JP3362484B2 - Combined focus AE sensor - Google Patents

Combined focus AE sensor

Info

Publication number
JP3362484B2
JP3362484B2 JP30177693A JP30177693A JP3362484B2 JP 3362484 B2 JP3362484 B2 JP 3362484B2 JP 30177693 A JP30177693 A JP 30177693A JP 30177693 A JP30177693 A JP 30177693A JP 3362484 B2 JP3362484 B2 JP 3362484B2
Authority
JP
Japan
Prior art keywords
concave spherical
sensor
measured
acoustic
spherical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30177693A
Other languages
Japanese (ja)
Other versions
JPH07151736A (en
Inventor
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP30177693A priority Critical patent/JP3362484B2/en
Publication of JPH07151736A publication Critical patent/JPH07151736A/en
Application granted granted Critical
Publication of JP3362484B2 publication Critical patent/JP3362484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、応力作用時における材
料の特性を研究するに必要なAEセンサに係り、特に微
小な被測定物からの音響信号を検知出来ると共に、高周
波信号をキャッチし得る焦点近接型複合AEセンサに関
する。 【0002】 【従来の技術】材料が変形したり破壊したりする際には
音響信号(AE信号)が発せられる。この信号をキャッ
チし、波形や振幅を解析することにより材料特性を知る
ことが出来ると共に、破壊を予知し事故防止を図ること
が出来る。信号をキャッチする検出手段として従来より
AEセンサ(アコステックエミッションセンサ)が採用
される。図10に示すように、固体材料(被測定材料)
12に複数個のAEセンサ13を取り付けることにより
音響発生点P′の位置を特定することが出来ると共に、
前記したような材料特性を求めることが出来る。しかし
ながら、従来のAEセンサ13は被測定物に直接固着さ
れる圧電型が主であり、10×106Hz程度の周波数
の音響信号しか拾えなかった。 【0003】 【発明が解決しようとする課題】固体材料とは別に、基
板上に成膜された薄膜材料の応力破壊進展過程の解析等
を行うためには10×106Hz程度の周波数に限らず
更に高周波の10×10乃至10Hz程のVHF等
の音響信号をキャッチする必要がある。そのために、超
音波顕微鏡凹球面レンズがAEセンサとして使用されて
おり、例えば次の文献に開示されている。「Non-Contact
Measurement of Acoustic Emission Signals in the 1
00MHz Frequency Range Using an Acoustical Microsco
pe」(H.Kanai,N・Chubachi,T.Sannomiya Department of E
lectrical Engineering,Faculty of Engineering,Tohok
u University,Japan),ACUSTICA Vol.76(1992),PP.199〜
204。図9は凹球面レンズからなるAEセンサ2を示す
ものである。このAEセンサ2はガラス状の遅延材4と
それに固着されるトランスデューサ5からなり、遅延材
の下端側には凹球面6が形成される。図9に示すように
被測定材料3からのAE信号は音響発生点P′から発散
し、発散球面波として遅延材4内に入りトランスデュー
サ5で受信される。なお、凹球面レンズのAEセンサ2
の場合、伝達媒体(カプラ)として水7が使用される。 【0004】被測定材料3の特性を知るだけならば一個
のAEセンサ2でよいが、音響発生点P′を特定した
り、また、被測定材料3の色々の特性を知るためには複
数個のAEセンサ2による同時測定が必要になる。図8
はその一例を示すものである。本例ではA,B,Cの3
個のAEセンサ2A,2B,2Cが並設され、それぞれ
の集点A′,B′,C′が被測定材料3の表面に収斂さ
れる。図略の音響発生点(P′)を囲んでA′,B′,
C′を配置することによりその位置を求めることが出来
る。但し、この場合、例えば、焦点A′とC′との間隔
hはかなり大きな値になる。普通トランスデューサは約
0.5mm以上の圧電体からなり、この場合、前記間隔
hは1.5mm以上になる。高い周波数の音響信号は被
測定材料内を伝播する過程で強く減衰してしまうことか
ら、高いSN比での測定をするためには出来るだけ音響
発生点と焦点との距離は小さくする必要がある。一方、
例えば、直径500μmしかない微細な被測定材料の音
響発生点P′の位置を精密に求めるには、各焦点A′,
B′,C′が約200μm以内に収斂する必要があり、
到底図8のAEセンサ2A,2B,2Cではこの条件を
満たすことが出来ない。なお、凹球面レンズを直列した
アレイ構造は、例えば次の文献に開示されている。「ACO
USTIC INK PRINTING」(B.Hadimioglu,S.A.Elrod,D.L.Ste
inmetz,M.Lim,J,C.Zesch,B.T.Khuri-Yakub,E.G.Rawson,
and C.F.Quate),Xerox Palo Alto Reseach Center 3333
Coyote Hill Road Palo Alto,CA.94304,1992 IEEE 199
2 ULTRASONICS SYMPOSIUM pp.929〜935。 【0005】本発明は、約10×108HzのVHF帯
高周波を検出し得る球面レンズのAEセンサを用いて微
少面積の音響検出が出来、極めて小さな材料の音響測定
が可能になると共に、高精度の音響解析が出来る焦点近
接型複合AEセンサを提供することを目的とする。 【0006】 【課題を解決するための手段】本発明は、以上の目的を
達成するために、材料の変形,破壊等により発生する音
響信号(AE信号)を検知して材料の特性を判断するた
めのセンサであって、超音波顕微鏡凹球面レンズを複数
個配設したものからなり、それぞれの前記球面レンズが
互いに傾斜して配置され、かつ各焦点が互いに近傍に位
置し、かつ空間的に一致しないようにした焦点近接型複
合AEセンサを構成するものである。 【0007】 【作用】凹球面レンズはその焦点が音響測定点の近傍に
収斂するように傾斜して配置される。傾斜角度とその配
列位置を立体的に工夫することにより各焦点を音響信号
が被測定材料に伝播する過程で減衰消失しない程度に音
響測定点の極めて近くに設定することが出来る。凹球面
レンズによる音波検出により音響測定点の位置を正確に
求めることが出来る。 【0008】 【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1は本発明の一実施例の全体構造を示す斜視
図、図2は本実施例による音響波の測定結果を示す線
図、図3は音響発生点P′と各凹球面レンズの焦点位置
A′,B′,C′のX,Y座標を示す平面図、図4は本
発明の他の実施例の概要正面図、図5は図4に示したA
Eセンサの斜視図、図6は更に別の実施例の概要正面
図、図7は同じく本発明の別の実施例の概要正面図であ
る。なお、図4乃至図7に示すそれぞれの凹球面レンズ
は互いに空間的にずれた位置にあり図5のD−D線断面
に相当する断面が示されている。 【0009】図1に示すように、本実施例の焦点近接型
複合AEセンサ1は超音波顕微鏡凹球面レンズ2を3個
配設したものからなる。3個の超音波顕微鏡凹球面レン
ズ2を説明の都合上、凹球面レンズ2A,2B,2Cと
する。例えば、被測定物として縦×横×厚みが1mm×
500μm×50μmのSiO2からなる被測定材料3
を水平にセットすると、各凹球面レンズ2A,2B,2
Cは水平面に対し傾斜して配置されると共に相互干渉し
ない位置に配置される。また、各凹球面レンズ2A,2
B,2Cの焦点A′,B′,C′は被測定材料3の表面
上に三点収斂される。なお、図では焦点A′が音響発生
点P′に最も近く、焦点B′,C′の順で遠ざかってい
る。各凹球面レンズ2A,2B,2Cはガラス状の遅延
材4と、トランスデューサ5からなり、遅延材4の下端
側には凹球面6が形成される。なお、凹球面レンズ2
A,2B,2Cは同一形状のものでよいが、それに限る
ものではない。また、各凹球面レンズ2A,2B,2C
と被測定材料3との間には超音波の伝達媒体の水7が満
たされる。本実施例では、3個の凹球面レンズを用いて
いるが4個以上であってもよい。但し、全ての凹球面レ
ンズの焦点が同一直線上に整列することはない。 【0010】以上の構造により、被測定材料3の音響発
生点P′から音波が発せられると、この音波は音響発生
点P′からそれぞれの凹球面レンズ2A,2B,2Cの
焦点A′,B′,C′に伝わり、各焦点A′,B′,
C′から発散され、発散球面波となって凹球面レンズ2
A,2B,2Cに入射する。この発散球面波は各トラン
スデューサ4により検出され、電気信号に変換されて図
2に示すような波形の音波が計測される。 【0011】図2は横軸に時間をとり、縦軸に伝播され
た音波の時間波形(音響振幅)を表示したものである。
ある瞬間(図2で時間0の点)に被測定材料表面の音響
発生点P′から音波が発生したとすると、3個の焦点の
位置関係に従って、例えば時間tだけ遅れて凹球面レン
ズ2Aにより波形が測定され、更に時間aだけ遅れて凹
球面レンズ2Bにより波形が測定され、更に時間bだけ
遅れて凹球面レンズ2Cにより波形が測定される。 【0012】図3に示すように、各凹球面レンズ2A,
2B,2Cの焦点A′,B′,C′のX,Y座標をX
a,Ya、Xb,Yb、Xc,Ycとし、音響発生点
P′のX,Y座標をXp,Ypとする。計算を簡単にす
るために、各凹球面レンズ2A,2B,2Cの圧電体か
らそれぞれの焦点までの音波伝播に要する時間を一定と
し、被測定材料3の厚みを無視すると音響発生点P′の
