JPS59180456A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS59180456A
JPS59180456A JP58056064A JP5606483A JPS59180456A JP S59180456 A JPS59180456 A JP S59180456A JP 58056064 A JP58056064 A JP 58056064A JP 5606483 A JP5606483 A JP 5606483A JP S59180456 A JPS59180456 A JP S59180456A
Authority
JP
Japan
Prior art keywords
ultrasonic
guide rod
wave
polygonal
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58056064A
Other languages
Japanese (ja)
Inventor
Kuniharu Uchida
内田 邦治
Ichiro Furumura
古村 一朗
Satoshi Nagai
敏 長井
Taiji Hirasawa
平沢 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58056064A priority Critical patent/JPS59180456A/en
Publication of JPS59180456A publication Critical patent/JPS59180456A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water

Abstract

PURPOSE:To enable quick and free-from-overlooking detection all over a material subject to detection by joining a ultrasonic wave sending and receiving end of a polygonal column with a shoe which corresponds virtually in a poligonal column fashion to it and shaped virtually in a polygonal cone fashion and provided with a solid curve on its end. CONSTITUTION:On each side surface of a guide rod 2 shaped in a virtually square column of a rectangular section is jointed with a supersonic wave sending end receiving unit 1A-1D respectively. The supersonic wave sending and receiving unit 1 is jointed with the guide rod 2 in consideration of refraction angle to the guide rod 2 in such a way that surface wave is produced on its surface. On a solid wave end 2a is jointed tightly along the solid curve with an end shoe 3 of square cone which corresponds to shape and dimension of the guide rod 2. The solid curve end 2a of the guide rod 2 is provided with a shape in such a way that a surface wave from the ultrasonic wave sending and receiving unit 1 is convergent to the end portion 3a of the end shoe 3 at the joint surface with the end shoe 3 by the principle of refraction of supersonic wave.

Description

【発明の詳細な説明】 本発明は構造部材等の表面および表脇部の材料欠陥を超
音波探傷法にて検出するため表面波速・受波すなわち表
面波の送波または受波または送受波用の超音波探触子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses ultrasonic flaw detection to detect material defects on the surface and sides of structural members, etc., using ultrasonic flaw detection. The present invention relates to an ultrasonic probe.

〔発明の技術的背景〕[Technical background of the invention]

構造部材等の表面および表層部近傍の欠陥検出には、従
来、液体染色探傷法や磁粉探傷法が用いられている。こ
れらの方法は、材料表面全体を視覚的に検査し得る点で
有効であるが、液体染色探傷法は欠陥が材料表面に開口
していないと充分な検出ができず、欠陥の表面06口が
/J%さい場合および密着されている場合などには欠陥
の見逃しなどを生じる。また、磁粉探傷法は非磁性材に
は適用できず、寸た磁粉の処理などの点で作業性が悪い
ことに加え、時として製品表面を鶴付ける場合がある。
BACKGROUND ART Liquid dye flaw detection and magnetic particle flaw detection have conventionally been used to detect defects on and near the surface of structural members and the like. These methods are effective in that the entire material surface can be visually inspected, but liquid dye flaw detection cannot adequately detect defects unless they are open on the material surface. /J% If the parts are small or in close contact, defects may be overlooked. In addition, the magnetic particle flaw detection method cannot be applied to non-magnetic materials, and in addition to poor workability in terms of processing small magnetic particles, it may sometimes scratch the surface of the product.

一方、超音波探傷法によっても表面波を用いた表面欠陥
ならびに浅層部欠陥の検出が行なわれているが、一般に
被検材表面の付層物、六面形状の不連続性などに大きく
形管され、欠陥からの超音波信号を精度よ〈分#検出す
ることに困難を生じている。
On the other hand, ultrasonic flaw detection is also used to detect surface defects and shallow defects using surface waves; This has led to difficulties in detecting ultrasonic signals from defects with high precision.

