JPH0444952B2 - - Google Patents

Info

Publication number
JPH0444952B2
JPH0444952B2 JP59059042A JP5904284A JPH0444952B2 JP H0444952 B2 JPH0444952 B2 JP H0444952B2 JP 59059042 A JP59059042 A JP 59059042A JP 5904284 A JP5904284 A JP 5904284A JP H0444952 B2 JPH0444952 B2 JP H0444952B2
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
propagation time
section
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059042A
Other languages
Japanese (ja)
Other versions
JPS60202358A (en
Inventor
Kishio Arita
Susumu Mitani
Hideo Sakai
Yoshitaka Koide
Yoshiro Tomikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59059042A priority Critical patent/JPS60202358A/en
Publication of JPS60202358A publication Critical patent/JPS60202358A/en
Publication of JPH0444952B2 publication Critical patent/JPH0444952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超音波によつて被測定物内部の欠
陥部の形状および位置を診断する超音波診断方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic diagnostic method for diagnosing the shape and position of a defect inside an object using ultrasonic waves.

〔従来技術〕[Prior art]

木材やプラスチツクなど超音波の減衰のきわめ
て大きい材料の内部の欠陥の位置および形状を比
較的簡易に実現するための超音波診断方法として
は、「特願昭57−115255号(特開昭59−5950号公
報)」に示される方法があつた。
An ultrasonic diagnostic method for relatively easily determining the location and shape of internal defects in materials with extremely high ultrasonic attenuation, such as wood and plastic, is disclosed in Japanese Patent Application No. 115255/1983 There was a method shown in ``Publication No. 5950''.

例えば、この方法を木製電柱の腐朽部(欠陥
部)を検出する場合を例にとり説明する。通常電
柱として使用される松材などは、第1図に示すよ
うに、年輪にそつた腐朽部Hが生ずる。ここで、
探触子を位置P1およびP1′に接して超音波伝播時
間を測定すれば、健全部での直径間の伝播時間
(例えば、地面から1m以上で測定すると得られ
る)にほぼ等しくなる。一方、P5およびP5′に探
触子を接して伝播時間を測定すると、両探触子を
結ぶ線上に腐朽部があることから、超音波の伝播
が腐朽部をう回する経路となるので、伝播時間は
健全部に比して長くなり、これによつて腐朽部の
存在を検知することができる。
For example, this method will be explained using a case where a rotten part (defect part) of a wooden telephone pole is detected. As shown in Figure 1, pine wood, which is commonly used as utility poles, has decayed areas H that follow the growth rings. here,
If the ultrasonic propagation time is measured with the probe in contact with the positions P 1 and P 1 ', it will be approximately equal to the propagation time between diameters in a healthy area (for example, obtained when measuring at 1 m or more from the ground). On the other hand, when we measure the propagation time by touching the probes to P 5 and P 5 ', we find that there is a decayed area on the line connecting both probes, so the propagation of the ultrasonic wave goes around the decayed area. Therefore, the propagation time is longer than that for a healthy part, and the existence of a decayed part can be detected thereby.

ところが、米松等における腐朽形態は杉と異な
り、第2図示すように中心部が腐朽し、しかも地
面から1m以上の箇所においても腐朽している場
合が多い。したがつて、従来の方法では、健全部
での超音波伝播時間を測定することができず、誤
まつて腐朽部がある箇所の伝播時間を健全部の値
とすることがあつた。さらに、第2図に示す木柱
の場合は、P1およびP1′間、P5およびP5′間での超
音波伝播時間がほぼ等しくなるので、健全部での
超音波伝播時間を誤まつて測定することと重なる
と、全くの健全部であると誤判断する欠点があつ
た。
However, the mode of decay in Japanese pine and other trees differs from that in cedar; as shown in Figure 2, the center of the tree is rotten, and in many cases, the rot is present even in areas 1 m or more from the ground. Therefore, in the conventional method, it was not possible to measure the ultrasonic propagation time in a healthy part, and the propagation time in a place where there was a decayed part was mistakenly taken as the value of the healthy part. Furthermore, in the case of the wooden pole shown in Figure 2, the ultrasonic propagation times between P 1 and P 1 ' and between P 5 and P 5 ' are almost equal, so the ultrasonic propagation time in the healthy part is incorrect. If the measurement is repeated, there is a drawback that it may be mistakenly determined that the part is completely healthy.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の事情に鑑みてなされたもの
で、被測定物の中心部に欠陥部がある場合にも、
超音波を用いて欠陥部の形状および位置を共に検
出することのできる超音波診断方法を提供するこ
とを目的とする。
This invention was made in view of the above circumstances, and even when there is a defect in the center of the object to be measured,
An object of the present invention is to provide an ultrasonic diagnostic method that can detect both the shape and position of a defective part using ultrasonic waves.

