The planes orthogonal to the plane P are referred to as the plane Q and the plane R, respectively. Here, the length of one side of the test piece 11 is 70 mm. Each of the surface P, the surface Q, and the surface R of the test piece 11 was used as a flaw detection surface, and the above-described probe 1 was connected, and the received waveform of the reflected wave at this time was observed. When the surface P is used as a flaw detection surface, the waveform has a forest echo as shown in FIG. 4, and it is difficult to observe the waveform B which is the bottom echo. When the surface Q is used as the flaw detection surface, a clear bottom surface echo as shown in FIG. 3 can be confirmed, and the forest-like echo at this time is very small (the reception level is 20% or less even if large). there were.
Further, when the surface R was used as the flaw detection surface, about 20% of the forest-like echo was observed as compared with the above-mentioned flaw detection on the Q surface, but the bottom echo was clear and could be confirmed easily.

【0024】これらのことから、湯の鋳入方向によって
試験片11の結晶粒界の方向が異なり、この結晶粒界の
方向性の差によって超音波の透過度が異なることが判明
した。一般的に、湯の鋳入方向と凝固方向は直交し、こ
の凝固方向に結晶粒が成長することは良く知られてい
る。したがって、面Q及び面Rではこの結晶成長方向が
探傷面に直交しているので、超音波入射方向は結晶成長
方向と平行となって超音波の透過度が良好となる。よっ
て、Q面探傷及びR面探傷では、70mm厚さの試験片1
1の底面エコーを鮮明に観測できるので探傷は可能であ
る。又、面Pでは上記結晶成長方向が探傷面と平行にな
るので、超音波入射方向は結晶成長方向に垂直となって
超音波の透過度にバラツキが生じている。よって、P面
探傷では、70mm厚さの試験片11においては、底面エ
コーを観測できないので探傷は不可能である。この結
果、探傷方向に関して言うと、結晶成長方向に垂直な方
向が最悪条件となることが理解できる。
From the above, it was found that the direction of the crystal grain boundary of the test piece 11 differs depending on the pouring direction of the molten metal, and the ultrasonic wave transmission varies depending on the difference in the directionality of the crystal grain boundary. Generally, it is well known that the pouring direction and the solidification direction of the molten metal are orthogonal to each other and the crystal grains grow in this solidification direction. Therefore, on the surfaces Q and R, the crystal growth direction is orthogonal to the flaw detection surface, so that the ultrasonic wave incident direction is parallel to the crystal growth direction, and the ultrasonic wave transmittance is good. Therefore, for Q-face inspection and R-face inspection, test piece 1 with 70 mm thickness
Since the bottom echo of 1 can be clearly observed, flaw detection is possible. Further, since the crystal growth direction is parallel to the flaw detection surface on the surface P, the ultrasonic wave incident direction is perpendicular to the crystal growth direction, and the ultrasonic wave transmittance varies. Therefore, in the P-plane flaw detection, since the bottom surface echo cannot be observed in the test piece 11 having a thickness of 70 mm, flaw detection is impossible. As a result, regarding the flaw detection direction, it can be understood that the worst condition is the direction perpendicular to the crystal growth direction.