すなわち、従来、表面波用の超音波探傷法は被検材表面
にグリセリン、等の液状の接触媒質を介して、表向波を
被検材に入射させる必要があったため、該接触媒質が被
検材表面に分散さね、その分散情、位置などによって表
面波の反射源となシ、反射波レベルも各種複雑なノイズ
信号として受渡されることになる。さらに、従来の表面
波探触子はあらかじめ探傷領域を狭く限定して試験等を
冥施し得るようにするため、表面波の送波方向に通常の
斜角探触子と同様に特定の指向性が与えられている。こ
のため、被検材の表面全面を探鶴する場合、各種方向に
ついて個々別々に超音波を送受する必要があった。
In other words, conventional ultrasonic flaw detection methods for surface waves required surface waves to be incident on the surface of the specimen through a liquid couplant, such as glycerin, on the surface of the specimen. The surface waves are dispersed on the surface of the material to be inspected, and depending on their dispersion information, position, etc., they become reflection sources for surface waves, and the level of the reflected waves is also transmitted as various complex noise signals. In addition, conventional surface wave probes have a specific directivity in the surface wave transmission direction in order to narrowly limit the flaw detection area in advance and perform tests, etc., in the same way as normal angle probes. is given. For this reason, when surveying the entire surface of a material to be inspected, it is necessary to transmit and receive ultrasonic waves individually in various directions.

ま/ヒ、材料表面欠陥の発生方向が不定あるいは不明な
場合には、欠陥からの反射波を充分に筒く取るために、
欠陥面に効率よく超音波が入射するよう超音波の送受波
方向を種々に選定して繰り返し深部する必要があった。
When the direction in which a material surface defect occurs is uncertain or unknown, in order to sufficiently absorb the reflected waves from the defect,
In order for the ultrasonic waves to be efficiently incident on the defective surface, it was necessary to select various directions for transmitting and receiving the ultrasonic waves and repeat them deep into the defect surface.

したがって、検査に膨大な時間を要する他、欠陥検出に
対する見逃し等も多くなるという問題があった。
Therefore, there is a problem in that an enormous amount of time is required for inspection and defects are often overlooked.

C発明の目的〕 本発明の目的とするところは、被検側の入面全域につい
て短詩m」に、見逃しなく検出を行なうことを可能とす
る表面波用の超音敦探触子を提供することにある。
C. Object of the Invention The object of the present invention is to provide an ultrasonic probe for surface waves that is capable of detecting the entire area of the entrance surface on the subject side without missing anything. There is a particular thing.

〔発明の植装J 本発明は、はぼ多角柱状をなす多角柱部拐の各側面に、
込・受波方向を該多角柱部祠の軸力向に沿う同一の方向
として表面波速・受用の超音波送・受波器をそれぞれ添
設し、該多角柱部材の」二記超音波送・受波方向端部に
上記はぼ多角柱状に対応するほぼ多角錐状をなし先端部
を曲面状としたシー−を接合するとともに、上記多角柱
部材とシー−の接合面を多角柱部材からの音波で上記ン
ーーのほぼ先端部に収束略せる曲面状に形成したことを
%歓としている。
[Implantation of the Invention J The present invention provides that on each side of a polygonal column having a shape of a polygonal column,
Ultrasonic transmitters and receivers for surface wave velocity and reception are respectively attached with the ultrasonic wave transmission and reception directions set in the same direction along the axial direction of the polygonal column member.・At the end of the wave receiving direction, a seam having a substantially polygonal pyramid shape corresponding to the polygonal prism shape and having a curved tip is joined to the end portion in the wave receiving direction, and the joining surface of the polygonal prism member and the seam is made from the polygonal prism member. The advantage is that it is formed into a curved surface that allows the sound waves to converge almost at the tip of the tip.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例の構成を第1図に示す。 The configuration of one embodiment of the present invention is shown in FIG.

第1図は通常の表面波用の超音波探触すと同様の超音波
送・受波器lをほぼ多角柱状をなす多角柱部材としての
ガイド棒2の各側面にそれぞれ接着して添設した実施例
を示すものであシ、矩形断面を治するほぼ四角柱状のガ
イド棒2の各側面にそれぞれ超音波送・受波器1(lA
〜7D)が接着されている。
Figure 1 shows an ultrasonic transmitter/receiver 1 similar to that used in a normal surface wave ultrasonic probe attached to each side of a guide rod 2, which is a polygonal column member having an approximately polygonal column shape. This is an embodiment in which an ultrasonic transmitter/receiver 1 (lA
~7D) are adhered.

なお、ガイド棒2で構成した多角柱部材は一般にその断
面形状をほぼ多角形とした柱材の部側であって、周囲各
側面に超音波送・受波器1を添設することが可能であれ
ばどのような形状でも実施可能である。
In addition, the polygonal column member constituted by the guide rod 2 is generally the side of the column whose cross-sectional shape is approximately polygonal, and it is possible to attach the ultrasonic transmitter/receiver 1 to each side of the periphery. It can be implemented in any shape.