〔発明の構成〕[Structure of the invention]

この発明は、被測定物内に、その外周の一点か
ら他の一点に超音波を放射し、そのときの送受信
間の超音波伝播時間に基づいて被測定物内の欠陥
部を検出する超音波診断方法において、一方の探
触子の位置を固定し、他方の探触子を前記探触子
から外周に沿つて遠避けながら複数の位置で超音
波伝播時間を測定し、探触子間距離と超音波伝播
時間との関係を示すグラフにおける変曲点をもと
めることによつて欠陥部位置および形状を検出す
ることを特徴としている。
This invention utilizes ultrasonic waves that emit ultrasonic waves from one point on the outer periphery of the object to another point within the object, and detect defects within the object based on the ultrasonic propagation time between transmission and reception. In the diagnostic method, the position of one probe is fixed, and the ultrasonic propagation time is measured at multiple positions while the other probe is moved away from the probe along the outer periphery, and the distance between the probes is determined. This method is characterized by detecting the position and shape of a defect by finding an inflection point in a graph showing the relationship between ultrasonic propagation time and ultrasonic wave propagation time.

〔実施例〕〔Example〕

第3図は、この発明による方法を適用した診断
装置の外観図であり、この図において1は超音波
送受信部、2a,2bは各々通常のランジユバン
型振動子を用いた送信探触子および受信探触子、
3は送受信部、2a,2bは各々通常のランジユ
バン型振動子を用いた送信接触子および受信接触
子、3は送信探触子2aから放射された超音波が
受信探触子2bによつて受信されるまでの間の超
音波伝播時間が表示されるデイジタル表示器、4
は前後の測定の伝播時間比が表示されるデイジタ
ル表示器、5は被測定物内の欠陥部の形状および
位置が表示される画像表示器、6はミニコンピユ
ータ、7は電源装置である。なお、デイジタル表
示器3,4および画像表示器5には液晶表示器が
用いられている。
FIG. 3 is an external view of a diagnostic device to which the method according to the present invention is applied. In this figure, 1 is an ultrasonic transmitter/receiver, and 2a and 2b are a transmitting probe and a receiving probe each using a normal Languevent type transducer. probe,
Reference numeral 3 denotes a transmitting/receiving unit; 2a and 2b respectively a transmitting contact and a receiving contact each using a normal Languevent type transducer; 3 an ultrasonic wave emitted from the transmitting probe 2a is received by the receiving probe 2b; A digital display that displays the ultrasonic propagation time until
5 is a digital display that displays the propagation time ratio of previous and subsequent measurements; 5 is an image display that displays the shape and position of a defect within the object to be measured; 6 is a minicomputer; and 7 is a power supply device. Note that liquid crystal displays are used for the digital displays 3 and 4 and the image display 5.

次に、この超音波診断装置による診断方法を、
木製電柱の腐朽部(欠陥部)を検出する場合を例
にとり説明する。
Next, the diagnosis method using this ultrasonic diagnostic device,
An example of detecting a rotten part (defective part) of a wooden telephone pole will be explained.