座標は以下の計算式(数1)から求められる。ここでV
は被測定材料3の中をAE信号が伝播する音速であり、
(1)式のmは音響発生点P′から焦点A′までの音響
波の伝達時間を示し、(2)式のm+aは音響発生点
P′から焦点B′までの音響波の伝達時間を示し、
(3)式のm+a+bは音響発生点P′から焦点C′ま
での音響波の伝達時間を示す。また、図2から時間a,
bを求めることが出来ると共に、各焦点A′,B′,
C′の各座標Xa,Ya、Xb,Yb、Xc,Ycが既
知のため、(4)式および(5)式により音響発生点
P′の座標Xp,Ypを求めることが出来る。また、図
2の音響波から被測定材料3の特性を解析することが可
能である。更に、Vが既知のときは厚みのある被測定材
料3において音響発生点の深度も測定可能である。な
お、これ等の位置測定方法は既知の方法を準用すればよ
い。 【0013】 【数1】 【0014】前記実施例ではそれぞれ独立の凹球面レン
ズ2A,2B,2Cを傾斜して配置した実施例を説明し
たが、図4および図5に示す焦点近接型複合AEセンサ
1aは凹球面レンズ2A,2B,2Cを合体し一体的構
造のものにした実施例である。先の実施例の場合は、そ
れぞれの凹球面レンズ2A,2B,2Cが独立のためそ
れぞれのトランスデューサ5の音響的な相互干渉が全く
なく正確な音響測定が可能である。一方、図4,図5の
場合は一体構造のため各凹球面レンズ2A,2B,2C
の配置を高精度に形成することが出来る利点を有する。
勿論、形状を工夫することによりトランスデューサ4間
の相互干渉を殆ど抑制することが出来る。本実施例によ
り焦点A′と焦点C′の間隔gを従来技術のh(図8)
に較べて極めて小さな値にすることが出来る。なお、焦
点B′についても同様である。本実施例においても前記
実施例と同様に焦点A′,B′,C′の座標と各凹球面
レンズに対する音響波の伝達時間とにより音響発生点
P′の位置を正確に求めることが出来る。 【0015】図6は図4と同様に各凹球面レンズ2A,
2B,2Cを一体的構造に形成した焦点近接型複合AE
センサ1bを示すものである。本実施例ではトランスデ
ューサ5を凹球面6側に固着したものである。本実施例
でも前記実施例と同様に被測定材料3の特性や音響発生
点P′の位置が求められる。 【0016】図7の焦点近接型複合AEセンサ1cは次
のようにして形成されたものである。このものは2点鎖
線で示す凹球面8をまず形成し、図示のように分離され
ていない一体構造のトランスデューサを有するAEセン
サを基にする。次に、凹球面8を曲率の異なる3つの凹
球面9,10,11に再加工する。同時に一体構造の前
記トランスデューサを3つに分割しトランスデューサ5
A,5B,5Cとして形成されたものである。なお、凹
球面9がトランスデューサ5Aに対応し、凹球面10は
トランスデューサ5Bに対応し、凹球面11はトランス
デューサ5Cに対応する。以上の構造により被測定材料
3側のそれぞれ異なった三点位置に焦点A′,B′,
C′を指向させることが出来る。本実施例によっても前
記実施例とほぼ同様な効果を上げることが出来る。 【0017】以上のように、各種形状の焦点近接型複合
AEセンサ1,1a,1b,1cを説明したが、本発明
はそれ等に限定するものではなく、被測定材料3の音響
測定部位の近傍に焦点を収斂し得るように配置されるA
Eセンサであればよい。勿論、前記したように、それぞ
れの凹球面レンズは同一構造のものでなくてもよい。 【0018】 【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)複数個の超音波顕微鏡凹球面レンズを互いに傾斜し
て配置する構造を採用することにより、その焦点を材料
の音響測定点のごく近傍に配置することが出来る。その
ため、音響信号が被測定材料内を伝播する際の減衰によ
る信号消失を防止出来ると共に微少領域における音響測
定が可能になり、極めて小さい材料の音響測定が出来
る。 2)各凹球面レンズの焦点位置を音響測定点に対して正
確に位置づけ出来るため、高精度の音響測定が出来ると
共に、音響発生点の位置検出が正確に出来る。 3)超音波顕微鏡凹球面レンズを採用することにより1
0×107乃至108Hz程度のVHF帯高周波の音響測
定が出来る。これにより、例えば薄膜材料の破壊時に生
ずるAE信号をキャッチすることが出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AE sensor necessary for studying the characteristics of a material under stress, and more particularly to an AE sensor for detecting an acoustic signal from a minute object to be measured. The present invention relates to a close-focus type composite AE sensor that can detect and catch a high-frequency signal. 