JPS6229957Y2 - - Google Patents

Info

Publication number
JPS6229957Y2
JPS6229957Y2 JP1980039935U JP3993580U JPS6229957Y2 JP S6229957 Y2 JPS6229957 Y2 JP S6229957Y2 JP 1980039935 U JP1980039935 U JP 1980039935U JP 3993580 U JP3993580 U JP 3993580U JP S6229957 Y2 JPS6229957 Y2 JP S6229957Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
acoustic impedance
concave lens
spherical concave
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980039935U
Other languages
Japanese (ja)
Other versions
JPS56142466U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980039935U priority Critical patent/JPS6229957Y2/ja
Publication of JPS56142466U publication Critical patent/JPS56142466U/ja
Application granted granted Critical
Publication of JPS6229957Y2 publication Critical patent/JPS6229957Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は水浸探傷用集束形超音波探触子の改
良に関するものである。
[Detailed description of the invention] This invention relates to an improvement of a focused ultrasonic probe for water immersion flaw detection.

まず、従来のこの種の超音波探触子について第
1図を用いて説明する。第1図において、1は超
音波振動子、2はダンパー、3は球面凹形レンズ
である。
First, a conventional ultrasonic probe of this type will be explained with reference to FIG. In FIG. 1, 1 is an ultrasonic transducer, 2 is a damper, and 3 is a spherical concave lens.

なおダンパー2は、超音波振動子1の機械的自
由振動を抑圧するためのものであり、このためダ
ンパー2の材料としては超音波振動子1と音響的
整合条件が良好なものが要求される。また、ダン
パー2は、図中矢印を施した点線で示すように超
音波振動子1の音響放射面S1上の各点からダンパ
ー2内へ放射される超音波パルスがダンパー裏面
S2で反射され再び超音波振動子1に雑音として受
信されないようにするため、超音波の減衰率が大
きいことが要求される。ところで従来においては
ダンパー2の材料としては、金属粉末の充てん剤
とエポキシ樹脂とを混合して製作して材料などを
用いることにより、上述の要求を満足するものが
得られていた。
Note that the damper 2 is for suppressing the mechanical free vibration of the ultrasonic vibrator 1, and therefore, the material of the damper 2 is required to have good acoustic matching conditions with the ultrasonic vibrator 1. . In addition, the damper 2 is configured such that the ultrasonic pulses radiated into the damper 2 from each point on the acoustic radiation surface S1 of the ultrasonic transducer 1 are transmitted to the back surface of the damper, as shown by the dotted line with an arrow in the figure.
In order to prevent the ultrasonic wave from being reflected by S2 and being received as noise by the ultrasonic transducer 1 again, the attenuation rate of the ultrasonic wave is required to be large. By the way, in the past, the damper 2 has been manufactured by mixing a metal powder filler and an epoxy resin, thereby satisfying the above-mentioned requirements.

一方、球面凹形レンズ3は、第1図に矢印を施
した点線で示すように、超音波振動子1の音響放
射面S3上の各点から放射され、球面凹形レンズ3
内を通過し、更に水中を通過し、水中に置かれた
被検材4内へ到達する超音波パルスを被検材4内
で集束させるためのものである。
On the other hand, as shown by dotted lines with arrows in FIG .
This is to focus the ultrasonic pulses that pass through the test material 4, pass through the water, and reach the test material 4 placed in the water.

したがつて、球面凹形レンズ3の材料として
は、水中の音速と異なる音速を有する材料を用い
る必要がある。従来、球面凹形レンズ3の材料と
しては、この条件を満足し、かつ、整形加工が比
較的簡便であるという理由により、アクリル樹
脂、エポキシ樹脂などの高分子材料が用いられて
いた。
Therefore, as the material for the spherical concave lens 3, it is necessary to use a material that has a sound speed different from the sound speed in water. Conventionally, polymeric materials such as acrylic resin and epoxy resin have been used as materials for the spherical concave lens 3 because they satisfy these conditions and are relatively easy to shape.

しかし、従来のこの種の超音波探触子には次の
ような欠点があつた。すなわち、球面凹形レンズ
3の材料として用いられているエポキシ樹脂、ア
クリル樹脂などの高分子材料の音響インピーダン
ス(密度と音速との積で定義される)は一般には
約3〜4×106Kg/m2×sec程度であり、水の音響
インピーダンスは約1.5×106Kg/m2・secであ
り、また超音波振動子1の音響インピーダンスは
一般に20〜40Kg/m2・secである。このように従
来のこの種の超音波探触子においては、球面凹形
レンズ3の音響インピーダンスと水の音響インピ
ーダンスとの比が1.0より大きく異なるため、超
音波振動子1から球面凹形レンズ3内へ放射され
た超音波パルスのエネルギーの一部は球面凹形レ
ンズ3と水との境界面S4で超音波振動子1の方向
へ反射されていた。
However, conventional ultrasonic probes of this type have the following drawbacks. That is, the acoustic impedance (defined as the product of density and sound velocity) of polymeric materials such as epoxy resin and acrylic resin used as the material of the spherical concave lens 3 is generally about 3 to 4 × 10 6 Kg. /m 2 ×sec, the acoustic impedance of water is about 1.5×10 6 Kg/m 2 ·sec, and the acoustic impedance of the ultrasonic transducer 1 is generally 20 to 40 Kg/m 2 ·sec. As described above, in this type of conventional ultrasound probe, since the ratio of the acoustic impedance of the spherical concave lens 3 to the acoustic impedance of water is significantly different from 1.0, A part of the energy of the ultrasonic pulse radiated inward was reflected toward the ultrasonic transducer 1 at the interface S 4 between the spherical concave lens 3 and water.

更に、上記したように球面凹形レンズ3の音響
インピーダンスと超音波振動子1の音響インピー
ダンスとの比も1.0より大きく異なるため、境界
面S4で超音波振動子1の方向へ反射された超音波
パルスのエネルギーの一部は、再び球面凹形レン
ズ3と超音波振動子1との境界面S3で球面凹形レ
ンズ3内へ反射されていた。容易にわかるように
境界面S3で反射された超音波パルスは再度上述の
過程をくり返すため、結局境界面S4と境界面S3
の間で多重反射が生じ、したがつて従来のこの種
の超音波探触子においては超音波振動子から単一
の超音波パルスを球面凹形レンズ3内へ放射させ
ても、水中へ放射される超音波パルスは、第2図
に示すように上記の多重反射の過程を経て形成さ
れた複数個の超音波パルス列T1,T2,T3……と
なつていた。
Furthermore, as mentioned above, since the ratio of the acoustic impedance of the spherical concave lens 3 and the acoustic impedance of the ultrasonic transducer 1 is also much different than 1.0, the ultrasonic wave reflected in the direction of the ultrasonic transducer 1 at the interface S 4 A part of the energy of the sound wave pulse was reflected back into the spherical concave lens 3 at the interface S3 between the spherical concave lens 3 and the ultrasonic transducer 1. As can be easily seen, the ultrasonic pulse reflected from the interface S 3 repeats the above process again, resulting in multiple reflections between the interface S 4 and the interface S 3 , and therefore the conventional In this type of ultrasonic probe, even if a single ultrasonic pulse is emitted from the ultrasonic transducer into the spherical concave lens 3, the ultrasonic pulse emitted into the water is as shown in Fig. 2. A plurality of ultrasonic pulse trains T 1 , T 2 , T 3 . . . were formed through the above-mentioned multiple reflection process.

さて、このように複数個の超音波パルス列
T1,T2,T3……を水中へ放射する従来のこの種
の超音波探触子を用いて、第1図に示すように水
中に置かれた被検材4内の欠陥5等を深傷した場
合、そのときの受信信号は例えば第3図に示すよ
うになる。すなわち、受信信号は、欠陥5等によ
り反射されたいわゆる欠陥エコー信号F1,F2
…のみでなく、一般に、水の音響インピーダンス
と被検材4の音響インピーダンス(例えば、被検
材4が鋼材の場合その音響インピーダンスは約45
×106Kg/m2・secである)とが異なるため、欠陥
5等からの受信信号F1,F2……に、水と被検材
4との境界面S5から反射された、いわゆる表面エ
コー信号E1,E2,……が重畳したものとなる。
Now, like this, multiple ultrasonic pulse trains
Using this type of conventional ultrasonic probe that emits T 1 , T 2 , T 3 ... into the water, defects 5 etc. in the test material 4 placed in the water are detected as shown in Fig. 1. If the device is seriously damaged, the received signal at that time will be as shown in FIG. 3, for example. That is, the received signals are so-called defect echo signals F 1 , F 2 . . . reflected by the defects 5 and the like.
...In general, the acoustic impedance of water and the acoustic impedance of the material to be tested 4 (for example, if the material to be tested 4 is steel, the acoustic impedance is approximately 45
×10 6 Kg/m 2 ·sec), the received signals F 1 , F 2 . The so-called surface echo signals E 1 , E 2 , . . . are superimposed.

すなわち従来のこの種の超音波探触子において
は、2番目以降の表面エコー信号E2,E3……が
欠陥エコー信号F1,F2……に対して雑音となる
ため、探傷時における信号対雑音比が悪いという
欠点があつた。
In other words, in conventional ultrasonic probes of this kind, the second and subsequent surface echo signals E 2 , E 3 . . . become noise with respect to the defect echo signals F 1 , F 2 . The drawback was a poor signal-to-noise ratio.

この考案は、超音波振動子と球面凹形レンズと
の間に、超音波振動子の音響インピーダンスと球
面凹形レンズの音響インピーダンスとの相乗平均
値で与えられる音響インピーダンスを有しかつ厚
さが4分の1波長の音響インピーダンス変換層を
挿入することにより、上記した欠点を解決しよう
とするものであり、以下詳細に説明する。
This device has an acoustic impedance between the ultrasonic transducer and the spherical concave lens, which is given by the geometric mean value of the acoustic impedance of the ultrasonic transducer and the acoustic impedance of the spherical concave lens. By inserting a quarter-wavelength acoustic impedance conversion layer, the above-mentioned drawbacks are attempted to be solved, and will be explained in detail below.

第4図に、この考案に係る水浸探傷用集束形超
音波探触子の構造を示す。第4図において1は超
音波振動子、2は超音波振動子1と音響的整合条
件が良好でかつ超音波の減衰率が大きい材料を用
いて製作したダンパー、3は水中の音速と異なる
音速を有する材料を用いて製作した球面凹形レン
ズであり、6はこの考案に係る音響インピーダン
ス変換層である。音響インピーダンス変換層6
は、超音波振動子1の音響インピーダンスと球面
凹形レンズ3の音響インピーダンスとの相乗平均
値で与えられる音響インピーダンスを有する材料
を用いて製作し、その厚さは4分の1波長にす
る。このような音響インピーダンス変換層6を超
音波振動子1と球面凹形レンズ3との間に挿入す
ると、超音波振動子1と音響インピーダンス変換
層6との境界面S3から球面凹形レンズ3の方向を
見込んだ音響インピーダンスと超音波振動子1の
音響インピーダンスとは等しくなり、逆に、球面
凹形レンズ3と音響インピーダンス変換層6との
境界面S6から超音波振動子1の方向を見込んだ音
響インピーダンスと、球面凹形レンズ3の音響イ
ンピーダンスとは等しくなる。
FIG. 4 shows the structure of a focused ultrasonic probe for water immersion flaw detection according to this invention. In Fig. 4, 1 is an ultrasonic transducer, 2 is a damper manufactured using a material that has good acoustic matching conditions with the ultrasonic transducer 1 and has a large attenuation rate of ultrasonic waves, and 3 is a sound velocity different from that in water. 6 is an acoustic impedance conversion layer according to this invention. Acoustic impedance conversion layer 6
is manufactured using a material having an acoustic impedance given by the geometric mean value of the acoustic impedance of the ultrasonic transducer 1 and the acoustic impedance of the spherical concave lens 3, and its thickness is set to 1/4 wavelength. When such an acoustic impedance conversion layer 6 is inserted between the ultrasound transducer 1 and the spherical concave lens 3, the spherical concave lens 3 is removed from the interface S3 between the ultrasound transducer 1 and the acoustic impedance conversion layer 6. The acoustic impedance looking in the direction of is equal to the acoustic impedance of the ultrasonic transducer 1, and conversely, when looking in the direction of the ultrasonic transducer 1 from the interface S6 between the spherical concave lens 3 and the acoustic impedance conversion layer 6, The expected acoustic impedance and the acoustic impedance of the spherical concave lens 3 become equal.

以上のごとく製作したこの考案に係る水浸探傷
用集束形超音波探触子では第4図に矢印を施した
点線で示すように超音波振動子1の音響放射面S1
上の各点からダンパー2内へ放射された超音波パ
ルスは、ダンパー2の材料として超音波の減衰率
が大きい材料を用いているので、従来のこの種の
超音波探触子の場合と同様に、ダンパー2の裏面
S2で反射され再び超音波振動子1に雑音として受
信されることはない。また、球面凹形レンズ3の
材料中の音速と水中の音速とは異なるため、第4
図に矢印を施した点線で示すように、超音波振動
子1の音響放射面S3上の各点から放射され、音響
インピーダンス変換層6および球面凹形レンズ3
内を通過し、更に水中を通過し、水中に置かれた
被検材4内へ到達した超音波パルスは、従来のこ
の種の超音波探触子の場合と同様に被検材4内で
集束する。
In the focused ultrasonic probe for water immersion flaw detection according to this invention manufactured as described above, the acoustic radiation surface S 1 of the ultrasonic transducer 1 is shown by the dotted line with an arrow in FIG.
The ultrasonic pulses emitted from each point above into the damper 2 are the same as in the case of conventional ultrasonic probes of this type because the damper 2 is made of a material with a large attenuation rate of ultrasonic waves. , the back side of damper 2
It is reflected by S2 and is not received by the ultrasonic transducer 1 again as noise. Also, since the sound speed in the material of the spherical concave lens 3 is different from the sound speed in water, the fourth
As shown by dotted lines with arrows in the figure, the waves are radiated from each point on the acoustic radiation surface S3 of the ultrasonic transducer 1, and are emitted from the acoustic impedance conversion layer 6 and the spherical concave lens 3.
The ultrasonic pulses that have passed through the interior of the specimen, further passed through the water, and reached the specimen 4 placed in the water are transmitted inside the specimen 4 as in the case of conventional ultrasonic probes of this type. Focus.

さて、この考案に係る水浸探傷用集束形超音波
探触子においては、超音波振動子1と球面凹形レ
ンズ3との間に音響インピーダンス変換層6を挿
入しているため、前記した理由により超音波振動
子1から音響インピーダンス変換層6内へ放射さ
れた超音波パルスのエネルギーは、境界面S6では
反射されず、すべて球面凹形レンズ3内に入射す
る。
Now, in the focused ultrasonic probe for water immersion flaw detection according to this invention, the acoustic impedance conversion layer 6 is inserted between the ultrasonic transducer 1 and the spherical concave lens 3. The energy of the ultrasonic pulse emitted from the ultrasonic transducer 1 into the acoustic impedance conversion layer 6 is not reflected at the boundary surface S 6 and is entirely incident on the spherical concave lens 3.

次に、球面凹形レンズ3の音響インピーダンス
と水の音響インピーダンスとは一般に異なるた
め、上記の過程を経て球面凹形レンズ3内に入射
した超音波パルスのエネルギーの一部は、従来の
この種の超音波探触子の場合と同様に、球面凹形
レンズ3と水との境界面S4で音響インピーダンス
変換層6の方向へ反射される。しかし、境界面S4
で反射された超音波パルスのエネルギーは、従来
のこの種の超音波探触子の場合とは異なり、この
考案に係る超音波探触子では、球面凹形レンズ3
と超音波振動子1との間に音響インピーダンス変
換層6を挿入しているため、前記した理由により
境界面S6,S3では反射されず、すべて超音波振動
子1内に入射する。
Next, since the acoustic impedance of the spherical concave lens 3 and the acoustic impedance of water are generally different, part of the energy of the ultrasonic pulse that has entered the spherical concave lens 3 through the above process is As in the case of the ultrasonic probe, the light is reflected toward the acoustic impedance conversion layer 6 at the interface S 4 between the spherical concave lens 3 and water. However, the boundary surface S 4
Unlike in conventional ultrasonic probes of this type, the energy of the ultrasonic pulse reflected by the spherical concave lens 3
Since the acoustic impedance conversion layer 6 is inserted between the acoustic impedance converting layer 6 and the ultrasonic transducer 1, the light is not reflected at the interfaces S 6 and S 3 for the reason described above, and all of the light enters the ultrasonic transducer 1.

次にダンパー2の材料としては、超音波振動子
1と音響的整合条件が良好な材料を用いているた
め、このように超音波振動子1内へ入射した超音
波パルスのエネルギーは超音波振動子1とダンパ
ー2との境界面S1においても反射されず、すべて
ダンパー2内へ入射する。更に、ダンパー2内へ
入射した超音波パルスのエネルギーはダンパー2
の材料として超音波の減衰率が大きい材料を用い
ているため前述したようにダンパー裏面S2で反射
され再び超音波振動子1に受信されることはな
い。すなわち、この考案に係る水浸探傷用超音波
探触子においては、従来のこの種の超音波探触子
の場合とは異なり、超音波探触子内部で多重反射
は生じず、このため第5図に示すように超音波振
動子1から単一の超音波パルスを放射させれば、
水中に放射される超音波パルスも単一となる。
Next, since the damper 2 is made of a material that has good acoustic matching conditions with the ultrasonic transducer 1, the energy of the ultrasonic pulse incident into the ultrasonic transducer 1 is transferred to the ultrasonic vibration. It is not reflected at the interface S1 between the child 1 and the damper 2, and all of it enters the damper 2. Furthermore, the energy of the ultrasonic pulse that entered the damper 2
Since a material with a high attenuation rate for ultrasonic waves is used as the material, the waves are reflected from the back surface S2 of the damper and are not received by the ultrasonic transducer 1 again, as described above. That is, in the ultrasonic probe for water immersion flaw detection according to this invention, unlike in the case of conventional ultrasonic probes of this type, multiple reflections do not occur inside the ultrasonic probe, and therefore If a single ultrasonic pulse is emitted from the ultrasonic transducer 1 as shown in Figure 5,
The ultrasonic pulse emitted into the water is also single.

したがつて、この考案に係る超音波探触子を用
いて、水中に置かれた被検材4内の欠陥5等を探
傷した場合、受信信号において被検材4と水との
境界面S5より反射される表面エコー信号も第6図
に示すように単一となり、探傷時における信号対
雑音比が改善されることがわかる。
Therefore, when detecting defects 5 etc. in the test material 4 placed in water using the ultrasonic probe according to this invention, the interface S between the test material 4 and water is detected in the received signal. The surface echo signal reflected from 5 becomes single as shown in Fig. 6, and it can be seen that the signal-to-noise ratio during flaw detection is improved.

以上のように、この考案に係る水浸探傷用集束
形超音波探触子では、超音波振動子と球面凹形レ
ンズとの間に、超音波振動子の音響インピーダン
スと球面凹形レンズの音響インピーダンスとの相
乗平均値で与えられる音響インピーダンスを有
し、かつ厚さが4分の1波長の音響インピーダン
ス変換層を挿入することにより、超音波探触子内
部での多重反射を除去でき、探傷時における信号
対雑音比を改善できる利点がある。
As described above, in the focused ultrasonic probe for water immersion flaw detection according to this invention, between the ultrasonic transducer and the spherical concave lens, the acoustic impedance of the ultrasonic transducer and the acoustic impedance of the spherical concave lens are By inserting an acoustic impedance conversion layer with an acoustic impedance given by the geometric mean value of the impedance and a thickness of 1/4 wavelength, multiple reflections inside the ultrasonic probe can be removed and flaw detection This has the advantage of improving the signal-to-noise ratio at times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水浸探傷用集束形超音波探触子
の構成図、第2図は従来の水浸探傷用集束形超音
波探触子において水中に放射される超音波パルス
列を示す図、第3図は従来の水浸探傷用集束形超
音波探触子における受信信号を示す図、第4図は
この考案に係る水浸探傷用集束形超音波探触子の
構成図、第5図はこの考案に係る水浸探傷用集束
形超音波探触子において水中に放射される超音波
パルスを示す図、第6図はこの考案に係る水浸探
傷用集束形超音波探触子における受信信号を示す
図である。 図中、1は超音波振動子、2はダンパー、3は
球面凹形レンズ、4は水中に置かれた被検材、5
は欠陥等、6は音響インピーダンス変換層であ
る。なお、図中同一あるいは相当部分には同一符
号を付して示してある。
Figure 1 is a configuration diagram of a conventional focused ultrasonic probe for water immersion flaw detection, and Figure 2 is a diagram showing an ultrasonic pulse train emitted into water in a conventional focused ultrasonic probe for water immersion flaw detection. , FIG. 3 is a diagram showing received signals in a conventional focused ultrasonic probe for water immersion flaw detection, FIG. 4 is a configuration diagram of the focused ultrasonic probe for water immersion flaw detection according to this invention, and FIG. Figure 6 shows the ultrasonic pulses emitted into water in the focused ultrasonic probe for water immersion flaw detection according to this invention. FIG. 3 is a diagram showing a received signal. In the figure, 1 is an ultrasonic transducer, 2 is a damper, 3 is a spherical concave lens, 4 is a test material placed in water, and 5
6 is an acoustic impedance conversion layer. It should be noted that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超音波振動子の一方の音響放射面に、超音波振
動子の音響インピーダンスに近い音響インピーダ
ンスを有し、かつ超音波の減衰率が大きい材料を
用いて形成したダンパーを設けるとともに、他方
の音響放射面には、水中の音速と異なる音速を有
する材料を用いて形成した球面凹形レンズを設け
た水浸探傷用集束形超音波探触子において、超音
波振動子と球面凹形レンズとの間に、超音波振動
子の音響インピーダンスと球面凹形レンズの音響
インピーダンスとの相乗平均値で与えられる音響
インピーダンスを有し、かつ厚さが4分の1波長
の音響インピーダンス変換層を挿入したことを特
徴とする水浸探傷用集束形超音波探触子。
A damper made of a material having an acoustic impedance close to that of the ultrasonic transducer and having a large attenuation rate for ultrasonic waves is provided on one acoustic radiation surface of the ultrasonic transducer, and a damper is provided on one acoustic radiation surface of the ultrasonic vibrator. In a focused ultrasonic probe for water immersion testing, which has a spherical concave lens formed on its surface using a material with a sound velocity different from the sound velocity in water, there is a gap between the ultrasonic transducer and the spherical concave lens. , an acoustic impedance conversion layer having an acoustic impedance given by the geometric mean value of the acoustic impedance of the ultrasonic transducer and the acoustic impedance of the spherical concave lens and having a thickness of 1/4 wavelength is inserted. Features of a focused ultrasonic probe for water immersion flaw detection.
JP1980039935U 1980-03-26 1980-03-26 Expired JPS6229957Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980039935U JPS6229957Y2 (en) 1980-03-26 1980-03-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980039935U JPS6229957Y2 (en) 1980-03-26 1980-03-26

Publications (2)

Publication Number Publication Date
JPS56142466U JPS56142466U (en) 1981-10-27
JPS6229957Y2 true JPS6229957Y2 (en) 1987-08-01

Family

ID=29635364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980039935U Expired JPS6229957Y2 (en) 1980-03-26 1980-03-26

Country Status (1)

Country Link
JP (1) JPS6229957Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450542A (en) * 1982-03-05 1984-05-22 Sperry Corporation Multiple beam lens transducer for sonar systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ULTRASONIC ENGINEERING *

Also Published As

Publication number Publication date
JPS56142466U (en) 1981-10-27

Similar Documents

Publication Publication Date Title
US5092176A (en) Method for determining deposit buildup
TWI408699B (en) Nuclear reactor vibration surveillance system and its method
JP5009523B2 (en) Ultrasonic probe and inspection method and system
US5627320A (en) Apparatus and method for automated non-destructive inspection of integrated circuit packages
US4640131A (en) Method and apparatus for the ultrasonic testing of bolts with a wall thickness discontinuity
JPS6229957Y2 (en)
US7562577B2 (en) Acoustic testing apparatus for testing a laminate material and an acoustic testing method for testing a laminate material
JP2004524536A (en) High Frequency Ultrasonic Measurement of Partial Layer Thickness of Thin-Walled Tube by Contact Method
Au et al. Sonar discrimination of metallic plates by dolphins and humans
US2683821A (en) Unwanted reflection absorbing shear wave transducer
JP2659236B2 (en) Ultrasonic probe
US4510811A (en) Method for distinguishing between interfering signals and signals indicating defects of workpieces during ultrasonic testing
JPS59180456A (en) Ultrasonic probe
JPS6356946B2 (en)
JPS63186143A (en) Ultrasonic wave probe
JPS5831870B2 (en) Ultrasonic flaw detection equipment
Chang et al. Angle beam shear wave nondestructive testing
JPH0545346A (en) Ultrasonic probe
JPH01187447A (en) Two-split type vertical probe
JPS5825344Y2 (en) ultrasonic probe
JPS5926898B2 (en) Ultrasonic transducer
JPH0519809Y2 (en)
Atalar et al. Measurement of sensitivity of different wave modes to subsurface defects
JPH08201352A (en) Ultrasonic probe for oblique flaw detection
JPS56165485A (en) Ultrasonic wave probe