超音波送・受波器lはガイド棒2の表面において表向波
を生ぜしめるようにガイド棒2への屈折角を考慮して接
着されるものであり、各超音波送・受波器1A−IDI
d超音波の送・受波方向かがイド朴2の曲面形状部2a
へ向うように配置キれ周波数特性もほぼ同一である。
The ultrasonic transmitter/receiver l is glued in consideration of the refraction angle to the guide rod 2 so as to generate surface waves on the surface of the guide rod 2, and each ultrasonic transmitter/receiver 1A -IDI
d Curved portion 2a of the guide plate 2 in the direction of transmitting and receiving ultrasonic waves
The frequency characteristics of the arrangement are almost the same as you move towards the top.

この場合ガ゛イド棒2は例えばステンレス材によって形
成される。なお、このガイド捧2の材質は必ずしもステ
ンレス拐である必要はなく他の金属または非金属材料で
あってもよいが、使用上からは錆などをゲしにくい1制
食性相料が好捷しい。
In this case, the guide rod 2 is made of stainless steel, for example. The material of this guide plate 2 does not necessarily have to be stainless steel, and may be other metal or non-metallic materials, but from the viewpoint of use, it is preferable to use an anti-corrosive material that is resistant to rust etc. .

ガイド棒2の曲面状部2aにはガ゛イド棒2の形状寸法
に応じたほぼ四角錐状の先端シー−3が該曲面に沿って
密に接合される。この場合先端シー−3の材質は例えば
アクリル材を使用しているが、ガイド棒2と同様に使用
中に錆、劣化等を生じない拐刺であれば、他の金属、ジ
1−金属利を使用してよく例えばセラミックス拐なども
活用できる。
A substantially quadrangular pyramid-shaped tip seam 3 corresponding to the shape and dimensions of the guide rod 2 is tightly joined to the curved surface portion 2a of the guide rod 2 along the curved surface. In this case, the material of the tip seam 3 is, for example, acrylic material, but as with the guide rod 2, other metals or di-metal materials may be used as long as the material does not rust or deteriorate during use. For example, ceramic coatings can also be used.

ここで、ガイド棒2の曲面形状部2aは超祈波送・受波
器1からの表面波が先端ノー−3との接合面にて超音波
の屈折の原理により超音波が先端シー−3の先端部3a
へ収束するような形状であることが本発明における要件
であシ、曲面形状部2aの形状は次のようにして決定さ
れる。
Here, the curved surface portion 2a of the guide rod 2 allows the surface waves from the ultrasonic wave transmitter/receiver 1 to be refracted at the junction surface with the tip no. 3. tip 3a of
It is a requirement in the present invention that the shape converges to the shape of the curved surface portion 2a, and the shape of the curved surface portion 2a is determined as follows.

すなわち、第2図に示すようにガイド棒2における表面
波音速をCI、うC端ンー−3における表面波音速を0
2とすれは、曲面形状部2a・の半径rは次式で与えら
れる。
That is, as shown in FIG.
2, the radius r of the curved surface portion 2a is given by the following equation.

ここで、fは超音波送・受波器lからの超音波が曲面形
状部2aで屈折し、収束するときの曲面形状部3からの
焦点距離であシ、本実施例における先端シー−3の長さ
tは概略このfに等しく設定する。
Here, f is the focal length from the curved surface section 3 when the ultrasonic wave from the ultrasonic transmitter/receiver l is refracted and converged at the curved section 2a. The length t is set approximately equal to this f.

したがって、本発明では力゛イド棒2と先端ソニー3の
表面波音速が異っていることが必要である。たたし両者
の音響インピーダンスについては同等に近い程良いこと
は、同等に近い根面面形状部2aでの表面波反射が生じ
にくくなるという点からも明らかである。なお、本実施
例ではCI>C2であるためガイド棒2の曲面形状部2
aは凹面状であるがCt < C2に両者の 材質を選
定すれば曲面形状部2aは凸面状となることは明らかで
あシ当然のことながらこのような形で実施することもで
きる。
Therefore, in the present invention, it is necessary that the surface wave sound velocities of the force-id rod 2 and the tip sony 3 are different. However, it is clear that the closer the acoustic impedances of the two are to the same, the better, since surface wave reflection is less likely to occur at the root surface shape portion 2a that is close to the same. In addition, in this example, since CI>C2, the curved surface portion 2 of the guide rod 2
Although a is concave, it is clear that if the materials of both are selected such that Ct < C2, the curved portion 2a will be convex, and of course it can also be implemented in this manner.