2. Description of the Related Art When a material is deformed or broken, an acoustic signal (AE signal) is emitted. By catching this signal and analyzing the waveform and amplitude, it is possible to know the material properties and to predict the destruction and prevent accidents. Conventionally, an AE sensor (acoustic emission sensor) is employed as a detecting means for catching a signal. As shown in FIG. 10, a solid material (a material to be measured)
By attaching a plurality of AE sensors 13 to the position 12, the position of the sound generation point P 'can be specified,
The material characteristics as described above can be obtained. However, the conventional AE sensor 13 is mainly of a piezoelectric type directly fixed to an object to be measured, and can only pick up an acoustic signal having a frequency of about 10 × 10 6 Hz. [0003] Apart from solid materials, in order to analyze the stress rupture development process of a thin film material formed on a substrate, the frequency is limited to about 10 × 10 6 Hz. Further, it is necessary to catch a high frequency acoustic signal such as VHF of about 10 × 10 7 to 10 8 Hz. For this purpose, an ultrasonic microscope concave spherical lens is used as an AE sensor, and is disclosed in the following document, for example. "Non-Contact
Measurement of Acoustic Emission Signals in the 1
00MHz Frequency Range Using an Acoustical Microsco
pe '' (H. Kanai, N.Chubachi, T. Sannomiya Department of E
electrical Engineering, Faculty of Engineering, Tohok
u University, Japan), ACUSTICA Vol.76 (1992), PP.199〜
204. FIG. 9 shows the AE sensor 2 composed of a concave spherical lens. The AE sensor 2 comprises a glass-like delay member 4 and a transducer 5 fixed thereto, and a concave spherical surface 6 is formed on the lower end side of the delay member. As shown in FIG. 9, the AE signal from the measured material 3 diverges from the sound generation point P ′, enters the delay member 4 as a divergent spherical wave, and is received by the transducer 5. The AE sensor 2 of a concave spherical lens
In this case, water 7 is used as a transmission medium (coupler). A single AE sensor 2 is sufficient if only the characteristics of the material 3 to be measured are known. However, in order to identify the sound generation point P 'and to know various characteristics of the material 3 to be measured, a plurality of AE sensors 2 are required. AE sensor 2 requires simultaneous measurement. FIG.