【0025】そこで、本発明者は、上記最悪条件におけ
る探傷可能な距離の限界値を試験的に求めている。図6
はこの試験用の供試材の製作要領を示し、図7は、この
供試材を使用して結晶成長方向に垂直な方向に超音波を
入射した場合の、すなわち、P面探傷による探傷距離と
底面エコーの受信レベルとの関係を示している。図6に
おいて、供試材12は湯の鋳入方向14に対して直交す
る2面を有し、かつこの鋳入方向に少なくとも100mm
以上の長さを有する四角柱状の供試材である。上記鋳入
方向14に対して直交する2面の内の一方を前述同様に
面Pと呼ぶと、P面探傷は結晶成長方向に垂直な探傷方
向となる。この面Pを基準にして例えば60mm、70m
m、80mm、90mm…のように供試材12を切断し、1
0mm間隔で長さの異なる試験片を作成する。そして、こ
の各試験片のP面探傷による底面エコーの観測を行な
い、探傷可能な距離を測定した。この結果が図7に示さ
れており、同図において、横軸は探傷距離(ここでは、
底面までの距離に相当する)を表し、縦軸は出射波の信
号レベルを100%とした場合の底面エコーの受信レベ
ルを表している。同図における曲線23は、以下のよう
にして作成する。すなわち、上記の10mm間隔毎の各試
験片に対して底面エコーの受信レベルを観測し、このと
きの試験片の長さとこの受信レベルとの関係を、同図の
各探傷距離と受信レベルとの関係でプロットして作成す
る。この結果、底面エコーを鮮明に観測可能な探傷距離
の限界は60mm以内であると推定できる。よって、最悪
条件での探傷方向、すなわち、P面探傷における探傷可
能な距離の限界値は60mm以内であると判断した。逆に
言うと、60mm以内であれば、結晶成長方向が任意の場
合の探傷が可能となる。
Therefore, the inventor of the present invention experimentally finds the limit value of the flaw detection distance under the above-mentioned worst condition. FIG.
Shows the manufacturing procedure of the test material for this test, and FIG. 7 shows the test distance when ultrasonic waves are injected in the direction perpendicular to the crystal growth direction using this test material, that is, the flaw detection distance by P-plane flaw detection. And the reception level of the bottom echo. In FIG. 6, the test material 12 has two surfaces orthogonal to the pouring direction 14 of the molten metal, and has at least 100 mm in this pouring direction.
It is a square columnar test material having the above length. If one of the two surfaces orthogonal to the casting direction 14 is referred to as the surface P as in the above, the P-plane flaw detection is a flaw detection direction perpendicular to the crystal growth direction. Based on this surface P, for example, 60 mm, 70 m
Cut the test material 12 like m, 80mm, 90mm ...
Specimens of different length are made at 0 mm intervals. Then, the bottom surface echo was observed by P-face flaw detection of each of the test pieces, and the flaw detection distance was measured. This result is shown in FIG. 7, in which the horizontal axis represents the flaw detection distance (here,
(Corresponding to the distance to the bottom surface), and the vertical axis represents the reception level of the bottom surface echo when the signal level of the emitted wave is 100%. The curve 23 in the figure is created as follows. That is, the reception level of the bottom echo is observed for each of the above-mentioned test pieces at intervals of 10 mm, and the relationship between the length of the test piece and this reception level at this time is shown in FIG. Create by plotting the relationship. As a result, it can be estimated that the limit of the flaw detection distance with which the bottom echo can be clearly observed is within 60 mm. Therefore, it was judged that the flaw detection direction under the worst condition, that is, the limit value of the flaw detection distance in P-face flaw detection is within 60 mm. Conversely, if it is within 60 mm, flaw detection is possible when the crystal growth direction is arbitrary.

【0026】次に、本発明者は、上記のような60mm以
内という条件の下での検出が可能な内部欠陥の大きさの
最小値を求めている。すなわち、林状エコーとの識別が
可能な内部欠陥の大きさがどの程度かを確認するため
に、内部欠陥の大きさとその時の受信レベルと探傷距離
との関係を調べている。図8にこの関係を示しており、
同図において横軸は探傷面からの距離を表し、縦軸は出
射波の振幅の大きさに対する反射波の振幅の受信レベル
の比を表している。本発明は前述の最悪条件、すなわ
ち、P面探傷で探傷距離60mm以内の内部欠陥が検知可
能なことを前提としているが、この確認のために60mm
以内での受信レベルと同様に60mm以上での受信レベル
も測定し、この測定結果に基づいて検出可能な最小の内
部欠陥に関する図8の曲線21を作成している。したが
って、図8では、探傷距離60mm以上での受信レベルも
測定するために、鋳入方向に対して直交する方向からの
探傷(前述のQ面探傷)によって内部欠陥の受信レベル
を測定している。なお、本発明者は、60mm以内での受
信レベルに関しては、上記のP面探傷とQ面探傷とで同
様になることを確認している。
Next, the present inventor seeks the minimum value of the size of the internal defect which can be detected under the condition of 60 mm or less as described above. That is, in order to confirm the size of the internal defect that can be distinguished from the forest echo, the relationship between the size of the internal defect, the reception level at that time, and the flaw detection distance is examined. Figure 8 shows this relationship,
In the figure, the horizontal axis represents the distance from the flaw detection surface, and the vertical axis represents the ratio of the received level of the amplitude of the reflected wave to the amplitude of the emitted wave. The present invention is based on the above-mentioned worst condition, that is, it is premised that an internal defect within a flaw detection distance of 60 mm can be detected by P-face flaw detection.
The reception level at 60 mm or more is measured as well as the reception level within, and the curve 21 of FIG. 8 regarding the smallest detectable internal defect is created based on the measurement result. Therefore, in FIG. 8, in order to measure the reception level at the flaw detection distance of 60 mm or more, the reception level of the internal defect is measured by flaw detection from the direction orthogonal to the casting direction (the above-mentioned Q-plane flaw detection). . The present inventor has confirmed that the reception level within 60 mm is similar between the above-described P-plane flaw detection and Q-face flaw detection.