次に超音波送・受波器1のガイド捧2への接着構成につ
いて説明する。
Next, the structure of adhering the ultrasonic transmitter/receiver 1 to the guide rod 2 will be explained.

すなわち第3図に示すように、超音波送・受波器lはガ
イド棒2の側面へ曲面形状部2aから距離aの個所に接
着しておシ、この距離aは次式を満足するように選定さ
れる。
That is, as shown in Fig. 3, the ultrasonic transmitter/receiver l is glued to the side surface of the guide rod 2 at a distance a from the curved surface portion 2a, and this distance a is set such that it satisfies the following equation. selected.

a≦D2/4λ           ・・・・・・・
・・(2)ここで、Dは超音波送・受波器lの超音波送
受波方向の振動子寸法幅であり、λはガイド棒2におけ
る表面波の波長である。すなわち、上記(1)式は一般
に平面波がガイド棒2から曲面形状部2aを経て先端ン
ユー3に入射した時の関係式であるが、本実施例ではこ
の条件を近似的に満足させるため、表面波の近距離畜場
域内で超音波の収束を図るようにしている。したがって
上記(2)式を満たしておれば、本実施例として有効で
あるが、超音波送・受波器lは送受感度を向上させるた
めには曲面形状部2aに近いほど有効となる。しかしな
がら、極端に接近させた場合には曲面形状部2aでの反
射エコーが抜釉に影響するため、有効性が失なわれるお
それもある。
a≦D2/4λ ・・・・・・・・・
(2) Here, D is the width of the transducer in the ultrasonic transmission/reception direction of the ultrasonic transmitter/receiver l, and λ is the wavelength of the surface wave in the guide rod 2. That is, the above equation (1) is generally a relational equation when a plane wave enters the tip end 3 from the guide rod 2 via the curved surface portion 2a, but in this embodiment, in order to approximately satisfy this condition, the surface The aim is to converge the ultrasonic waves within the livestock area close to the waves. Therefore, as long as the above formula (2) is satisfied, this embodiment is effective, but the closer the ultrasonic transmitter/receiver l is to the curved portion 2a, the more effective it is in order to improve the transmitting and receiving sensitivity. However, if they are brought extremely close together, the echoes reflected from the curved surface portion 2a will affect the deglazing process, so there is a risk that the effectiveness will be lost.

なお、先端シー−4の先端部3aは多角錐状の各斜面を
集合させてほぼ放物面状の曲ll11が形成されており
、被検材に対し該曲面にて滑らかにほぼ点接触させる構
成としている。このように構成した探触子は、被検材面
へ垂直に接触されることが望ましく、必要に応じて、垂
直に接触させるための治具等を付することも可能である
Note that the tip 3a of the tip seam 4 has a substantially parabolic curve ll11 formed by gathering polygonal pyramidal slopes, and the curved surface is brought into smooth, almost point contact with the test material. It is structured as follows. It is desirable that the probe configured in this manner be brought into vertical contact with the surface of the material to be tested, and if necessary, a jig or the like may be attached for vertical contact.

次に、上述のように構成した超音波探触子の作用効果を
第4図、第5図を参照して説明する。
Next, the effects of the ultrasonic probe configured as described above will be explained with reference to FIGS. 4 and 5.

例えば第1図に示した各超音波送・受波器lが送波用ま
たは送受兼用である場合、送出された表面波はそれぞれ
第4図に示す点Aを通シ曲面形状部2aで屈折し先端シ
ー−3の表面に沿って点B、Cと先端部3aに近づくに
つれて集束効果によって音圧の上昇を生じる。ここで、
本実施例の4個の超音波送・受波器IA〜IDの各々か
らの表面波WS8〜WSdは、第5図に示すように同一
周波数で、先端部3aまでの距離も同一であるから先端
部3a近傍では、互いに同位相となる。したがって、先
端部3aにおいては、4つの表面波wSa〜WSdが重
合され、高振幅の表面波WS8となる。一方高撮幅の表
面波WS、は先端部3aにおいて、被検材と滑らかに接
触しているため、重合された後直ちに、被検材の表面へ
拡散伝播していくことになる。したがって、本実施例の
超音波探触子によれば、4個の超音波送・受波器IA〜
lDからの音圧がほとんど一点に集中されると同時に、
被検材表面上に探触子接触点を中心として同心円状に表
面波を伝播させることが可能となる。
For example, when each ultrasonic transmitter/receiver l shown in FIG. 1 is used for wave transmission or for both transmission and reception, the emitted surface waves pass through point A shown in FIG. 4 and are refracted at the curved surface portion 2a. As the sound pressure approaches points B and C along the surface of the tip sea-3 and the tip 3a, the sound pressure increases due to the focusing effect. here,
The surface waves WS8 to WSd from each of the four ultrasonic transmitter/receivers IA to ID in this embodiment have the same frequency and the same distance to the tip 3a, as shown in FIG. Near the tip 3a, they are in phase with each other. Therefore, at the tip portion 3a, the four surface waves wSa to WSd are superimposed to form a high-amplitude surface wave WS8. On the other hand, since the surface wave WS having a high imaging width is in smooth contact with the material to be inspected at the tip portion 3a, it immediately diffuses and propagates to the surface of the material to be inspected after being polymerized. Therefore, according to the ultrasonic probe of this embodiment, the four ultrasonic transmitter/receivers IA~
At the same time, the sound pressure from LD is almost concentrated in one point,
It becomes possible to propagate surface waves concentrically on the surface of the test material with the probe contact point as the center.

なお、上述したように各超廿波送・受波器IA〜IDか
らの超音波を精度よく位相干渉させて高い振幅の表面波
WSsを得るためには、各超音波送・受波器lA〜ID
が上述のように精度よく配置されることに加えて、各超
音波送・受波器IA〜IDからの超音波の送波時点が充
分そろうよりな尚精度のタイミングで各送・受波器JA
−7Dの送信が行なわれることが必要である。このため
、各超音波送・受波器IA〜Jl)f6:並列に超音波
受傷器に結合すると効果的である。しかしながら各超音
波送・受波器7A〜JDを並列とした場合、全体的に一
気各量が大きくなり、充分なパワーで超音波送・受波器
IA〜IDを駆動でき々い場合を生じることもあり、こ
の場合には、各送・受波器JA−ID毎に超音波送・受
信器を用意し、各超音波受傷器を同一タイミングで動作
できるようにすることが必要である。もちろん、超音波
の受波時についても同様に、高精度に一致したタイミン
グを持って受信する必要がある。なお、受波時に超音波
受傷器が送・受信器毎に異なる場合には、各送・受波器
で受波した信号のアナログ加算が必要となる。なお、本
実施例による超音波探触子は複数個の、超音波送・受波
器を有しているため、これらの送・受信器の一部を送信
用、他を受イ1用として、いわゆる二分割型の送・受波
器として構成使用することも可能である。
As mentioned above, in order to obtain high amplitude surface waves WSs by accurately phase interfering the ultrasonic waves from each ultrasonic wave transmitter/receiver IA to ID, each ultrasonic wave transmitter/receiver lA ~ID
In addition to being arranged with high precision as described above, each transmitter/receiver is placed at a more precise timing so that the transmission points of ultrasound from each ultrasonic transmitter/receiver IA to ID are sufficiently aligned. JA
-7D transmission is required. For this reason, it is effective to connect each ultrasonic transmitter/receiver IA to Jl)f6 in parallel to the ultrasonic injury device. However, when each ultrasonic transmitter/receiver 7A-JD is arranged in parallel, the amount of each increases at once, and there are cases where it is not possible to drive the ultrasonic transmitter/receiver IA-ID with sufficient power. In this case, it is necessary to prepare an ultrasonic transmitter/receiver for each transmitter/receiver JA-ID so that each ultrasonic receiver can operate at the same timing. Of course, when receiving ultrasonic waves, it is necessary to receive them with highly accurate timing. Note that if the ultrasound receivers are different for each transmitter/receiver at the time of wave reception, analog addition of the signals received by each transmitter/receiver is required. In addition, since the ultrasonic probe according to this embodiment has a plurality of ultrasonic transmitters/receivers, some of these transmitters/receivers are used for transmission, and the others are used for receiver 1. It is also possible to use the structure as a so-called two-part transmitter/receiver.

次に、上述の本実施しリによる超音波探触子を用いて、
被検材の入面浦口欠181iおよび表層部近傍欠陥の探
傷を行なう場合の例を第6図〜第8図を参照して説明す
る。
Next, using the ultrasonic probe according to the above-mentioned implementation,
An example of flaw detection for the entry surface uraguchi notch 181i and defects near the surface layer of a material to be inspected will be described with reference to FIGS. 6 to 8.