第4図は、中心部に腐朽部がある木製電柱であ
り、外周を16に等分割する位置をそれぞれP1
P2,…P16とする。まず、送信探触子2aを位置
P1に、受信探触子2bを位置P2に当接し伝播時
間を測定する。次に、送信接触子2aを前記位置
とし、受信接触子2bのみを位置P3として再び
伝播時間を測定する。以上の様に送信探触子2a
は位置を固定したまま受信探触子2bのみを位置
P4,P5,P6およびP7へと変えながら伝播時間を
測定する。この時、両探触子間の直線距離Lと伝
播時間Tとの関係を示すと第5図のようになる。
第5図中のプロツトにおいて、Lの小さい方から
それぞれ受信探触子位置はP1,P2,P3,P4,P5
P6,P7およびP8に対応する。これにより、P5
らP6に移ると伝播時間は急に長くなることがわ
かる。これは、P1とP6を結ぶ超音波の伝播経路
の途中に腐朽部Hがあるからである。したがつ
て、第4図に示すように腐朽部に接する点は、近
似的にP5とP6の中間点Q1とP1を結ぶ線の中点F1
として表わされる。
Figure 4 shows a wooden telephone pole with a rotten part in the center, and the positions where the outer circumference is divided into 16 equal parts are P 1 ,
Let P 2 ,...P 16 . First, position the transmitting probe 2a.
At P1 , the receiving probe 2b is brought into contact with position P2 and the propagation time is measured. Next, the propagation time is measured again with the transmitting contact 2a at the above position and only the receiving contact 2b at position P3 . As described above, transmitting probe 2a
position only the receiving probe 2b while keeping the position fixed.
Measure the propagation time while changing to P 4 , P 5 , P 6 and P 7 . At this time, the relationship between the straight line distance L between both probes and the propagation time T is shown in FIG.
In the plot in Fig. 5, the receiving probe positions are P 1 , P 2 , P 3 , P 4 , P 5 ,
Corresponds to P 6 , P 7 and P 8 . This shows that the propagation time suddenly increases when moving from P 5 to P 6 . This is because there is a decayed part H in the middle of the ultrasonic propagation path connecting P 1 and P 6 . Therefore, as shown in Figure 4, the point in contact with the decayed part is approximately the midpoint F1 of the line connecting Q1 and P1 , the midpoint between P5 and P6 .
It is expressed as

上記と同様に、P3を送信探触子2aとして、
受信探触子2bをP4,P5…と位置を変えながら
伝播時間を測定する。すると、第5図と同様に変
曲点を見い出すことができるので、腐朽部に接す
る近似点F2をもとめられる。以下同様に、P5
P7,P9,P11,P13,P15を起点とし測定を行なう
と、F1,F2…,F8が得られるので、これらを直
線で結ぶと第6図の結果が得られる。
Similarly to the above, with P 3 as the transmitting probe 2a,
The propagation time is measured while changing the position of the receiving probe 2b from P 4 to P 5 . Then, the inflection point can be found as in FIG. 5, and the approximate point F 2 that is in contact with the decayed part can be found. Similarly, P 5 ,
If you measure from P 7 , P 9 , P 11 , P 13 , P 15 as starting points, you will get F 1 , F 2 ..., F 8 , so if you connect these with a straight line you will get the result shown in Figure 6. .

第4図と第6図の比較からわかる様に、本発明
によれば比較的簡便な方法で、木柱中心部にある
腐朽部の位置および形状を検出できる。
As can be seen from the comparison between FIG. 4 and FIG. 6, according to the present invention, the position and shape of the decayed part at the center of the wooden pillar can be detected by a relatively simple method.

送信探触子の位置は必ず8ケ所必要ということ
ではなく、米松など中心部腐朽の場合には、ほぼ
円状に腐朽することがわかつているので、前記の
近似点Fの数を減らしてその間を曲線近似するこ
とによつて測定時間の短縮ができる。
It is not always necessary to place the transmitting probe at 8 locations, but it is known that in cases of central rot such as in Japanese pine trees, the rot occurs in an almost circular shape, so the number of approximate points F can be reduced to By approximating to a curve, the measurement time can be shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による方法は、超
音波探触子間距離と伝播時間の関係における変曲
点を見い出すことによつて、超音波伝播経路が欠
陥部に接する位置を検出しているので、欠陥部の
位置、形状を共に検出することができ、またこの
結果、画像化を行うことができる。さらに、前記
伝播時間の測定は、一方の探触子を固定し、他方
の探触子を電柱の円周方向へ移動させることによ
つて伝播距離を変えつつ行われるものであるか
ら、電柱の軸線を中心とする円心円状に腐朽部が
発生する米松のような材料からなる電柱の場合に
も、腐朽部の存在を確実に検出することができ
る。したがつて、欠陥部発見後の補修、取替え等
の処置を的確に行ない得る利点がある。また、こ
の発明によれば、比較的低周波の超音波を用いる
ことができるので、診断装置を簡単かつ安価に構
成し得る利点が得られる。以上の結果、この発明
による方法は、木製電柱、樹木、家の柱等の欠陥
部の検出、鋳物の“す”の検出等において極めて
有効である。
As explained above, the method according to the present invention detects the position where the ultrasonic propagation path touches the defective part by finding the inflection point in the relationship between the distance between the ultrasonic probes and the propagation time. Therefore, both the position and shape of the defective portion can be detected, and as a result, imaging can be performed. Furthermore, the measurement of the propagation time is performed while changing the propagation distance by fixing one probe and moving the other probe in the circumferential direction of the utility pole. Even in the case of a utility pole made of a material such as Japanese pine in which rotten parts occur in a circular pattern around the axis, the presence of rotten parts can be reliably detected. Therefore, there is an advantage that repairs, replacements, etc. can be carried out accurately after a defective part is discovered. Furthermore, according to the present invention, relatively low-frequency ultrasound can be used, which provides the advantage that the diagnostic apparatus can be constructed easily and at low cost. As a result of the above, the method according to the present invention is extremely effective in detecting defects in wooden utility poles, trees, house pillars, etc., and in detecting "s" in castings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は杉材など外周部に欠陥が生ずる被測定
物の断面図、第2図は米松など中心部に欠陥が生
ずる被測定物の断面図、第3図はこの発明による
方法を適用した診断装置の構成を示す斜視図、第
4図は第3図に示す装置により木製電柱の腐朽部
を診断する方法の説明図、第5図は探触子間距離
と伝播時間の関係を示すグラフ、第6図は第4図
に示す木柱腐朽部を第3図に示す装置により画像
化した状態を示す図である。 1……超音波送受信部、2a……送信探触子、
2b……受信探触子、3,4……デイジタル表示
器、5……画像表示器、6……ミニコンピユー
タ。
Figure 1 is a cross-sectional view of an object to be measured, such as cedar wood, which has a defect on its outer periphery, Figure 2 is a cross-sectional view of an object to be measured, such as a Japanese pine tree, which has a defect in its center, and Figure 3 is a cross-sectional view of an object to be measured, such as a Japanese pine tree, in which a defect occurs in the center. A perspective view showing the configuration of the diagnostic device, FIG. 4 is an explanatory diagram of a method for diagnosing a rotten part of a wooden utility pole using the device shown in FIG. 3, and FIG. 5 is a graph showing the relationship between the distance between probes and propagation time. , and FIG. 6 is a diagram showing a state in which the rotten part of the wooden pillar shown in FIG. 4 is imaged using the apparatus shown in FIG. 3. 1... Ultrasonic transmitting and receiving unit, 2a... Transmitting probe,
2b...Reception probe, 3, 4...Digital display, 5...Image display, 6...Mini computer.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物内に測定断面を設定し、この測定断
面の外周上の一部から、前記測定断面の内方へ向
けて超音波を放射し、この放射された超音波を前
記測定断面の外周上の他の一点において受信し、
この送受信間の超音波伝播時間に基づいて前記被
測定物内の欠陥部を検出する超音波診断方法にお
いて、一方の探触子の位置を前記測定断面の外周
上の一点に固定し、他方の探触子を前記測定断面
の外周に沿つて移動させることにより前記一方の
探触子との直線距離を遠ざけながら複数の位置で
超音波伝播時間を測定し、探触子間距離と超音波
伝播時間との関係を示すグラフにおける変曲点を
求めることによつて前記欠陥部位置および形状を
検出することを特徴とする超音波診断方法。
1 Set a measurement cross section in the object to be measured, emit ultrasonic waves inward from a part of the outer circumference of the measurement cross section, and transmit the emitted ultrasonic waves to the outer circumference of the measurement cross section. received at another point on the
In an ultrasonic diagnostic method for detecting defects in the object to be measured based on the ultrasonic propagation time between transmission and reception, the position of one probe is fixed at a point on the outer periphery of the measurement section, and the position of the other probe is fixed at a point on the outer circumference of the measurement cross section. By moving the probe along the outer periphery of the measurement section, the ultrasonic propagation time is measured at multiple positions while increasing the linear distance from the one probe, and the distance between the probes and the ultrasonic propagation are measured. An ultrasonic diagnostic method characterized by detecting the position and shape of the defect by finding an inflection point in a graph showing a relationship with time.
JP59059042A 1984-03-27 1984-03-27 Ultrasonic diagnosis Granted JPS60202358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059042A JPS60202358A (en) 1984-03-27 1984-03-27 Ultrasonic diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059042A JPS60202358A (en) 1984-03-27 1984-03-27 Ultrasonic diagnosis

Publications (2)

Publication Number Publication Date
JPS60202358A JPS60202358A (en) 1985-10-12
JPH0444952B2 true JPH0444952B2 (en) 1992-07-23

Family

ID=13101849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059042A Granted JPS60202358A (en) 1984-03-27 1984-03-27 Ultrasonic diagnosis

Country Status (1)

Country Link
JP (1) JPS60202358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122626A1 (en) 2010-03-29 2011-10-06 Uchiyama Kosuke Polylactic acid composition, foam-molded article thereof and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928511B (en) * 2012-10-24 2014-08-06 西安交通大学 RAPID (reconstruction algorithm for probabilistic inspection of damage) chromatography-based nondestructive identification method of mechanical structure damages
CN104990993A (en) * 2015-04-17 2015-10-21 北京理工大学 Ultrasound slowness difference tomography algorithm for weak scattering mediums
CN105717199B (en) * 2016-01-26 2018-11-16 陆雷俊 A kind of stainless steel, Ni-based steel the welding line ultrasonic first detection method in face point in length and breadth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595950A (en) * 1982-07-02 1984-01-12 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595950A (en) * 1982-07-02 1984-01-12 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122626A1 (en) 2010-03-29 2011-10-06 Uchiyama Kosuke Polylactic acid composition, foam-molded article thereof and method for producing same

Also Published As

Publication number Publication date
JPS60202358A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
CN107870202A (en) A kind of detection method of cable connector internal flaw
JPH0444952B2 (en)
JPH01158348A (en) Ultrasonic flaw detection apparatus
JPH04329938A (en) Probe system for measuring elastic modulus of blood vessel
JP2019128224A (en) Device and method for diagnosing trees
JPH0566545B2 (en)
JP2019128225A (en) Device and method for generating image for tree diagnosis
JPS61200469A (en) Ultrasonic diagnostic method
JPH0513465B2 (en)
KR100192637B1 (en) Apparatus and method for detecting the optimum driving frequency of ultrasonic sensor
JPS60165546A (en) Ultrasonic diagnosis device
JPS6144349A (en) Method and apparatus for ultrasonic flaw detection
JPH0148504B2 (en)
JP2002071650A (en) Method of ultrasonic flaw detection for hollow concrete column
JPS5926898B2 (en) Ultrasonic transducer
JPH0431350B2 (en)
JPH0376708B2 (en)
SU962807A1 (en) Transducer for quality control of welds
JPH10213409A (en) Apparatus for measuring pipe thickness
CN113777612A (en) Space free scanning imaging system and method for phased array ultrasonic detection
JPH04164248A (en) Detecting method and device for embedded branch inside timber
WO2023065043A1 (en) Free hand acoustic probe tracking
SU1677612A1 (en) Method of ultrasonic testing of twin-layer materials
JPS6325304B2 (en)
WO2024059948A1 (en) Non-destructive test (ndt) scanner and operator interface