Shows an example. In this example, three of A, B and C
The AE sensors 2A, 2B, and 2C are arranged side by side, and respective convergence points A ', B', and C 'converge on the surface of the material 3 to be measured. Surrounding the sound generation point (P ') (not shown), A', B ',
By arranging C ', its position can be obtained. However, in this case, for example, the interval h between the focal points A 'and C' has a considerably large value. Usually, the transducer is made of a piezoelectric material of about 0.5 mm or more, and in this case, the distance h is 1.5 mm or more. Since a high-frequency acoustic signal is strongly attenuated in the process of propagating through a material to be measured, it is necessary to make the distance between the sound generating point and the focal point as small as possible in order to measure at a high SN ratio. . on the other hand,
For example, in order to accurately determine the position of the sound generation point P 'of a fine material to be measured having a diameter of only 500 μm, the focal points A',
B ′ and C ′ need to converge within about 200 μm,
This condition cannot be satisfied with the AE sensors 2A, 2B, and 2C shown in FIG. An array structure in which concave spherical lenses are connected in series is disclosed in, for example, the following document. "ACO
USTIC INK PRINTING '' (B. Hadimioglu, SAElrod, DLSte
inmetz, M. Lim, J, C. Zesch, BTKhuri-Yakub, EGRawson,
and CFQuate), Xerox Palo Alto Reseach Center 3333
Coyote Hill Road Palo Alto, CA.94304,1992 IEEE 199
2 ULTRASONICS SYMPOSIUM pp.929-935. According to the present invention, an AE sensor having a spherical lens capable of detecting a high frequency of about 10 × 10 8 Hz in a VHF band can be used to detect sound in a very small area. An object of the present invention is to provide a close-focus type composite AE sensor capable of performing accurate acoustic analysis. SUMMARY OF THE INVENTION In order to achieve the above object, the present invention judges the characteristics of a material by detecting an acoustic signal (AE signal) generated by deformation or destruction of the material. A plurality of concave spherical lenses of an ultrasonic microscope, wherein the spherical lenses are arranged obliquely to each other, and each focal point is located near each other, and spatially. This constitutes a near-focus composite AE sensor that does not match. The concave spherical lens is arranged so as to be inclined such that its focal point converges near the acoustic measurement point. By devising the inclination angle and the arrangement position thereof three-dimensionally, each focal point can be set very close to the acoustic measurement point so as not to be attenuated and lost in the process of transmitting the acoustic signal to the material to be measured. The position of the acoustic measurement point can be accurately determined by the sound wave detection by the concave spherical lens. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the overall structure of one embodiment of the present invention, FIG. 2 is a diagram showing measurement results of acoustic waves according to this embodiment, and FIG. 3 is a diagram showing an acoustic generation point P 'and a focal position of each concave spherical lens. FIG. 4 is a plan view showing the X and Y coordinates of A ', B' and C '. FIG. 4 is a schematic front view of another embodiment of the present invention, and FIG.
FIG. 6 is a schematic front view of still another embodiment of the E sensor, and FIG. 7 is a schematic front view of another embodiment of the present invention. Each of the concave spherical lenses shown in FIGS. 4 to 7 is spatially shifted from each other, and shows a cross section corresponding to a cross section taken along line DD of FIG. As shown in FIG. 1, a near-focus type composite AE sensor 1 of the present embodiment comprises three concave spherical lenses 2 of an ultrasonic microscope. The three ultrasonic microscope concave spherical lenses 2 are referred to as concave spherical lenses 2A, 2B, and 2C for convenience of description. For example, as an object to be measured, length × width × thickness is 1 mm ×
Material 3 to be measured composed of 500 μm × 50 μm SiO 2
Is set horizontally, each concave spherical lens 2A, 2B, 2
C is arranged at an angle to the horizontal plane and at a position where it does not interfere with each other. In addition, each concave spherical lens 2A, 2
The focal points A ', B', and C 'of B and 2C are converged at three points on the surface of the material 3 to be measured. In the figure, the focal point A 'is closest to the sound generating point P', and the focal points B 'and C' move away in this order. Each of the concave spherical lenses 2A, 2B, and 2C includes a glass-like delay member 4 and a transducer 5, and a concave spherical surface 6 is formed on the lower end side of the delay member 4. The concave spherical lens 2
A, 2B, and 2C may have the same shape, but are not limited thereto. Further, each concave spherical lens 2A, 2B, 2C
The space 7 and the material 3 to be measured are filled with water 7 as a medium for transmitting ultrasonic waves. In this embodiment, three concave spherical lenses are used, but four or more lenses may be used. However, the focal points of all concave spherical lenses are not aligned on the same straight line. With the above structure, when a sound wave is emitted from the sound generation point P 'of the material 3 to be measured, the sound wave is transmitted from the sound generation point P' to the focal points A ', B of the concave spherical lenses 2A, 2B, 2C. , C ', and focuses A', B ',
C ′ diverges from C ′ to form a divergent spherical wave, concave spherical lens 2
A, 2B, and 2C. This diverging spherical wave is detected by each transducer 4 and converted into an electric signal, and a sound wave having a waveform as shown in FIG. 2 is measured. FIG. 2 shows time on the horizontal axis and the time waveform (acoustic amplitude) of the propagated sound wave on the vertical axis.
Assuming that a sound wave is generated from the sound generation point P 'on the surface of the material to be measured at a certain moment (point 0 in FIG. 2), the concave spherical lens 2A delays by, for example, time t according to the positional relationship between the three focal points. The waveform is measured, the waveform is measured by the concave spherical lens 2B with a delay of time a, and the waveform is measured by the concave spherical lens 2C with a delay of time b. As shown in FIG. 3, each concave spherical lens 2A,
X and Y coordinates of focal points A ′, B ′, C ′ of 2B and 2C are represented by X
a, Ya, Xb, Yb, Xc, Yc, and the X, Y coordinates of the sound generation point P 'are Xp, Yp. In order to simplify the calculation, the time required for sound wave propagation from the piezoelectric body of each concave spherical lens 2A, 2B, 2C to each focal point is fixed, and the thickness of the sound generation point P 'is ignored if the thickness of the material 3 to be measured is ignored. The coordinates are obtained from the following formula (Equation 1). Where V
Is the sound speed at which the AE signal propagates in the material 3 to be measured,
M in equation (1) indicates the transmission time of the acoustic wave from the sound generation point P 'to the focal point A', and m + a in equation (2) indicates the transmission time of the acoustic wave from the sound generation point P 'to the focal point B'. Show,
M + a + b in the equation (3) indicates the transmission time of the acoustic wave from the sound generation point P ′ to the focal point C ′. Also, from FIG.
b can be obtained, and the focal points A ', B',
Since the coordinates Xa, Ya, Xb, Yb, Xc, and Yc of C 'are known, the coordinates Xp and Yp of the sound generation point P' can be obtained by the equations (4) and (5). Further, it is possible to analyze the characteristics of the material to be measured 3 from the acoustic wave of FIG. Further, when V is known, it is possible to measure the depth of the sound generation point in the thick material 3 to be measured. In addition, what is necessary is just to apply a well-known method mutatis mutandis to these position measuring methods. ## EQU1 ## In the above embodiment, the independent concave spherical lenses 2A, 2B and 2C have been described as being inclined. However, the close-focus type composite AE sensor 1a shown in FIGS. 4 and 5 is different from the concave spherical lens 2A. , 2B, and 2C are integrated into an integrated structure. In the case of the above embodiment, since the concave spherical lenses 2A, 2B, and 2C are independent, accurate acoustic measurement can be performed without any acoustic mutual interference of the transducers 5. On the other hand, in the case of FIGS. 4 and 5, each concave spherical lens 2A, 2B, 2C has an integral structure.
Has the advantage that the arrangement can be formed with high precision.
Of course, by devising the shape, the mutual interference between the transducers 4 can be almost suppressed. According to the present embodiment, the distance g between the focal point A 'and the focal point C' is set to h of the prior art (FIG.