【0027】図8において、曲線21は、φ6の円形状
穴からの反射波受信レベルを探傷距離毎に表したもので
ある。又、図9はこのとき使用される試験片を示してお
り、上記のように探傷距離60mm以上での受信レベルも
測定するために、Q面探傷が可能な試験片を用いてい
る。この試験片の底面から例えばφ6等の所定の大きさ
の穴25を開け、かつ、穴25の端面と試験片の上面と
の距離が所定の探傷距離になるように加工している。こ
の試験片の上面を探傷面とし、所定の探傷距離に設けら
れたφ6等の穴25からの反射波の受信レベルを各探傷
距離毎にプロットし、各プロット点を接続して曲線21
を作成している。ここで、図8には林状エコーの受信レ
ベルも示されているが、この林状エコーの受信レベルが
所定の大きさ以上にならないように探傷測定装置の受信
感度を調整する。図8では、この林状エコーの受信レベ
ルが例えば30%以上にならないように感度が46dBに
設定されており、このとき探傷距離20mmの位置におけ
る上記φ6等の穴25からの受信レベルが80%になる
ように調整されている。このような曲線21を、例えば
φ3、4、5、6等の所定の大きさの穴毎に作成した。
なお、図8にはこの内でφ6の穴に関する曲線のみを示
している。そして、これらの曲線21に基づいて林状エ
コーと各穴25の反射波との受信レベルの差を考慮する
と、探傷距離60mm以内の穴25の有無を判定するため
には、φ6以上の面積の穴25が必要であることが判明
した。このことから、探傷距離60mm以内を探傷限界と
した場合の検出可能な内部欠陥の大きさの最小値はφ6
としている。なお、前述の欠陥評価時に使用する距離振
幅特性曲線20は、このようにして作成されたものであ
る。
In FIG. 8, a curve 21 represents the reception level of the reflected wave from the φ6 circular hole for each flaw detection distance. Further, FIG. 9 shows a test piece used at this time, and in order to measure the reception level at a flaw detection distance of 60 mm or more as described above, a test piece capable of Q-face flaw detection is used. A hole 25 having a predetermined size of, for example, φ6 is opened from the bottom surface of the test piece, and the test piece is processed so that the distance between the end surface of the hole 25 and the upper surface of the test piece becomes a predetermined flaw detection distance. The upper surface of this test piece is used as a flaw detection surface, the reception level of the reflected wave from the hole 25 of φ6 or the like provided at a predetermined flaw detection distance is plotted for each flaw detection distance, and each plot point is connected to the curve 21.
Has been created. Here, although the reception level of the forest echo is also shown in FIG. 8, the reception sensitivity of the flaw measuring device is adjusted so that the reception level of the forest echo does not exceed a predetermined level. In FIG. 8, the sensitivity is set to 46 dB so that the reception level of this forest echo does not exceed, for example, 30%. At this time, the reception level from the hole 25 of φ6 or the like at a position with a flaw detection distance of 20 mm is 80%. Has been adjusted to be. Such a curve 21 was created for each hole having a predetermined size, for example, φ3, 4, 5, 6 or the like.
It should be noted that FIG. 8 shows only the curve relating to the φ6 hole. Then, considering the difference in the reception level between the forest echo and the reflected wave of each hole 25 based on these curves 21, in order to determine the presence or absence of the hole 25 within a flaw detection distance of 60 mm, an area of φ6 or more is required. It turned out that hole 25 is needed. From this, when the flaw detection distance is within 60 mm, the minimum detectable size of the internal defect is φ6.
And The distance amplitude characteristic curve 20 used in the above-described defect evaluation is created in this way.

【0028】上記のような探傷方法としたので、オース
テナイト系ステンレス鋳物の探傷面の結晶成長方向に左
右されずに任意の方向から探傷可能となり、又、そのと
きの探傷限界の距離は60mm以内とすることができる。
この結果、オーステナイト系ステンレス鋳物の製品製造
時に、この製品の組織の結晶成長方向に一定の規則性を
持たせるように特別の工程管理を必要とせず、製造工程
が簡略化されて能率的になる。又、上記のような特別な
工程を省略できるので、製造コストの面でも有利とな
る。更に、実際の探傷作業時には、製品の結晶成長方向
に左右されない任意の面を探傷面にできると共に、探触
子1からの超音波入射方向を探傷面に垂直にする、いわ
ゆる垂直探傷方法を用いることが可能なので、作業性を
向上させることができる。
Since the flaw detection method is as described above, flaw detection can be performed from any direction without being influenced by the crystal growth direction of the flaw detection surface of the austenitic stainless casting, and the flaw detection distance at that time is within 60 mm. can do.
As a result, when manufacturing the austenitic stainless cast product, no special process control is required so as to give a certain regularity to the crystal growth direction of the structure of this product, and the manufacturing process is simplified and becomes efficient. . Further, since the special process as described above can be omitted, it is advantageous in terms of manufacturing cost. Further, at the time of actual flaw detection work, a so-called vertical flaw detection method is used in which an arbitrary surface that is not affected by the crystal growth direction of the product can be used as the flaw detection surface and the ultrasonic wave incident direction from the probe 1 is perpendicular to the flaw detection surface. Therefore, the workability can be improved.

【0029】これまでの説明では、探傷対象鋼材2の探
傷限界の厚さを60mmとしているが、これに限定され
ず、例えば探傷対象鋼材2の上面2aと底面2bが平行
に構成された場合には、上面2aと底面2bとから上述
と同様の方法で探傷することにより探傷限界の厚さを1
20mmとすることが可能となる。この場合の作用及び効
果が同じになることは容易に分かる。
In the above description, the flaw detection limit thickness of the flaw detection steel material 2 is 60 mm, but the invention is not limited to this. For example, when the top surface 2a and the bottom surface 2b of the flaw detection steel material 2 are configured to be parallel to each other. Has a limit thickness of 1 by performing flaw detection from the upper surface 2a and the bottom surface 2b in the same manner as described above.
It becomes possible to make it 20 mm. It is easy to see that the action and effect in this case are the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるオーステナイト系ステンレス鋳
物の超音波探傷方法の説明図である。
FIG. 1 is an explanatory view of an ultrasonic flaw detection method for an austenitic stainless casting according to the present invention.

【図2】本発明に係わる超音波探傷方法の距離振幅特性
曲線図である。
FIG. 2 is a distance amplitude characteristic curve diagram of an ultrasonic flaw detection method according to the present invention.

【図3】本発明に係わる超音波探傷方法での超音波入射
方向と結晶成長方向とが平行な場合の受信波形例を示
す。
FIG. 3 shows an example of received waveforms when the ultrasonic wave incident direction and the crystal growth direction are parallel to each other in the ultrasonic flaw detection method according to the present invention.

【図4】本発明に係わる超音波探傷方法での超音波入射
方向と結晶成長方向とが垂直な場合の受信波形例を示
す。
FIG. 4 shows an example of a received waveform in the ultrasonic flaw detection method according to the present invention when the ultrasonic wave incident direction and the crystal growth direction are vertical.

【図5】供試材製作時の湯の鋳入方向と試験片の各面と
の関連図を示す。
FIG. 5 is a diagram showing the relationship between the casting direction of hot water and each surface of the test piece during the production of the test material.

【図6】最悪条件での探傷距離限界値を求める試験での
供試材製作要領を示す。
FIG. 6 shows a test material manufacturing procedure in a test for determining a flaw detection distance limit value under the worst condition.

【図7】P面探傷による探傷距離と底面エコーの受信レ
ベルとの関係を示す。
FIG. 7 shows the relationship between the flaw detection distance by P-face flaw detection and the reception level of the bottom surface echo.

【図8】内部欠陥の大きさとその受信レベルと探傷距離
との関係を示す。
FIG. 8 shows the relationship between the size of an internal defect, its reception level, and the flaw detection distance.

【図9】図8の関係図を作成するための試験片を示す。9 shows a test piece for making the relationship diagram of FIG.

