JP3810661B2 - Defect detection method for piping - Google Patents

Defect detection method for piping Download PDF

Info

Publication number
JP3810661B2
JP3810661B2 JP2001283173A JP2001283173A JP3810661B2 JP 3810661 B2 JP3810661 B2 JP 3810661B2 JP 2001283173 A JP2001283173 A JP 2001283173A JP 2001283173 A JP2001283173 A JP 2001283173A JP 3810661 B2 JP3810661 B2 JP 3810661B2
Authority
JP
Japan
Prior art keywords
pipe
defect
ultrasonic wave
ultrasonic
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283173A
Other languages
Japanese (ja)
Other versions
JP2003090828A (en
Inventor
久志 永溝
紘一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001283173A priority Critical patent/JP3810661B2/en
Publication of JP2003090828A publication Critical patent/JP2003090828A/en
Application granted granted Critical
Publication of JP3810661B2 publication Critical patent/JP3810661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【0001】
【発明の属する技術分野】
本発明は、配管の欠陥検出方法に関し、更に詳しくは、超音波を利用して、配管の腐食等による欠陥の有無、その位置及び/又は大きさを判定する、配管の欠陥検出方法に関する。
【0002】
【従来の技術】
石油プラントや化学プラント等においては、多数の配管が屋外及び屋内で使用されており、その使用期間も長期に亘るため、各配管における腐食の有無や、その位置、大きさを判定する技術が開発されている。
【0003】
特開2001―41939号には、従来の配管の欠陥検出方法が記載されている。この方法は、配管の延在方向に直交する方向で且つ配管の表面に立てた垂線から所定の角度範囲に収まるように超音波を配管内部に向けて発射し、配管内部をその周方向に伝搬する透過超音波又はこの透過超音波が欠陥によって反射する反射超音波を検出し、透過超音波又は反射超音波の到達時間に基づいて欠陥の位置を、また、その振幅に基づいて欠陥の有無や大きさを判定するものである。
【0004】
上記従来の検出方法の様子を図9(a)に示した。同図において、超音波送信振動子11から、探触子12を介して配管20に超音波を入射し、点P1及びP2に配設した超音波受信振動子13で超音波を受信する。点P2を透過した超音波が、配管外周部に存在する欠陥21によって反射して戻るまでの時間を計測して、点P2と欠陥が存在する位置との間の角度差βを検出する。また、その振幅を計測する。ここで、配管内部を伝搬する超音波は横波であることが知られている。
【0005】
図9(b)に上記検出方法で採用する超音波の入射角度を示した。超音波の配管20への入射角度としては、配管20の外部表面で立てた鉛直線からの角度θiが45°となるように選定される。θi=45°の角度を選定すると、超音波送信振動子11の先端に幅があること、及び、配管表面で超音波が屈折することにより、配管内部に入射した直後の超音波は、配管表面に立てた垂線からの角度が70°を中心とし、54〜90°の広がりをもつ波になる(θa=54°、θb=70°、θc=90°)。配管内部での入射角が54〜90°の広がりをもつ超音波は、配管内部を全体としてほぼ一様に周方向に伝搬すると記載されている。
【0006】
【発明が解決しようとする課題】
上記従来の欠陥検出方法では、屋外配管で生ずる配管外周部での腐食による欠陥位置及びその腐食量の検出が、特別な計算を必要とすることなく可能となる。しかし、この欠陥検出方法では、配管内部を伝搬する超音波の分布が配管外周側に集中し、配管内周側における超音波の分布が十分ではないために、配管内周部に位置する内部腐食の存在の有無、その位置及び腐食量を精度よく判定できない欠点があった。
【0007】
本発明は、上記に鑑み、配管内周部に位置する腐食による配管の欠陥の存在の有無、その位置及び腐食量が精度よく検出できる、配管の欠陥検出方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の配管の欠陥検出方法は、第1の視点において、配管の延在方向と直交する方向に超音波を配管内部に向けて発射し、配管内部をその周方向に伝搬する透過超音波及び該透過超音波が欠陥によって反射する反射超音波の少なくとも一方を検出して、配管の欠陥の有無、位置及び/又は大きさを判定する、配管の欠陥検出方法において、
配管に入射する超音波の入射角、又は、超音波が配管表面で屈折した後の屈折角を、超音波内で均一にしたことを特徴とする。
【0009】
また、本発明の配管の欠陥検出方法は、第2の視点において、配管の延在方向と直交する方向に超音波を配管内部に向けて発射し、配管内部をその周方向に伝搬する透過超音波及び該透過超音波が欠陥によって反射する反射超音波の少なくとも一方を検出して、配管の欠陥の有無、位置及び/又は大きさを判定する、配管の欠陥検出方法において、
配管内部を伝搬する超音波を板波としたことを特徴とする。
【0010】
本発明の配管の欠陥検出方法では、超音波送信振動子から配管に入射する超音波の入射角又はその超音波が配管外部表面で屈折した後の屈折角を超音波内で均一にする構成により、或いは、配管内部を伝搬する超音波を板波とした構成により、配管内部における超音波の配管厚み方向の分布を均一にすることが出来る。従って、配管の外周面に近い欠陥のみならず、配管の内周面に近い配管内部の欠陥も有効に検出でき、欠陥の有無、その位置及び/又は大きさが精度よく判定できる。
【0011】
ここで、本発明で使用する用語「配管の内部」は、配管を構成する配管材の外周面と内周面とで囲まれる配管全体を意味する。
【0012】
【発明の実施の形態】
以下、図面を参照し、本発明の実施形態例に基づいて本発明を更に詳細に説明する。なお、各要素の参照符号は、理解を容易にするために全図を通して同じとした。図1は、本発明の一実施形態例に係る配管の欠陥検出方法の原理を示す配管の断面図である。超音波を発射する超音波送信振動子11は、配管20の頂部付近(点P1)に配置する。超音波送信振動子11は、探触子12を介して配管20の外表面に向けて超音波を発射し、この超音波を配管内部で周方向に伝搬させる。
【0013】
超音波を検出する超音波受信振動子13は、超音波送信振動子11の設置点P1、及び、超音波の進行方向で配管表面の適当な位置、例えば超音波の入射位置から72.5°の角度位置P2に配置する。超音波受信振動子13は、指向性が弱いものがよく、この場合、配管20の内部を正逆の双方向に伝搬(透過又は反射)する超音波を検出できるように配置する。
【0014】
超音波送信振動子11から配管20に向けて発射する超音波の角度を適切に選定することにより、配管表面で屈折した後の超音波の進行方向と、その入射位置での配管表面の垂線との成す角度(屈折角)を超音波内で均一にすることが出来る。つまり、図面上で示した角度α及びβについて、α=βとすることが出来る。
【0015】
図2は、本実施形態例で採用する超音波の入射角及び屈折角の一例を示す配管断面図の一部である。超音波は、図示のように、その配管への入射角又は配管内での屈折角が均一に保たれている。この入射角は、同図の場合、43.0°としてある。超音波の入射角を均一としたことにより、屈折角も均一になる。この場合、配管として、内周側直径が27mm、肉厚が3mmの鋼鉄管を使用すれば、屈折角は64.2°となる。このような入射角又は屈折角を持つ超音波は、その大部分が配管内周面でその接線方向に向かうため、再び配管内部に反射し、これによって配管内部を全体としてほぼ一様に周方向に伝搬する。
【0016】
前記入射角及び屈折角は夫々、各位置において配管表面に立てた垂線とその位置において入射する超音波の進行方向との成す角度、及び、前記垂線とその位置において配管表面から入射する際に屈折した後の超音波の進行方向との成す角度として定義される。超音波は、超音波送信振動子11の表面から出射する際には、超音波送信振動子11の表面に垂直な方向に出射する。従って、超音波送信振動子11から出射する超音波は、相互に平行な進行方向を有する超音波ではなく、配管20表面での位置によって超音波の進行方向が少しづつ異なる。このような超音波を得るためには、超音波送信振動子の表面を特別な形状に加工する必要がある。
【0017】
図3は、上記入射角又は屈折角を持つ超音波を得るための超音波送信振動子について、その表面形状を得るための原理を示している。つまり、超音波送信振動子の表面形状の設計にあたっては、超音波の入射を受ける配管の形状を図形乃至は座標として求め、超音波を入射する配管表面の各微少部分において夫々、配管表面に立てた垂線から所定の角度を成す直線を引く。配管の表面から所定の距離にある点から始め、各直線に垂直な線分の集合を求め、これをつないで振動子の断面形状とする。このような形状は、コンピュータを所定のプログラム上で稼働させることによって簡単に求められる。振動子は、本体の材質はコンポジット材であり、表面を例えばポリイミドで被覆する。
【0018】
図4は、配管の仕様及び外径毎の、配管内周面で反射しない最小屈折角を示している。つまり、進行方向が配管内周面でその接線となるような超音波を得るために必要な屈折角を、配管の仕様(SGP、STPGsch40,STPGsch80)及び外径(0〜500mm)の関数として示している。本図から、一般に使用される配管について、本実施形態例の方法で欠陥検出を行う際に必要な屈折角が得られる。つまり、本グラフの太線で示される範囲(20°〜80°)の屈折角を用いれば、一様に伝搬する超音波が得られる。ここで、20°以下の屈折角では、配管内周面と外周面の反射回数が多くなり、超音波が著しく減衰する。
【0019】
実験のため、従来及び本実施形態例の方法で、外径60mm、厚さ3mmの配管内部の周方向に一周した透過超音波を検出した。図5(a)及び(b)は夫々、本実施形態例の方法及び従来方法を使用して検出した透過超音波の波形を示している。透過超音波は、同図に示した“イ”及び“ロ”の波形として検出された。この波形を解析したところ、本実施形態例の方法で計測された超音波は、配管を1周するのに要する時間が80μ秒であった。この時間は、従来の方法で検出された超音波が配管を1周する時間である63μ秒に比して大きく、従って、本実施形態例の方法における超音波は、従来の方法における超音波に比して伝搬速度が遅いことが判明した。
【0020】
伝搬速度解析の結果、従来方法で入射させた超音波は横波のまま配管内部を伝搬しているが、本実施形態例の方法で入射させた超音波は、板波となって伝搬していることが判明した。これは、一般に、板波は基準波周波数の周囲に複数の山を有するスペクトルを有するが、横波は基準波周波数を中心とした1つの山状のスペクトルであることからも判断できた。つまり、本実施形態例では、超音波の伝搬モードが従来方法の横波から板波に変わっている。超音波が板波となって伝搬していることから、特に配管の周方向に大きな幅の振動子を用いなくとも、配管内部の超音波分布が一様となることが判明した。
【0021】
図6は、本実施形態例の方法及び従来方法について実験で得られた、欠陥比と反射超音波の振幅との関係を、欠陥が存在する角度位置を様々に変えて示している。また、図7は、図6の特別な場合、特に欠陥の角度位置が180°の場合を示している。これらの図において、振幅の表示にあたっては、欠陥が存在しなかった際に検出される超音波の振幅を1とし、欠陥が存在した場合に検出される超音波の振幅をそれとの比率である振幅比で示している。欠陥比としては、先に述べたように、欠陥の深さD/配管の肉厚Tの比でプロットしてある。グラフが(0、1)の点と(1、0)の点とを結んだ直線上にあれば、欠陥の大きさが振幅の大きさに理想的に反映されて検出されることになる。
【0022】
図6には、従来方法では、欠陥比が0.5以下の欠陥が存在しても、その角度位置によっては、これに起因する振幅の低下が有効に観測できない旨、従って、欠陥の大きさの判定が実際的に不可能である旨が示されている。また、本実施形態例の方法では、比較的大きな角度範囲で、欠陥の大きさが有効に判定できる旨が示されており、特に図7では、180°の角度位置に存在する欠陥については、かなりな精度で欠陥の大きさの検出が可能な旨が示されている。
【0023】
図8は、欠陥比が0.33、0.5及び0.66の各場合について、欠陥の位置毎に計測される透過超音波の振幅を、実験結果としてプロットしている。また、欠陥比が0.5の場合については、それらの点をつないで、角度位置毎の検出可能性をグラフとして示している。欠陥比が0.5に対応して0.5の振幅比が得られれば、それは理想的な検出が可能である旨を示している。本実施形態例では、各角度位置でほぼ均等に欠陥の大きさ検出が可能である旨が理解できる。一方、従来方法では、各角度位置で著しく偏っているため、欠陥の大きさ検出が困難である。特に、300°〜330°の角度位置付近では、欠陥の有無の検知さえ困難である。
【0024】
なお、本発明で使用する用語「配管」には、通常の配管に加えて、例えば円筒形状のタンク等も含まれる。これらタンクの内周面及び外周面付近の欠陥についても、本発明方法でその位置や大きさが検出可能だからである。
【0025】
また、超音波の送信振動子及び受信振動子の配置は、特に限定されない。配置の如何に拘わらず、透過波及び反射波の到達時間及び振幅を計測することによって、欠陥の位置や大きさの判定が可能である。また、上記実施形態例では、欠陥を透過する透過超音波を計測する例を示したが、欠陥で反射する超音波を計測しても、同様に欠陥の有無、位置、及び、大きさの判定が可能である。
【0026】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の配管の欠陥検出方法は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
【0027】
【発明の効果】
以上、説明したように、本発明の配管の欠陥検出方法によると、超音波が、配管内部を配管の厚さ方向にほぼ一様に伝搬するため、配管の外周部及び内周部の欠陥について、その欠陥の有無、位置及び/又は大きさを精度よく検出できる利点がある。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る配管の検出方法を示す配管の断面図。
【図2】配管表面部分における超音波の進行方向を示す配管の部分断面図。
【図3】振動子の形状を設計する際の様子を示す模式的断面図。
【図4】各配管に適用するための屈折角の範囲グラフ。
【図5】従来方法及び本発明の実施形態例方法で計測された超音波波形の一例。
【図6】欠陥と透過超音波の振幅との関係を実験で求めた結果を示すグラフ。
【図7】欠陥と透過超音波の振幅との関係を実験で求めた結果を示すグラフ。
【図8】欠陥と透過超音波の振幅との関係を実験で求めた結果を示すグラフ。
【図9】従来の配管の欠陥検出方法を示す配管の断面図。
【符号の説明】
11:超音波送信振動子
12:探触子
13:超音波受信振動子
20:配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piping defect detection method, and more particularly, to a piping defect detection method that uses ultrasonic waves to determine the presence / absence, position, and / or size of a defect due to corrosion of a pipe.
[0002]
[Prior art]
In oil and chemical plants, etc., many pipes are used outdoors and indoors, and the usage period is long. Therefore, a technology to determine the presence, location, and size of corrosion in each pipe has been developed. Has been.
[0003]
Japanese Patent Application Laid-Open No. 2001-41939 describes a conventional piping defect detection method. In this method, ultrasonic waves are emitted toward the inside of the pipe in a direction orthogonal to the extending direction of the pipe and within a predetermined angle range from a perpendicular line standing on the surface of the pipe, and propagated in the circumferential direction of the pipe. The transmitted ultrasonic wave or the reflected ultrasonic wave reflected by the defect is detected, the position of the defect is determined based on the arrival time of the transmitted ultrasonic wave or the reflected ultrasonic wave, and the presence or absence of the defect is determined based on the amplitude. The size is determined.
[0004]
The state of the above conventional detection method is shown in FIG. In the figure, an ultrasonic wave is incident on a pipe 20 from an ultrasonic transmission vibrator 11 via a probe 12, and an ultrasonic wave is received by an ultrasonic wave reception vibrator 13 disposed at points P1 and P2. The time until the ultrasonic wave transmitted through the point P2 is reflected and returned by the defect 21 existing on the outer periphery of the pipe is measured, and the angle difference β between the point P2 and the position where the defect exists is detected. Also, the amplitude is measured. Here, it is known that the ultrasonic wave propagating inside the pipe is a transverse wave.
[0005]
FIG. 9B shows the incident angle of the ultrasonic wave used in the above detection method. The incident angle of the ultrasonic wave to the pipe 20 is selected so that the angle θ i from the vertical line standing on the outer surface of the pipe 20 is 45 °. When an angle of θ i = 45 ° is selected, the ultrasonic wave immediately after entering the inside of the pipe due to the fact that the tip of the ultrasonic transmission vibrator 11 has a width and the ultrasonic wave is refracted on the pipe surface, The angle from the perpendicular standing on the surface is 70 °, and the wave has a spread of 54 to 90 ° (θ a = 54 °, θ b = 70 °, θ c = 90 °). It is described that an ultrasonic wave having an incident angle of 54 to 90 ° in the pipe propagates in the circumferential direction almost uniformly throughout the pipe.
[0006]
[Problems to be solved by the invention]
In the above-described conventional defect detection method, it is possible to detect the position of a defect due to corrosion at the outer periphery of a pipe that occurs in an outdoor pipe and the amount of corrosion without requiring a special calculation. However, in this defect detection method, the distribution of ultrasonic waves propagating inside the pipe is concentrated on the outer circumference side of the pipe, and the distribution of ultrasonic waves on the inner circumference side of the pipe is not sufficient. There is a defect that the presence or absence, the position and the amount of corrosion cannot be accurately determined.
[0007]
In view of the above, an object of the present invention is to provide a pipe defect detection method capable of accurately detecting the presence / absence, the position, and the amount of corrosion of pipe defects caused by corrosion located on the inner periphery of the pipe.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to a first aspect of the present invention, a defect detection method for a pipe emits an ultrasonic wave toward the inside of the pipe in a direction orthogonal to the extending direction of the pipe, In a pipe defect detection method, wherein at least one of transmitted ultrasonic waves propagating in the direction and reflected ultrasonic waves reflected by the defects is detected, and the presence / absence, position and / or size of the pipe defect is determined. ,
The incident angle of the ultrasonic wave incident on the pipe or the refraction angle after the ultrasonic wave is refracted on the pipe surface is made uniform in the ultrasonic wave.
[0009]
In addition, according to the second aspect of the present invention, the defect detection method for a pipe emits ultrasonic waves toward the inside of the pipe in a direction orthogonal to the extending direction of the pipe, and transmits the ultrasonic wave inside the pipe in the circumferential direction. In a pipe defect detection method, wherein at least one of a sound wave and a reflected ultrasonic wave reflected by the defect is detected to determine the presence / absence, position and / or size of the pipe defect,
The ultrasonic wave propagating inside the pipe is a plate wave.
[0010]
In the pipe defect detection method of the present invention, the configuration is made such that the incident angle of the ultrasonic wave incident on the pipe from the ultrasonic transmission vibrator or the refraction angle after the ultrasonic wave is refracted on the pipe outer surface is made uniform in the ultrasonic wave. Alternatively, the configuration in which the ultrasonic wave propagating inside the pipe is a plate wave can make the distribution of the ultrasonic wave in the pipe thickness direction uniform. Therefore, not only the defect close to the outer peripheral surface of the pipe but also the defect inside the pipe close to the inner peripheral surface of the pipe can be detected effectively, and the presence / absence, position and / or size of the defect can be accurately determined.
[0011]
Here, the term “inside of the pipe” used in the present invention means the entire pipe surrounded by the outer peripheral surface and the inner peripheral surface of the pipe material constituting the pipe.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to the drawings, the present invention will be described in more detail based on exemplary embodiments of the present invention. The reference numerals of the respective elements are the same throughout the drawings for easy understanding. FIG. 1 is a sectional view of a pipe showing the principle of a pipe defect detection method according to an embodiment of the present invention. The ultrasonic transmission transducer 11 that emits ultrasonic waves is disposed near the top of the pipe 20 (point P1). The ultrasonic transmission transducer 11 emits ultrasonic waves toward the outer surface of the pipe 20 via the probe 12 and propagates the ultrasonic waves in the circumferential direction inside the pipe.
[0013]
The ultrasonic receiving vibrator 13 for detecting the ultrasonic wave is 72.5 ° from the installation point P1 of the ultrasonic transmitting vibrator 11 and an appropriate position on the pipe surface in the traveling direction of the ultrasonic wave, for example, the ultrasonic wave incident position. It arranges in angle position P2. The ultrasonic receiving vibrator 13 preferably has a weak directivity. In this case, the ultrasonic receiving vibrator 13 is arranged so as to detect ultrasonic waves propagating (transmitted or reflected) in the forward and reverse directions inside the pipe 20.
[0014]
By appropriately selecting the angle of the ultrasonic wave emitted from the ultrasonic transmission transducer 11 toward the pipe 20, the traveling direction of the ultrasonic wave after being refracted on the pipe surface, and the perpendicular to the pipe surface at the incident position, Can be made uniform in the ultrasonic wave. That is, α = β can be set for the angles α and β shown in the drawing.
[0015]
FIG. 2 is a part of a pipe cross-sectional view showing an example of an incident angle and a refraction angle of an ultrasonic wave employed in the present embodiment. As shown in the figure, the incident angle to the pipe or the refraction angle in the pipe is kept uniform. This incident angle is 43.0 ° in the figure. By making the incident angle of the ultrasonic wave uniform, the refraction angle becomes uniform. In this case, if a steel tube having an inner peripheral diameter of 27 mm and a wall thickness of 3 mm is used as the pipe, the refraction angle is 64.2 °. Since most of the ultrasonic waves having such an incident angle or refraction angle are directed to the tangential direction on the inner peripheral surface of the pipe, they are reflected again inside the pipe, and thereby the pipe interior as a whole is almost uniformly circumferential. Propagate to.
[0016]
The angle of incidence and the angle of refraction are the angle formed between the vertical line standing on the pipe surface at each position and the traveling direction of the ultrasonic wave incident at that position, and the refractive line is refracted when incident from the pipe surface at that position. It is defined as an angle formed with the traveling direction of the ultrasonic wave after. When the ultrasonic waves are emitted from the surface of the ultrasonic transmission transducer 11, the ultrasonic waves are emitted in a direction perpendicular to the surface of the ultrasonic transmission transducer 11. Therefore, the ultrasonic waves emitted from the ultrasonic transmission transducer 11 are not ultrasonic waves having a traveling direction parallel to each other, and the traveling direction of the ultrasonic waves slightly varies depending on the position on the surface of the pipe 20. In order to obtain such ultrasonic waves, it is necessary to process the surface of the ultrasonic transmission vibrator into a special shape.
[0017]
FIG. 3 shows the principle for obtaining the surface shape of the ultrasonic transmission vibrator for obtaining the ultrasonic wave having the incident angle or the refraction angle. In other words, when designing the surface shape of the ultrasonic transmission vibrator, the shape of the pipe that receives the ultrasonic wave is obtained as a figure or coordinates, and each small portion of the pipe surface that receives the ultrasonic wave is placed on the pipe surface. A straight line forming a predetermined angle is drawn from the vertical line. Starting from a point at a predetermined distance from the surface of the pipe, a set of line segments perpendicular to each straight line is obtained and connected to obtain the cross-sectional shape of the vibrator. Such a shape can be easily obtained by operating a computer on a predetermined program. In the vibrator, the material of the main body is a composite material, and the surface is covered with, for example, polyimide.
[0018]
FIG. 4 shows the minimum refraction angle that is not reflected on the inner peripheral surface of the pipe for each specification and outer diameter of the pipe. That is, the refraction angle necessary for obtaining an ultrasonic wave whose traveling direction is tangent to the inner peripheral surface of the pipe is shown as a function of the pipe specifications (SGP, STPGsch40, STPGsch80) and the outer diameter (0 to 500 mm). ing. From this figure, it is possible to obtain a refraction angle necessary for performing defect detection for a commonly used pipe by the method of this embodiment. That is, using a refraction angle in the range (20 ° to 80 °) indicated by the thick line in this graph, an ultrasonic wave that propagates uniformly can be obtained. Here, at a refraction angle of 20 ° or less, the number of reflections on the inner and outer peripheral surfaces of the pipe increases, and the ultrasonic waves are significantly attenuated.
[0019]
For the experiment, transmitted ultrasonic waves that made a round in the circumferential direction inside the pipe having an outer diameter of 60 mm and a thickness of 3 mm were detected by the conventional method and the method of this embodiment. FIGS. 5A and 5B show the waveforms of transmitted ultrasonic waves detected using the method of the present embodiment example and the conventional method, respectively. The transmitted ultrasonic waves were detected as “a” and “b” waveforms shown in FIG. When this waveform was analyzed, it was found that the ultrasonic wave measured by the method of the present embodiment took 80 μsec to make one round of the piping. This time is larger than 63 μsec, which is the time for the ultrasonic wave detected by the conventional method to make one round of the pipe. Therefore, the ultrasonic wave in the method of the present embodiment is changed to the ultrasonic wave in the conventional method. In comparison, the propagation speed was found to be slow.
[0020]
As a result of the propagation velocity analysis, the ultrasonic wave incident by the conventional method propagates inside the pipe as a transverse wave, but the ultrasonic wave incident by the method of the present embodiment propagates as a plate wave. It has been found. This can be judged from the fact that the plate wave generally has a spectrum having a plurality of peaks around the reference wave frequency, but the transverse wave is a single peak spectrum centered on the reference wave frequency. That is, in this embodiment, the ultrasonic wave propagation mode is changed from the transverse wave of the conventional method to the plate wave. Since ultrasonic waves propagate as plate waves, it has been found that the ultrasonic distribution inside the pipe is uniform without using a vibrator having a large width especially in the circumferential direction of the pipe.
[0021]
FIG. 6 shows the relationship between the defect ratio and the amplitude of the reflected ultrasonic wave obtained by experiments on the method of the present embodiment and the conventional method with various angular positions where defects exist. FIG. 7 shows the special case of FIG. 6, particularly when the angular position of the defect is 180 °. In these figures, when displaying the amplitude, the amplitude of the ultrasonic wave detected when there is no defect is 1, and the amplitude of the ultrasonic wave detected when there is a defect is the ratio of the amplitude. It is shown as a ratio. As described above, the defect ratio is plotted by the ratio of the depth D of the defect / the thickness T of the pipe. If the graph is on a straight line connecting the point (0, 1) and the point (1, 0), the size of the defect is ideally reflected in the amplitude and detected.
[0022]
FIG. 6 shows that even if a defect with a defect ratio of 0.5 or less is present in the conventional method, depending on the angular position, a decrease in amplitude due to this cannot be effectively observed. It is shown that this determination is actually impossible. Further, in the method of the present embodiment example, it is shown that the size of the defect can be effectively determined in a relatively large angle range, and in particular, in FIG. 7, for the defect existing at the angular position of 180 °, It is shown that the size of the defect can be detected with considerable accuracy.
[0023]
FIG. 8 plots, as an experimental result, the amplitude of transmitted ultrasonic waves measured for each defect position for each of the defect ratios of 0.33, 0.5, and 0.66. When the defect ratio is 0.5, these points are connected to each other, and the detectability for each angular position is shown as a graph. If an amplitude ratio of 0.5 corresponding to a defect ratio of 0.5 is obtained, it indicates that ideal detection is possible. In this embodiment, it can be understood that the size of the defect can be detected almost uniformly at each angular position. On the other hand, in the conventional method, it is difficult to detect the size of the defect because it is significantly biased at each angular position. In particular, in the vicinity of an angular position of 300 ° to 330 °, it is difficult even to detect the presence or absence of a defect.
[0024]
The term “piping” used in the present invention includes, for example, a cylindrical tank in addition to normal piping. This is because the position and size of the defects near the inner and outer peripheral surfaces of these tanks can be detected by the method of the present invention.
[0025]
The arrangement of the ultrasonic transmission transducer and the reception transducer is not particularly limited. Regardless of the arrangement, it is possible to determine the position and size of the defect by measuring the arrival time and amplitude of the transmitted wave and the reflected wave. Moreover, although the example which measures the transmitted ultrasonic wave which permeate | transmits a defect was shown in the said embodiment example, even if it measures the ultrasonic wave reflected by a defect, determination of the presence or absence of a defect, a position, and a magnitude | size similarly Is possible.
[0026]
As mentioned above, although this invention was demonstrated based on the suitable embodiment example, the defect detection method of the piping of this invention is not limited only to the structure of the said embodiment example, From the structure of the said embodiment example. Various modifications and changes are also included in the scope of the present invention.
[0027]
【The invention's effect】
As described above, according to the defect detection method for pipes of the present invention, since ultrasonic waves propagate substantially uniformly in the pipe thickness direction in the pipe thickness direction, there are defects in the outer peripheral part and inner peripheral part of the pipe. There is an advantage that the presence / absence, position and / or size of the defect can be accurately detected.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a pipe showing a pipe detection method according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view of a pipe showing a traveling direction of ultrasonic waves on a pipe surface part.
FIG. 3 is a schematic cross-sectional view showing a state when designing the shape of a vibrator.
FIG. 4 is a refraction angle range graph for application to each pipe.
FIG. 5 shows an example of an ultrasonic waveform measured by a conventional method and an embodiment method of the present invention.
FIG. 6 is a graph showing the result of an experiment for determining the relationship between a defect and the amplitude of transmitted ultrasonic waves.
FIG. 7 is a graph showing the result of an experiment for determining the relationship between a defect and the amplitude of transmitted ultrasonic waves.
FIG. 8 is a graph showing the result of an experiment for determining the relationship between a defect and the amplitude of transmitted ultrasonic waves.
FIG. 9 is a cross-sectional view of a pipe showing a conventional pipe defect detection method;
[Explanation of symbols]
11: Ultrasonic transmitting vibrator 12: Probe 13: Ultrasonic receiving vibrator 20: Piping

Claims (3)

超音波振動子から配管の延在方向と直交する方向に超音波を配管内部に向けて発射し、配管内部をその周方向に伝搬する透過超音波及び該透過超音波が欠陥によって反射する反射超音波の少なくとも一方を検出して、配管の欠陥の有無、位置及び/又は大きさを判定する、配管の欠陥検出方法において、
前記超音波は、配管の周方向に分布して配管に入射する際に、配管表面に立てた垂線に対する入射角が一定であることを特徴とする配管の欠陥検出方法。
Ultrasonic waves are emitted from the ultrasonic transducer in the direction perpendicular to the direction in which the pipe extends, and the transmitted ultrasonic wave propagating through the pipe in the circumferential direction and the reflected ultrasonic wave in which the transmitted ultrasonic wave is reflected by a defect. In a pipe defect detection method for detecting the presence or absence, position and / or size of a pipe defect by detecting at least one of sound waves,
A method for detecting a defect in a pipe, wherein the ultrasonic wave is distributed in a circumferential direction of the pipe and incident on the pipe at a constant incident angle with respect to a vertical line standing on the pipe surface .
超音波の配管表面に立てた垂線に対する屈折角が20°〜80°の範囲内にある、請求項1に記載の配管の欠陥検出方法。The piping defect detection method according to claim 1, wherein a refraction angle with respect to a vertical line standing on an ultrasonic pipe surface is in a range of 20 ° to 80 °. 配管内部を伝搬する超音波が板波である、請求項1又は2に記載の配管の欠陥検出方法。The pipe defect detection method according to claim 1 or 2, wherein the ultrasonic wave propagating through the pipe is a plate wave.
JP2001283173A 2001-09-18 2001-09-18 Defect detection method for piping Expired - Fee Related JP3810661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283173A JP3810661B2 (en) 2001-09-18 2001-09-18 Defect detection method for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283173A JP3810661B2 (en) 2001-09-18 2001-09-18 Defect detection method for piping

Publications (2)

Publication Number Publication Date
JP2003090828A JP2003090828A (en) 2003-03-28
JP3810661B2 true JP3810661B2 (en) 2006-08-16

Family

ID=19106709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283173A Expired - Fee Related JP3810661B2 (en) 2001-09-18 2001-09-18 Defect detection method for piping

Country Status (1)

Country Link
JP (1) JP3810661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151232A (en) * 2014-02-14 2015-08-24 三菱電機ビルテクノサービス株式会社 hydraulic elevator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686378B2 (en) * 2006-02-27 2011-05-25 株式会社東芝 Pipe inspection device
JPWO2007113907A1 (en) * 2006-04-05 2009-08-13 住友金属工業株式会社 Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2016042043A (en) * 2014-08-15 2016-03-31 出光興産株式会社 Outer shell corrosion inspection apparatus and outer shell corrosion inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151232A (en) * 2014-02-14 2015-08-24 三菱電機ビルテクノサービス株式会社 hydraulic elevator

Also Published As

Publication number Publication date
JP2003090828A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
SU1514252A3 (en) Method of ultrasonic inspection of thick-wall steel pipes
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
US9810666B2 (en) Device and method for nondestructive inspection of tubular products, especially on site
US7950284B2 (en) Inspection device and method for inspection
JP2005502046A (en) Pipeline inspection device
KR101882838B1 (en) Peeling inspection method of laminate and peeling inspection device
RU2010143431A (en) SYSTEM FOR ULTRASONIC DETECT DETECTION IN THE PIPE WALL
CN108871476A (en) Ultrasonic flowmeter
EP3710795B1 (en) Device and method for detecting deposition layers in a conduit conducting a liquid or a soft medium and/or for level detection
EP1271097A2 (en) Method for inspecting clad pipe
JP5663319B2 (en) Guide wave inspection method and apparatus
JP3810661B2 (en) Defect detection method for piping
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
RU2580907C1 (en) Ultrasonic waveguide level meter for liquid
JP2018205185A5 (en)
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
CN108072339A (en) A kind of technology that can eliminate self-correcting ultrasonic ripple thickness measuring system interference noise
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
JP5810873B2 (en) Ultrasonic flaw detection method
JP3729686B2 (en) Defect detection method for piping
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
US11054399B2 (en) Inspection method
JP3715177B2 (en) Evaluation method of circular pipe
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees