JPS6150064A - Diagnosis of defect in square pilar - Google Patents

Diagnosis of defect in square pilar

Info

Publication number
JPS6150064A
JPS6150064A JP59172602A JP17260284A JPS6150064A JP S6150064 A JPS6150064 A JP S6150064A JP 59172602 A JP59172602 A JP 59172602A JP 17260284 A JP17260284 A JP 17260284A JP S6150064 A JPS6150064 A JP S6150064A
Authority
JP
Japan
Prior art keywords
defect
propagation time
center
ultrasonic
external tangent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59172602A
Other languages
Japanese (ja)
Other versions
JPH0566545B2 (en
Inventor
Kishio Arita
紀史雄 有田
Susumu Mitani
進 三谷
Yoshitaka Koide
小出 美孝
Yoshiro Tomikawa
義朗 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59172602A priority Critical patent/JPS6150064A/en
Publication of JPS6150064A publication Critical patent/JPS6150064A/en
Publication of JPH0566545B2 publication Critical patent/JPH0566545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To handily detect a defect due to decay by white ants or the like within a square pilar, by determining the center of an internal defect from the propagation time of ultrasonic waves to connecting with a smooth curve points of contact obtained by drawing a perpendicular line to each external tangent from the center of the defect. CONSTITUTION:An ultrasonic wave transmission element abuts at peripheral positions M1 and M1' of an internally decayed square pilar to measure ultrasonic propagation time and determine the propagation time sequentially between the positions M2-M2',...M7-M7'. Likewise, the propagation time between the positions N1-N1'...N7-N7' is measured and the intersection between measurement lines indicating the longest propagation time gives the center of the defect. Then, a transducer is fixed near the mid-point of one side is fixed and then, moved farther along the adjacent side to find an external tangent to an internal defect from the rapid increase point of the propagation time. Then, points of contact obtained by drawing a perpendicular line to each external tangent from the center of the defect are connected by a curve to present the shape of the defect thereby detecting the defect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超音波によって矩形柱の内部における欠陥
部の形状および位置を診断する欠陥診断方法に関するし
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a defect diagnosis method for diagnosing the shape and position of a defect inside a rectangular column using ultrasonic waves.

〔従来の技術) 本出願人は、先に、比較的低周波の超音波を用いて水柱
中心部の欠陥を検出する方法(特願昭59−59042
)を提案した。そこで、以下この方法について簡単に説
明する。
[Prior Art] The present applicant previously proposed a method for detecting defects in the center of the water column using relatively low-frequency ultrasonic waves (Japanese Patent Application No. 59-59042).
) was proposed. Therefore, this method will be briefly explained below.

第7図は、中心部に腐朽部1−1がある木装電珪の一断
面であり、外周を16に等分2.l[する位置をそれぞ
れP+ 、P2.・・・・・・P +sとする。まり゛
、送信探触子を位置P1に、受信探触子を位置P2に当
接し伝播時間を測定する。次に、送信接触子を+tl″
r記位置と口位置信接触子のみを位置P3として再び伝
播時間を測定する。以上の様に送信探触子は位置を固定
したまま受信探触子のみを位置Pi 。
FIG. 7 is a cross section of a wooden electrical silicon with a rotten part 1-1 in the center, and the outer circumference is divided into 16 equal parts 2. The positions P+, P2 .・・・・・・P +s. Then, the transmitting probe is brought into contact with the position P1 and the receiving probe is brought into contact with the position P2, and the propagation time is measured. Next, set the sending contact to +tl″
The propagation time is measured again with only the position R and the mouth position signal contact at position P3. As described above, only the receiving probe is placed at position Pi while the position of the transmitting probe is fixed.

Ps 、P6およびP7へと変えながら伝播時間を測定
する。この時、両探触子間の直線距&a Lと伝播時間
下との関係を示すと第8図のようになる。
Measure the propagation time while changing to Ps, P6 and P7. At this time, the relationship between the straight line distance &a L between both probes and the propagation time is shown in FIG.

第8図中のプロットに83いて、Lの小さい方からそれ
ぞれ受信1ズ触子位置はP+ 、 F2 、 F3 、
 F4、F5 、Ps 、F7および’Psに対応する
。これにより、F5からF6に移るど(伝播時間は急に
長くなることがわかる。これは、PlとF6を結ぶ超音
波の伝播経路の途中に腐朽部Hがあるからである。した
がって、第8図に示すように腐朽部Hに接する点は、近
似的にF5とF6の中間点Q1とPlを結ぶ線の中点F
1として表わされる。
At 83 in the plot in Figure 8, the receiving probe positions are P+, F2, F3, respectively from the smaller L.
Corresponding to F4, F5, Ps, F7 and 'Ps. As a result, it can be seen that when moving from F5 to F6 (the propagation time suddenly becomes longer). This is because there is a decayed part H in the middle of the ultrasonic propagation path connecting Pl and F6. As shown in the figure, the point in contact with the decayed part H is approximately the midpoint F of the line connecting Pl to the midpoint Q1 between F5 and F6.
Represented as 1.

上記と同様に、F3を送信探触子28として、受信探触
子をF4 、Ps・・・・・・と位置を変えながら伝播
時間を測定する。リーると、第8図と同様に変曲点を見
い出ずことができるので、腐朽部Hに接する近似点F2
をもとめられる。以下同様に、Ps 、F7 、F9 
、pH,P+3.P+5を起点とし測定を行なうと、P
+ 、F2・・・・・・、Fgが得られるので、これら
を直線で結ぶと第9図の結果がjqられる。
Similarly to the above, the propagation time is measured while changing the position of the receiving probe to F4, Ps, . . . using F3 as the transmitting probe 28. If we do so, we can find the inflection point as in Figure 8, so we can find the approximate point F2 that is in contact with the decayed part H.
is required. Similarly, Ps, F7, F9
, pH, P+3. When measuring from P+5, P
+, F2..., Fg are obtained, and by connecting these with a straight line, the result shown in FIG. 9 can be obtained jq.

(発明が解決しようとする問題点) 以上述べた方法は、丸材に対しては、第7図と第8図を
比較ずれば明らかなように有効な診断方法ではあるが、
しかしこの方法はあくまでも円形木柱に対する腐朽診断
方法であるため、矩形の柱の内部欠陥診断には用いるこ
とができず、その矩形の往に対する診断方法の開発が望
まれていた。
(Problems to be Solved by the Invention) Although the method described above is an effective diagnostic method for round materials, as is clear from a comparison of FIGS. 7 and 8,
However, since this method is only for diagnosing rot on circular wooden columns, it cannot be used for diagnosing internal defects on rectangular columns, and there has been a desire to develop a method for diagnosing decay in rectangular columns.

〔問題点を解決ザるための手段〕[Means for solving problems]

この発明の矩形柱の欠陥診断方法は、矩形柱の一断面に
おける2対の対近間の超音波伝播時間を数ケ所測定して
、8対の対近間にJ5いて伝播時間がm長となる測定線
の交点から欠陥中心をもとめる第1の過程と、前記の一
断面における一辺の中点付近に超音波送信子または受信
子の一方を固定し、隣接変において前記探触子に近い位
置から超音波送信子または受信子の他方を順次遠ざ(プ
て、伝播時間の急増点から内部欠陥への外接線を見い出
ず第2の過程と、na記大欠陥中心ら前記各々の外接線
に垂線をおろすことによってもとまるいくつかの接点を
なめらかな曲線で結んで欠陥形状を表わす第3の過程に
よって欠陥検出を行なうことを特徴とする。
The method for diagnosing defects in a rectangular column according to the present invention involves measuring the ultrasonic propagation time between two pairs of pairs at several points in one cross section of the rectangular column, and determining that the propagation time at J5 between eight pairs of pairs is m long. The first step is to find the center of the defect from the intersection of the measurement lines, and fix one of the ultrasonic transmitter or the receiver near the midpoint of one side in the one cross section, and fix the ultrasonic transmitter or the receiver at a position close to the probe in the adjacent section. The other of the ultrasonic transmitter or the receiver is sequentially moved away from the center of the defect, and the second process is performed without finding the external tangent from the point where the propagation time rapidly increases to the internal defect. It is characterized in that defect detection is performed by a third process in which the defect shape is represented by connecting several contact points with a smooth curve by drawing a perpendicular line to the external tangent.

〔実施例〕〔Example〕

以下、この発明の実施例を第1図乃至第6図に基づいて
説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

第2図は内部腐朽の矩形柱の例を表わす一断面であり、
以下の説明のためにその外周部に等間隔に配した位置記
号を記す。
Figure 2 is a cross section showing an example of a rectangular column with internal decay.
For the following explanation, position symbols arranged at equal intervals on the outer periphery are written.

まず、位置M1およびM+’ に超音波送信子を当接し
超音波伝播時間を測定する。次にはM2〜〜12′ 間
での伝播時間i11.lI定し、順次M3〜M3′。
First, ultrasonic transmitters are brought into contact with positions M1 and M+' and the ultrasonic propagation time is measured. Next, the propagation time i11 between M2 and ~12'. lI, and sequentially M3 to M3'.

〜14〜〜14′、・・M7〜M7′のように測定する
~14~~14', . . . M7~M7' are measured.

ま lこ 、  N 1 〜 I’h   ’   、
   N2  〜 N 2  ′  、  ・・・ N
 7 〜 N2′においても同様に測定する。これらの
位置と伝播時間の関係を示すと第3図(a)、(b)の
ようになる。これから、M4〜M4′上およびN4〜N
a’上に腐朽の最大があり、両線の交点が腐朽の中心Q
であることがわかる。すなわち、超音波は、腐朽部は伝
播できずに遠まわりをするが、よさにM4〜Ma’ お
よびN4〜N4′において最も遠まわりになるからであ
る。なお第5図のように腐朽部がない柱の場合には、第
6図に示すように、年輪の中心近くを通る場合はど伝播
時間が短かくなり、第3図(a)、(b)と逆の特性を
示す。したがって、第3図の(a)、(b)の特性によ
って内部腐朽の存在を知ることができる。
Mako, N1 ~ I'h',
N2 ~ N2', ... N
7 to N2' are similarly measured. The relationship between these positions and propagation time is shown in FIGS. 3(a) and 3(b). From now on, M4 to M4' and N4 to N
The maximum decay is on a', and the intersection of both lines is the center of decay Q
It can be seen that it is. That is, the ultrasonic waves cannot propagate through the decayed parts and take a long detour, but the ultrasonic waves take the longest detour in M4 to Ma' and N4 to N4'. In addition, in the case of a column with no decayed parts as shown in Figure 5, the propagation time becomes shorter when passing near the center of the tree ring, as shown in Figure 6, and Figures 3 (a) and (b) ) shows the opposite characteristics. Therefore, the presence of internal decay can be known from the characteristics shown in FIGS. 3(a) and 3(b).

次に、探触子の一方を例えば最大の伝播時間を示したM
4におき、また他方をN7’ において伝播時間を測定
する。続いて、−5側のMlはそのままにして、他方側
をN61 にして測定し、以降Ns ′、 N4 ’ 
・・・N+’ と、U次M4から遠ざけてゆくと、ぞ机
らの伝播時間は第4図のようになり、途中に伝播時間が
急°変するところが表われる。これは、探触子間を結ぶ
直線が腐朽部にかかったためであり、これが内部腐朽の
外接線である。したがって、先にもとめた腐朽の中心Q
からこの接線に垂線をおろせば、腐朽部との接点J1を
もどめることができる。次に、一方の探触子をN、l 
に固定し、他方をM7′から順次遠ざける測定を行なえ
ば、前記の場合と同様にして腐朽部との1a点J2がも
とめられる。以降、同様の方法で各辺についての測定を
行なうことによって内部腐朽の外周の点J3 、Jaが
もとめられる。そして、これらの4点J+ 、J2 、
J3 、J4を結ぶなめらかな曲線によって、第1図に
表わすように腐朽形状の1■略の形状がちとまる。
Next, one of the probes is set to, for example, M
4 and the other at N7'. Next, while leaving Ml on the -5 side as it is, the other side was set to N61 and measured, and thereafter Ns', N4'
...N+', as we move away from the U-order M4, the propagation time of the planes becomes as shown in Fig. 4, and a sudden change in the propagation time appears in the middle. This is because the straight line connecting the probes crosses the decayed area, and this is the outer tangent of the internal decay. Therefore, the center of decay Q
By drawing a perpendicular line to this tangent line, the contact point J1 with the decayed part can be maintained. Next, move one probe to N, l.
If the measurement is carried out by fixing it at M7' and moving the other one away from M7' sequentially, point J2 of point 1a with the decayed part can be found in the same way as in the previous case. Thereafter, points J3 and Ja on the outer periphery of internal decay are determined by measuring each side in the same manner. And these four points J+, J2,
Due to the smooth curve connecting J3 and J4, the shape of the decay shape is fixed as shown in Figure 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の矩形柱の欠陥診断方法
は、超音波の伝播時間から内部欠陥の中心をもとめる第
1の過程と、内部欠陥への外接線を見い出す第2の過程
と、欠陥の中心から各外接線に垂線をおろしてもとまる
接点をなめらかな曲線で結ぶ第3の過程によって、矩形
柱内部の腐朽などによる欠陥を簡便に検知することがで
き、また白蟻などによる腐朽の診断等にも利用すること
ができる。
As explained above, the method for diagnosing defects in rectangular pillars according to the present invention includes a first process of finding the center of an internal defect from the propagation time of ultrasonic waves, a second process of finding the circumscribed line to the internal defect, and a second process of finding the circumscribed line to the internal defect. By the third process of drawing a perpendicular line from the center to each external tangent line and connecting the stopping points with a smooth curve, it is possible to easily detect defects such as decay inside a rectangular column, and also to diagnose decay caused by termites, etc. It can also be used for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図はこの発明を説明するための図であっ
て、第1図はこの発明によりもとめた矩形柱の欠陥形状
を表わす図、第2図は診断対象とした矩形柱の欠陥形状
を表わす図、第3図(a)。 (b)はそれぞれ第2図の内部欠陥を有する矩形柱の2
対の対近間の超音波法11G時間とその、1111定位
置の関係を表わす図、第4図はこの発明の第2過程にお
いてもとめられた伝播+1J間の急増点を表わす図、第
5図は内部欠陥を有しない矩形(十の断面形状を表わす
図、第6図は第5図の内部欠陥を有しない矩形柱の2対
の対近間の超音波伝播時間とその測定位置の関係を表わ
す図、第7図乃至第9図は本出願人が先に提案した円形
の柱に対する診断方法を説明するための図であって、第
7図は診断対象とした円柱の柱の欠陥形状を表わす図、
第8図は探触子間の距離と超音波伝播時間の関係を表わ
す図、第9図は本診断方法によってもとめた円形の柱の
欠陥形状を表わす図である。 M1〜M7 r M+ ’ 〜My’、N+〜Ny、N
1〜N7′・・・・・・測定点、H・・・・・・欠陥。 区 Oフ 0 綜 N7’  N6’ N5’ N4’ N3′N2” N
l’Mt  M2 M3 M4 M5  M6  M7
第6図 〃S 第8図
1 to 6 are diagrams for explaining the present invention. FIG. 1 is a diagram showing the shape of a defect in a rectangular column obtained by the present invention, and FIG. A diagram showing the shape, FIG. 3(a). (b) shows two of the rectangular pillars with internal defects shown in Fig. 2, respectively.
A diagram showing the relationship between the ultrasonic method 11G time and its 1111 fixed position between a pair of neighbors, FIG. 4 is a diagram showing the sharp increase point between propagation +1J found in the second process of this invention, and FIG. 5 is a diagram showing the cross-sectional shape of a rectangular column (10) with no internal defects, and FIG. Figures 7 to 9 are diagrams for explaining the diagnosis method for circular pillars previously proposed by the applicant, and Figure 7 shows the defect shape of the circular pillar targeted for diagnosis. A diagram representing
FIG. 8 is a diagram showing the relationship between the distance between the probes and the ultrasonic propagation time, and FIG. 9 is a diagram showing the defect shape of the circular pillar determined by the present diagnostic method. M1~M7 r M+'~My', N+~Ny, N
1 to N7'...Measurement point, H...Defect. Ward Ofu 0 N7'N6'N5'N4'N3'N2" N
l'Mt M2 M3 M4 M5 M6 M7
Figure 6〃S Figure 8

Claims (1)

【特許請求の範囲】[Claims] 矩形柱の内部欠陥を超音波で診断する方法において、矩
形柱の一断面における2対の対近間の超音波伝播時間を
数カ所測定して、各対の対近間において伝播時間が最長
となる測定線の交点から欠陥中心をもとめる第1の過程
と、前記の一断面における一辺の中点付近に超音波送信
子または受信子の一方を固定し、隣接辺において前記探
触子に近い位置から超音波送信子または受信子の他方を
順次遠ざけて、伝播時間の急増点から内部欠陥への外接
線を見い出す第2の過程と、前記欠陥中心から前記各々
の外接線に垂線をおろすことによってもとまるいくつか
の接点をなめらかな曲線で結んで欠陥形状を表わす第3
の過程によつて欠陥検出を行なうことを特徴とする矩形
柱の欠陥診断方法。
In a method of diagnosing internal defects in a rectangular column using ultrasound, the ultrasonic propagation time between two pairs of neighbors in one cross section of a rectangular column is measured at several locations, and the propagation time is the longest between each pair of neighbors. The first step is to find the center of the defect from the intersection of the measurement lines, and fix one of the ultrasonic transmitter or the receiver near the midpoint of one side in the one cross section, and measure the center of the defect from a position close to the probe on the adjacent side. A second step of sequentially moving the other of the ultrasonic transmitter or receiver away from the other to find the external tangent to the internal defect from the point where the propagation time increases; and also by drawing a perpendicular line from the center of the defect to each external tangent. The third point represents the defect shape by connecting several contact points with a smooth curve.
A method for diagnosing defects in rectangular columns, characterized in that defects are detected through the process of:
JP59172602A 1984-08-20 1984-08-20 Diagnosis of defect in square pilar Granted JPS6150064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172602A JPS6150064A (en) 1984-08-20 1984-08-20 Diagnosis of defect in square pilar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172602A JPS6150064A (en) 1984-08-20 1984-08-20 Diagnosis of defect in square pilar

Publications (2)

Publication Number Publication Date
JPS6150064A true JPS6150064A (en) 1986-03-12
JPH0566545B2 JPH0566545B2 (en) 1993-09-22

Family

ID=15944898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172602A Granted JPS6150064A (en) 1984-08-20 1984-08-20 Diagnosis of defect in square pilar

Country Status (1)

Country Link
JP (1) JPS6150064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646239A1 (en) * 1989-04-24 1990-10-26 Dassault Avions METHOD AND ACOUSTIC DEVICE FOR LOCATING DEFECTS OF THE MATERIAL CONSTITUTING A PIECE AND ACOUSTIC TRANSMITTER USED IN THIS DEVICE
US5890389A (en) * 1996-10-31 1999-04-06 Hitachi Cable, Ltd. Method of manufacturing modified cross-section material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646239A1 (en) * 1989-04-24 1990-10-26 Dassault Avions METHOD AND ACOUSTIC DEVICE FOR LOCATING DEFECTS OF THE MATERIAL CONSTITUTING A PIECE AND ACOUSTIC TRANSMITTER USED IN THIS DEVICE
US5115681A (en) * 1989-04-24 1992-05-26 Avions Marcel Dassault-Breguet Aviation Acoustic method and device for localization of defects in material
US5890389A (en) * 1996-10-31 1999-04-06 Hitachi Cable, Ltd. Method of manufacturing modified cross-section material

Also Published As

Publication number Publication date
JPH0566545B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
US7634392B2 (en) Simulation of guided wave reflection signals representing defects in conduits
JPS6410778B2 (en)
CN104236490A (en) Ultrasonic wave head wave phase reversal testing method for depth of shallow fracture in surface of concrete
CA1169539A (en) Ultrasonic probe for nondestructive inspection
RU2697007C1 (en) Device for in-pipe diagnostics of pipeline technical state
US11493335B2 (en) Measurement device and measurement method
JPS6150064A (en) Diagnosis of defect in square pilar
CN116026921A (en) Intelligent grouting sleeve system with built-in annular ultrasonic sensor array
JP6735727B2 (en) Corrosion inspection method and corrosion inspection device for non-exposed part of inspection object
CN107807173A (en) Slab construction demblee form acoustic emission source locating method based on power function
JP3810661B2 (en) Defect detection method for piping
US11467057B2 (en) Magneto-optical system for guided wave inspection and monitoring
JPH0444952B2 (en)
JP3729686B2 (en) Defect detection method for piping
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP4484351B2 (en) Nondestructive inspection method and apparatus
Volker et al. 1D profiling using highly dispersive guided waves
JP3413249B2 (en) Standard specimen for non-destructive inspection of piping
JPH0431350B2 (en)
JPH03279856A (en) Ultrasonic material testing device
JPH04194745A (en) Ultrasonic inspection
JPS6135349A (en) Inspecting method of ultrasonic diagnosing device
Zhang et al. Research on Sleeve Grouting Density Detection Based on the Impact Echo Method.
Nakamoto et al. Attenuation of Ultrasonic Guided Wave on Buried Illumination Pillar
JPH0376708B2 (en)