【符号の説明】[Explanation of symbols]

1 探触子 2 探傷対象鋼材 2a 上面 2b 底面 3 内部欠陥 10、12 供試材 11 試験片 14 鋳入方向 20 距離振幅特性曲線 21、23 曲線 25 穴 A 内部欠陥エコー波形 B 底面エコー波形 P 鋳入方向に直交する面 Q 鋳入方向に平行な面 R 鋳入方向に平行な面 1 probe 2 steel material for flaw detection 2a upper surface 2b bottom surface 3 internal defect 10, 12 test material 11 test piece 14 casting direction 20 distance amplitude characteristic curve 21, 23 curve 25 hole A internal defect echo waveform B bottom echo waveform P casting Surface orthogonal to the casting direction Q Surface parallel to the casting direction R Surface parallel to the casting direction

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 探触子を用いて超音波をオーステナイト
系ステンレス鋳物に入射して内部欠陥(3) を探傷するオ
ーステナイト系ステンレス鋳物の超音波探傷方法におい
て、 広帯域周波数を含む縦波超音波を探傷対象物の探傷面に
対して垂直に入射させることを特徴とするオーステナイ
ト系ステンレス鋳物の超音波探傷方法。
1. An ultrasonic flaw detection method for an austenitic stainless casting in which ultrasonic waves are incident on the austenitic stainless casting using a probe to detect internal defects (3). An ultrasonic flaw detection method for an austenitic stainless casting, which is characterized in that the flaw is incident perpendicularly to the flaw detection surface of the flaw detection target.
【請求項2】 探触子を用いて超音波をオーステナイト
系ステンレス鋳物に入射して内部欠陥(3) を探傷するオ
ーステナイト系ステンレス鋳物の超音波探傷方法におい
て、 広帯域周波数を含む縦波超音波を探傷対象物の探傷面に
対して垂直に入射させ、この反射波の受信波形から求め
た距離振幅特性曲線図に基づいて欠陥評価し、内部欠陥
(3) の有無判定を行なうことを特徴とするオーステナイ
ト系ステンレス鋳物の超音波探傷方法。
2. An ultrasonic flaw detection method for an austenitic stainless casting, in which ultrasonic waves are incident on the austenitic stainless casting using a probe to detect internal defects (3). The defect is evaluated based on the distance-amplitude characteristic curve diagram obtained from the received waveform of this reflected wave by making it incident perpendicularly to the flaw detection surface of the flaw detection target.
An ultrasonic flaw detection method for austenitic stainless castings, which comprises determining the presence or absence of (3).
【請求項3】 請求項1又は2に記載のオーステナイト
系ステンレス鋳物の超音波探傷方法において、 前記探触子の広帯域周波数は少なくとも周波数0.5〜
4MHzを含んだことを特徴とするオーステナイト系ステ
ンレス鋳物の超音波探傷方法。
3. The ultrasonic flaw detection method for an austenitic stainless casting according to claim 1, wherein the probe has a broadband frequency of at least 0.5 to 0.5.
Ultrasonic flaw detection method for austenitic stainless castings containing 4 MHz.
【請求項4】 請求項1又は2に記載のオーステナイト
系ステンレス鋳物の超音波探傷方法において、 前記内部欠陥(3) の探傷可能な限界距離は探傷面から少
なくとも60mm以内としたことを特徴とするオーステナ
イト系ステンレス鋳物の超音波探傷方法。
4. The ultrasonic flaw detection method for an austenitic stainless casting according to claim 1 or 2, wherein the flaw detection limit of the internal defect (3) is at least 60 mm from the flaw detection surface. Ultrasonic flaw detection method for austenitic stainless castings.
【請求項5】 請求項1又は2に記載のオーステナイト
系ステンレス鋳物の超音波探傷方法において、 前記探傷対象物の上面(2a)と底面(2b)が平行な場合に
は、かつ、前記内部欠陥(3) の探傷可能な限界距離は少
なくとも120mm以内としたことを特徴とするオーステ
ナイト系ステンレス鋳物の超音波探傷方法。
5. The ultrasonic flaw detection method for an austenitic stainless casting according to claim 1 or 2, wherein the upper surface (2a) and the bottom surface (2b) of the flaw detection target are parallel to each other, and the internal defect is present. (3) The ultrasonic flaw detection method for austenitic stainless castings, wherein the flaw detection limit distance is at least 120 mm or less.
【請求項6】 請求項2に記載のオーステナイト系ステ
ンレス鋳物の超音波探傷方法において、 前記欠陥評価での内部欠陥(3) の有無判定は、感度46
dBで、内部欠陥(3) の大きさがφ6のときに所定探傷距
離での受信レベルを80%とした前記距離振幅特性曲線
図に基づいて判定することを特徴とするオーステナイト
系ステンレス鋳物の超音波探傷方法。
6. The ultrasonic flaw detection method for an austenitic stainless casting according to claim 2, wherein the presence / absence of the internal defect (3) in the defect evaluation is a sensitivity 46.
In dB, when the size of the internal defect (3) is φ6, the determination is made based on the distance amplitude characteristic curve diagram in which the reception level at a predetermined flaw detection distance is 80%, and the superposition of austenitic stainless castings is characterized. Sonic flaw detection method.
JP8147932A 1996-05-17 1996-05-17 Method for ultrasonically detecting flaw in austenitic steel casting Pending JPH09304363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147932A JPH09304363A (en) 1996-05-17 1996-05-17 Method for ultrasonically detecting flaw in austenitic steel casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147932A JPH09304363A (en) 1996-05-17 1996-05-17 Method for ultrasonically detecting flaw in austenitic steel casting

Publications (1)

Publication Number Publication Date
JPH09304363A true JPH09304363A (en) 1997-11-28

Family

ID=15441335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147932A Pending JPH09304363A (en) 1996-05-17 1996-05-17 Method for ultrasonically detecting flaw in austenitic steel casting

Country Status (1)

Country Link
JP (1) JPH09304363A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318085A (en) * 2000-05-08 2001-11-16 Daido Steel Co Ltd Padding pipe inspecting method
JP4686648B1 (en) * 2010-09-02 2011-05-25 株式会社日立製作所 Ultrasonic inspection method
JP2012053027A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053026A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
CN103543201A (en) * 2013-10-17 2014-01-29 清华大学 Flaw identification method for radial ultrasonic automatic flaw detection of shaft parts
CN104777225A (en) * 2015-04-30 2015-07-15 南京迪威尔高端制造股份有限公司 Steel ingot inner defect ultrasonic wave A scanning identification method
CN114674922A (en) * 2022-03-07 2022-06-28 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-size continuous casting round billet
CN114674922B (en) * 2022-03-07 2024-04-30 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-specification continuous casting round billet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318085A (en) * 2000-05-08 2001-11-16 Daido Steel Co Ltd Padding pipe inspecting method
JP4686648B1 (en) * 2010-09-02 2011-05-25 株式会社日立製作所 Ultrasonic inspection method
JP2012052963A (en) * 2010-09-02 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053027A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053026A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
CN103543201A (en) * 2013-10-17 2014-01-29 清华大学 Flaw identification method for radial ultrasonic automatic flaw detection of shaft parts
CN104777225A (en) * 2015-04-30 2015-07-15 南京迪威尔高端制造股份有限公司 Steel ingot inner defect ultrasonic wave A scanning identification method
CN114674922A (en) * 2022-03-07 2022-06-28 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-size continuous casting round billet
CN114674922B (en) * 2022-03-07 2024-04-30 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-specification continuous casting round billet

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US5085082A (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
US4614115A (en) Ultrasonic process and apparatus for monitoring and measuring the evolution with time of physico-chemical, biological or bacteriological phenomena
CN106840053A (en) A kind of leg size of fillet weld and internal flaw ultrasonic non-destructive measuring method
EP0139317A2 (en) Apparatus and method for the non-destructive inspection of solid bodies
EP1271097A2 (en) Method for inspecting clad pipe
CN108802191A (en) A kind of water logging defect detection on ultrasonic basis of rolled steel defect
Panetta et al. Ultrasonic attenuation measurements in jet-engine titanium alloys
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
Salzburger EMAT's and its Potential for Modern NDE-State of the Art and Latest Applications
CA2012374C (en) Ultrasonic crack sizing method
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
CN107966493A (en) A kind of ultrasonic examination decision method of rolled steel defect
Goebbels et al. INHOMOGENEITIES IN STEEL BY ULTRASONIC BACKSCATTERING MEASUREMENTS
Ushakov et al. Detection and measurement of surface cracks by the ultrasonic method for evaluating fatigue failure of metals
JPH07248317A (en) Ultrasonic flaw detecting method
Bond Basic inspection methods (Pulse-echo and transmission methods)
Chen et al. Characteristics of Wave Propagation in Austenitic Stainless Steel Welds and Its Application in Ultrasonic TOFD Testing
JPH0212609Y2 (en)
Edwards et al. Interaction of ultrasonic waves with surface-breaking defects
JP2001318085A (en) Padding pipe inspecting method
RU1797043C (en) Method of ultrasonic defectoscopy of products with simultaneous acoustic contact quality control
JPS61251768A (en) Measuring method for size of defect in surface layer of solid body by ultrasonic wave
SU702295A1 (en) Method of checking continuity