第6図に示すように、本実施例の超音波探m子Pは表面
波を円心円状に送出お工ひ受波できるため、被検材Mの
欠陥Xが円心円状の表面波WSの進行とほぼ直交して位
置する場合には、常に不探触子Pで欠陥X全容易に検知
することが可能である。
As shown in FIG. 6, since the ultrasonic probe P of this embodiment can transmit and receive surface waves in a circular pattern, the defect When the defect X is located almost perpendicular to the progression of the wave WS, it is always possible to easily detect the defect X with the probe P.

また、第7図に示すように本探触子Pを用いれば被検利
Mの複藪点で超音波を送受して、欠陥Xの有無の検知/
とけではなく、欠陥Xの概略位置を三角側量的に測定す
ることもできる。
In addition, as shown in FIG. 7, if this probe P is used, ultrasonic waves can be transmitted and received at multiple points on the inspection target M to detect the presence or absence of defect X.
Instead of melting, the approximate position of the defect X can also be measured triangularly.

さらにまた、第8図に示すように探触子Pを移動させて
各受佃伯号を合成するいわゆる開口合成法に本探触子P
を適用し、表向二次元平面上での欠陥Xの高精度な位置
1寸法測定等を行なうこともでき゛る。
Furthermore, as shown in Fig. 8, the present probe P
By applying this method, it is also possible to perform high-accuracy one-dimensional measurement of the position of the defect X on a two-dimensional surface surface.

なお、本発明は上述し且つ図面に示す実施例(のみ限定
されることなく、その要旨を変更しない範囲内で種々変
形して実施できる。
Note that the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with various modifications without changing the gist thereof.

例えば、第9図に示すものは、ガイド棒2および先端シ
ー−3の稜すなわちエツジ部に超音波吸収材4を付設し
た実施例である。これにより、超音波送波時および受波
時に、曲面形状部2aで反射した表面波の多重反射によ
る信号を減少させることが可能となシ、探傷性能が向上
する。さらに上記エツジ部だけではなく、がイド棒2の
基端面に超音波吸収材5を敷設することも、多重エコー
のまわり込みを防止する意味で有効である。
For example, what is shown in FIG. 9 is an embodiment in which an ultrasonic absorbing material 4 is attached to the ridges or edges of the guide rod 2 and the tip seam 3. This makes it possible to reduce signals due to multiple reflections of surface waves reflected by the curved portion 2a when transmitting and receiving ultrasonic waves, and improves flaw detection performance. Furthermore, it is effective to lay the ultrasonic absorbing material 5 not only on the edge portion but also on the proximal end surface of the side rod 2 in order to prevent multiple echoes from going around.

また、第7図は本発明の他の実施例を示すものでアシ、
先端シー−3の先端にさらに先端シュー3の摩耗防止用
として耐摩耗性に優れたチップ6を設けたものである。
Moreover, FIG. 7 shows another embodiment of the present invention.
A tip 6 having excellent wear resistance is further provided at the tip of the tip shoe 3 to prevent wear of the tip shoe 3.

このチ、f6は一般に金属、非金属材のいずれを使用し
てもよく、大略収束きれた表面波はチップ6を介して被
検拐表面上に伝播する。なお、チ、f6の形状は被検材
に曲面でほぼ点接触し得るよう放物面状もしくは双曲面
状とするのが(不要な超音波反射を生じたすせず)有効
である。
In general, either a metal or a non-metallic material may be used for the chip f6, and the approximately converged surface wave propagates through the chip 6 onto the surface to be inspected. Note that it is effective to make the shape of the curved surface of h and f6 into a parabolic or hyperboloid shape so that the curved surface can make almost point contact with the test material (to avoid unnecessary ultrasonic reflections).

なお、本発明の超音波探触子は、ガイド棒2々どの多角
柱部材の周面に一様に超音波送・受波器を添設したこと
を%徴としているが、上記多角柱部材の一部に超音波送
・受波器を除殻することによって、被検材の特定方向範
囲について表面波の送受を行うことも可能であり、探傷
領域が限定される場合には有効である。
The ultrasonic probe of the present invention is characterized by the fact that the ultrasonic transmitter/receiver is uniformly attached to the circumferential surface of each polygonal column member of the guide rod 2, but the above-mentioned polygonal column member By removing the ultrasonic transmitter/receiver from a part of the surface, it is possible to transmit and receive surface waves in a specific direction range of the material to be inspected, which is effective when the flaw detection area is limited. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、広範囲な探傷領域を有する被検材につ
いて、探触子配置位置まわりに表面波を同心円状に放射
でき、高効率で且つ短時間で探傷が可能な超音波探触子
を提供することができる。
According to the present invention, an ultrasonic probe that can radiate surface waves concentrically around the probe placement position and can perform flaw detection with high efficiency and in a short time on a material to be tested that has a wide flaw detection area is provided. can be provided.

さらに、本発明による探触子は、被検材にメ」し曲面で
ほぼ点状に接触するため、従来超音波探傷で必要とされ
た音譬カグリング用の接触媒質が不要となる。また、こ
れによシ、接触媒質に起因した各種の超音波下被ノイズ
の発生がなくその」二接触媒質の塗布および除去に伴う
作業時間が不要となるなどの効果を生じる。
Further, since the probe according to the present invention makes almost point-like contact with the test material on a curved surface, there is no need for a couplant for tuning, which is conventionally required in ultrasonic flaw detection. Moreover, this also produces effects such as the generation of various noises caused by the couplant due to ultrasonic waves and the need for work time associated with application and removal of the couplant.

捷た、本発明の探触子は該探触子を被検利の各所に移動
させる毎に、超音波受信何月を記録保持し、総合的に被
検材全体の欠陥分布状況を計算機処理等によって得よう
とする場合にも有効に利用できる他、表面波による開口
合成法を実施する場合の探触子としても有効である。
The probe of the present invention keeps a record of the number of months it received ultrasonic waves each time the probe is moved to various locations on the specimen, and computer-processes the defect distribution status of the entire specimen. It can be effectively used when trying to obtain apertures using surface waves, etc., and can also be used as a probe when performing aperture synthesis using surface waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明の一実施例の構成を
示す斜視図および断面図、第2図は同実施例における超
音波収束を説明するだめの図、第3図は同実施例におけ
る超音波送・受波器の配置条件を説明するための図、第
4図および第5図は同実施例の作用効果を説明するため
の図、第6図〜第8図は同実施例の超音波探触子による
探傷の具体例を説明するための図、第9図は不発明の他
の実施例を示す斜視図、第10図は本発明のその他の実
施例を示す図である。 7(JA−1D)・・超音波送・受波器、2ガイド棒、
2a・曲面形状部、3 先部ンー−13a・・先端部、
4,5 超音波吸収材、6 ・ナツプ。 出願人代理人  弁理士 鈴 江 武 彦第1図 a 第2図 第3図 第4図 第5− □節閣瑚口翫 第6図 第8図 第9図
FIGS. 1(a) and (b) are a perspective view and a sectional view showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram for explaining ultrasonic convergence in the embodiment, and FIG. 3 is the same. Figures 4 and 5 are diagrams for explaining the arrangement conditions of the ultrasonic transmitter and receiver in the example, Figures 4 and 5 are diagrams for explaining the effects of the example, and Figures 6 to 8 are the same. FIG. 9 is a perspective view showing another embodiment of the present invention; FIG. 10 is a diagram showing another embodiment of the present invention. It is. 7 (JA-1D)...Ultrasonic transmitter/receiver, 2 guide rods,
2a・Curved surface shape part, 3 Tip part--13a...Tip part,
4, 5 Ultrasonic absorber, 6 ・Nup. Applicant's representative Patent attorney Takehiko Suzue Figure 1 a Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] はぼ多角柱状を彦す多角柱部材の各側面に、超音波送・
受波方向を該多角柱部材の軸方向に沿う同一の方向とし
て表面液送・受用の超音波送・受波器をそれぞれ添設し
、且つ該多角柱部材の上記超音波送・受波方向端部に上
記はぼ多角柱状に勾応するほぼ多角錐状をなし先端部を
曲面状としたシー−を接合するとともに、上記多角柱部
材と上記シー−の接合面を上記多角柱部材からの音波を
上記ンユーのほぼ先端部に収束させる曲面状に形成した
ことを特徴とする超音波探触子。。
Ultrasonic transmission and
Ultrasonic transmitters and receivers for surface liquid transmission and reception are respectively attached so that the wave reception direction is the same direction along the axial direction of the polygonal columnar member, and the ultrasonic wave transmission and reception directions of the polygonal columnar member are At the same time, a seam having a substantially polygonal pyramidal shape and a curved tip end that conforms to the shape of a polygonal prism is joined to the end part, and the joint surface of the polygonal prism member and the seam is connected to the seam from the polygonal prism member. An ultrasonic probe characterized by having a curved surface that converges sound waves almost at the tip of the probe. .
JP58056064A 1983-03-31 1983-03-31 Ultrasonic probe Pending JPS59180456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056064A JPS59180456A (en) 1983-03-31 1983-03-31 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056064A JPS59180456A (en) 1983-03-31 1983-03-31 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS59180456A true JPS59180456A (en) 1984-10-13

Family

ID=13016648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056064A Pending JPS59180456A (en) 1983-03-31 1983-03-31 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS59180456A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172260A (en) * 1986-01-27 1987-07-29 Hitachi Metals Ltd Surface wave probe
JPH11337537A (en) * 1998-05-22 1999-12-10 Nippon Seiko Kk Ultrasonic manual inspection method
JP2008268102A (en) * 2007-04-24 2008-11-06 Sumitomo Mitsui Construction Co Ltd Elastic wave propagation velocity measuring device and system
WO2009063812A1 (en) * 2007-11-15 2009-05-22 Nagaoka University Of Technology Ultrasonic measurement waveguide rod and ultrasonic measurement instrument
JP2019508633A (en) * 2015-12-21 2019-03-28 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA Sliding ring seal monitoring
WO2022198248A1 (en) * 2021-03-24 2022-09-29 Ac2T Research Gmbh Device for determining chemico-physical properties in a tribological system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172260A (en) * 1986-01-27 1987-07-29 Hitachi Metals Ltd Surface wave probe
JPH11337537A (en) * 1998-05-22 1999-12-10 Nippon Seiko Kk Ultrasonic manual inspection method
JP2008268102A (en) * 2007-04-24 2008-11-06 Sumitomo Mitsui Construction Co Ltd Elastic wave propagation velocity measuring device and system
WO2009063812A1 (en) * 2007-11-15 2009-05-22 Nagaoka University Of Technology Ultrasonic measurement waveguide rod and ultrasonic measurement instrument
US8272270B2 (en) 2007-11-15 2012-09-25 Nagaoka University Of Technology Ultrasonic measurement waveguide rod and ultrasonic measurement instrument
JP5201149B2 (en) * 2007-11-15 2013-06-05 国立大学法人長岡技術科学大学 Ultrasonic measurement waveguide rod and ultrasonic measurement device
JP2019508633A (en) * 2015-12-21 2019-03-28 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA Sliding ring seal monitoring
US10989307B2 (en) 2015-12-21 2021-04-27 KSB SE & Co. KGaA Monitoring slide ring seal
WO2022198248A1 (en) * 2021-03-24 2022-09-29 Ac2T Research Gmbh Device for determining chemico-physical properties in a tribological system

Similar Documents

Publication Publication Date Title
Felice et al. Sizing of flaws using ultrasonic bulk wave testing: A review
RU2381497C2 (en) Method for ultrasonic flaw detection
US4441369A (en) Ultrasonic detection of extended flaws
EP1597607B1 (en) A method and a device for detecting discontinuities in a medium
Michaels Ultrasonic wavefield imaging: Research tool or emerging NDE method?
CN105699492A (en) An ultrasonographic method used for weld seam detection
US20080289425A1 (en) Technique and phased array transducer for ultrasonic inspection of coarse grained, anisotropic welds
JPH0136584B2 (en)
Kupperman et al. Ultrasonic NDE of cast stainless steel
JPS59180456A (en) Ultrasonic probe
Busse et al. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)
Robert et al. Assessment of real-time techniques for ultrasonic non-destructive testing
CN108663434A (en) A kind of coarse grain material total focus detection method of phased array supersonic defectoscope
US3592052A (en) Ultrasonic crack depth measurement
US6829940B2 (en) Method and apparatus for measuring surface wave traveling time
US4760304A (en) Dark field coaxial ultrasonic transducer
US4787126A (en) Method of fabricating dark field coaxial ultrasonic transducer
Nagai et al. Determination of shape profile by SAFT for application of phased array technique to complex geometry surface
Ermolov Progress in the theory of ultrasonic flaw detection. Problems and prospects
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
Ennaceur et al. Application of the time reversal technique to the focusing of long-range ultrasound in pipelines
JPH08313496A (en) Ultrasonic probe
Uchida et al. Availability study of a phased array ultrasonic technique
JP3362484B2 (en) Combined focus AE sensor
JP2001124746A (en) Ultrasonic inspection method