Can be set to an extremely small value. The same applies to the focal point B '. Also in this embodiment, the position of the sound generation point P 'can be accurately obtained from the coordinates of the focal points A', B ', and C' and the transmission time of the acoustic wave to each concave spherical lens, as in the previous embodiment. FIG. 6 shows each concave spherical lens 2A,
Proximity focal point composite AE in which 2B and 2C are formed in an integrated structure
It shows the sensor 1b. In this embodiment, the transducer 5 is fixed to the concave spherical surface 6 side. Also in this embodiment, the characteristics of the material to be measured 3 and the position of the sound generation point P 'are obtained in the same manner as in the above embodiment. The close-focus type composite AE sensor 1c of FIG. 7 is formed as follows. It is based on an AE sensor which first forms a concave spherical surface 8 shown by a two-dot chain line and has an integral transducer which is not separated as shown. Next, the concave spherical surface 8 is reworked into three concave spherical surfaces 9, 10, and 11 having different curvatures. At the same time, the transducer of integral structure is divided into three parts and the transducer 5
A, 5B, and 5C. The concave spherical surface 9 corresponds to the transducer 5A, the concave spherical surface 10 corresponds to the transducer 5B, and the concave spherical surface 11 corresponds to the transducer 5C. With the above structure, the focal points A ', B', and
C ′ can be oriented. According to this embodiment, substantially the same effects as those of the above embodiment can be obtained. As described above, the near-focus composite AE sensors 1, 1 a, 1 b, and 1 c having various shapes have been described. However, the present invention is not limited to these. A that is arranged so that the focal point can be converged in the vicinity
An E sensor is sufficient. Of course, as described above, the respective concave spherical lenses need not have the same structure. According to the present invention, the following remarkable effects are obtained. 1) By adopting a structure in which a plurality of concave spherical lenses of the ultrasonic microscope are arranged obliquely with respect to each other, the focal point can be arranged very close to the acoustic measurement point of the material. Therefore, signal loss due to attenuation when the acoustic signal propagates in the material to be measured can be prevented, and acoustic measurement can be performed in a very small area, so that acoustic measurement of an extremely small material can be performed. 2) Since the focal position of each concave spherical lens can be accurately positioned with respect to the sound measurement point, high-accuracy sound measurement can be performed, and the position of the sound generation point can be accurately detected. 3) The adoption of an ultrasonic microscope concave spherical lens enables 1
Acoustic measurement of high frequency of VHF band of about 0 × 10 7 to 10 8 Hz is possible. Thus, for example, an AE signal generated when the thin film material is destroyed can be caught.

【図面の簡単な説明】 【図1】本発明の一実施例の全体構造を示す斜視図。 【図2】本実施例により測定される音波の時間波形の一
例を示す波形図。 【図3】各凹球面レンズの焦点A,B,Cと音響発生点
P′の被測定材料表面におけるX,Y座標を示す平面
図。 【図4】本発明の他の実施例の正面図。 【図5】図4の実施例の斜視図。 【図6】本発明の別の実施例の正面図。 【図7】本発明の更に別の実施例の正面図。 【図8】従来の複合AEセンサの断面図。 【図9】従来の単独型AEセンサの断面図。 【図10】従来のAEセンサによる音響測定方法を示す
概要斜視図。 【符号の説明】 1 焦点近接型複合AEセンサ 1a 焦点近接型複合AEセンサ 1b 焦点近接型複合AEセンサ 1c 焦点近接型複合AEセンサ 2 AEセンサ 2A 凹球面レンズ 2B 凹球面レンズ 2C 凹球面レンズ 3 被測定材料 4 遅延材 5 トランスデューサ 6 凹球面 7 水 8 凹球面 9 凹球面 10 凹球面 11 凹球面 12 被測定材料 13 AEセンサ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the overall structure of an embodiment of the present invention. FIG. 2 is a waveform chart showing an example of a time waveform of a sound wave measured according to the present embodiment. FIG. 3 is a plan view showing X, Y coordinates of the focal points A, B, and C of each concave spherical lens and the sound generation point P ′ on the surface of the material to be measured. FIG. 4 is a front view of another embodiment of the present invention. FIG. 5 is a perspective view of the embodiment of FIG. FIG. 6 is a front view of another embodiment of the present invention. FIG. 7 is a front view of still another embodiment of the present invention. FIG. 8 is a cross-sectional view of a conventional composite AE sensor. FIG. 9 is a sectional view of a conventional single type AE sensor. FIG. 10 is a schematic perspective view showing a conventional acoustic measurement method using an AE sensor. [Description of Signs] 1 Near-focus composite AE sensor 1a Near-focus composite AE sensor 1b Near-focus composite AE sensor 1c Near-focus composite AE sensor 2 AE sensor 2A Concave spherical lens 2B Concave spherical lens 2C Concave spherical lens 3 Cover Measurement material 4 Delay material 5 Transducer 6 Concave sphere 7 Water 8 Concave sphere 9 Concave sphere 10 Concave sphere 11 Concave sphere 12 Material to be measured 13 AE sensor

フロントページの続き (56)参考文献 B.Kanai et.al.,’N on−Contact Measure ment of Acoustic E mission Signalsin the 100MHz Frequenc y Range...’,ACUSTI CA,ドイツ,1992年5月,Vol. 76,No.4,p.199−204 (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 JICSTファイル(JOIS)Continuation of front page (56) References B. Kanai et. al. , 'Non-Contact Measurement of Acoustic Emission Signals in the 100 MHz Frequency Range. . . ', ACUSTI CA, Germany, May 1992, Vol. 76, no. 4, p. 199-204 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 29/00-29/28 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 材料の変形,破壊等により発生する音響
信号(AE信号)を検知して材料の特性を判断するため
のセンサであって、超音波顕微鏡凹球面レンズを複数個
配設したものからなり、それぞれの前記凹球面レンズが
互いに傾斜して配置され、かつ各焦点が互いに近傍に位
置し、かつ空間的に一致しないことを特徴とする焦点近
接型複合AEセンサ。
(57) [Claim 1] A sensor for detecting an acoustic signal (AE signal) generated by deformation or destruction of a material to judge the characteristics of the material. A near-focus type, comprising a plurality of spherical lenses, wherein each of the concave spherical lenses is arranged to be inclined with respect to each other, and the respective focal points are located close to each other and do not spatially coincide with each other. Composite AE sensor.
JP30177693A 1993-12-01 1993-12-01 Combined focus AE sensor Expired - Fee Related JP3362484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30177693A JP3362484B2 (en) 1993-12-01 1993-12-01 Combined focus AE sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30177693A JP3362484B2 (en) 1993-12-01 1993-12-01 Combined focus AE sensor

Publications (2)

Publication Number Publication Date
JPH07151736A JPH07151736A (en) 1995-06-16
JP3362484B2 true JP3362484B2 (en) 2003-01-07

Family

ID=17901037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30177693A Expired - Fee Related JP3362484B2 (en) 1993-12-01 1993-12-01 Combined focus AE sensor

Country Status (1)

Country Link
JP (1) JP3362484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292218A (en) * 2007-05-23 2008-12-04 Nikon Corp Surface shape measuring device, surface shape measuring method, and microscopic objective optical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.Kanai et.al.,’Non−Contact Measurement of Acoustic Emission Signalsin the 100MHz Frequency Range...’,ACUSTICA,ドイツ,1992年5月,Vol.76,No.4,p.199−204

Also Published As

Publication number Publication date
JPH07151736A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
CN102422123B (en) Apparatus and method for measuring material thickness
JPH0136584B2 (en)
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JP3362484B2 (en) Combined focus AE sensor
WO2022180972A1 (en) Ultrasonic inspection device
CN115856087A (en) Full-focusing imaging method based on longitudinal wave transmitting-receiving ultrasonic phased array probe
US6829940B2 (en) Method and apparatus for measuring surface wave traveling time
JP2000131297A (en) Leakage elastic surface wave measuring probe
JPS59180456A (en) Ultrasonic probe
JPH04157360A (en) Supersonic probe
JP2022000609A (en) Ultrasonic inspection device and ultrasonic inspection method
KR101558921B1 (en) Dual type ultrasonic sensor for adjusting focal length
KR101558922B1 (en) Dual type ultrasonic sensor for adjusting beam width
JPH08313496A (en) Ultrasonic probe
JPS62266456A (en) Ultrasonic probe for member with curved shape
JPS6356946B2 (en)
JPS63186143A (en) Ultrasonic wave probe
JP2001124746A (en) Ultrasonic inspection method
JP2978708B2 (en) Composite angle beam probe
JPH06245931A (en) Ultrasonic probe
JP2883051B2 (en) Ultrasonic critical angle flaw detector
JPH0521011Y2 (en)
JPS6144349A (en) Method and apparatus for ultrasonic flaw detection
JPH0731169Y2 (en) Ultrasonic probe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees