JP3715177B2 - Evaluation method of circular pipe - Google Patents

Evaluation method of circular pipe Download PDF

Info

Publication number
JP3715177B2
JP3715177B2 JP2000141534A JP2000141534A JP3715177B2 JP 3715177 B2 JP3715177 B2 JP 3715177B2 JP 2000141534 A JP2000141534 A JP 2000141534A JP 2000141534 A JP2000141534 A JP 2000141534A JP 3715177 B2 JP3715177 B2 JP 3715177B2
Authority
JP
Japan
Prior art keywords
circular tube
circular
tube
wave
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000141534A
Other languages
Japanese (ja)
Other versions
JP2001324483A (en
Inventor
絋一郎 川嶋
久志 永溝
淳二 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000141534A priority Critical patent/JP3715177B2/en
Publication of JP2001324483A publication Critical patent/JP2001324483A/en
Application granted granted Critical
Publication of JP3715177B2 publication Critical patent/JP3715177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円管の評価方法に関し、特に、超音波を用いて円管及び円筒容器(本明細書では、これらを総称して単に円管と呼ぶ)の肉厚、欠陥の有無又は大きさ、円管の内外表面のライニングの欠陥の有無又は大きさ、さらには、円管内部の液体あるいは高圧気体(以下流体と呼ぶ)の種類及び/又は状態を検出するための方法に関する。
【0002】
【従来の技術】
一般に用いられているパルスエコー型超音波厚さ計は、これを被測定位置に接触させて用いるため、円管の円周方向に沿った肉厚分布や平均肉厚を測定するためには、極めて多数の点での計測を必要とする。また、欠陥から離れた位置ではその欠陥を検出することができないという欠点がある。
【0003】
上記パルスエコー型超音波厚さ計とは別に、薄肉円管の壁に沿って伝搬する板波を用いて円管の厚みを測定する方式も知られている。しかし、この方式では、多数のモードの波を識別するために特殊な解析を必要とする。
【0004】
上記従来技術における問題点のため、簡易に円管の厚みを計測する方法が従来から望まれている。また、円管に形成されたライニングの健全性の評価や、円管の内外表面における欠陥の有無や大きさ、さらには、円管内部の流体の種類や状態についても、これらを簡易に判定し又は評価する方法が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、流体を内部に含む円管の平均肉厚、円管の内表面の欠陥の有無や大きさ、円管の内表面のライニングの欠陥、さらには、円管中の流体の種類や状態を検査するために好適な、円管の評価方法を提供する。
【0006】
【課題を解決するための手段】
本発明に係る円管の評価方法は、その好適な実施の態様において、超音波センサによって円管内に超音波を入射し、円管の周方向にそって超音波を伝搬させつつ円管外周の特定位置で超音波を観測し、円管の内外表面で多重反射しながら円管壁内を伝播する第1の波、円管壁内を伝搬し次いで第1の所定位置で円管内部の流体中に入射した後に再び円管壁内に入射する第2の波、及び、円管壁内を伝搬し次いで第2の所定位置で円管内部の流体中に入射し、更に、前記第1の所定位置で円管の内面で反射した後に再び円管壁内に入射する第3の波について、夫々、デジタルメモリにそれら波形を複数回同期加算した後に記憶し、それら波形データをデジタル処理して各波の伝搬時間及び振幅を算出する。算出された伝播時間及び振幅に基づいて、各波の伝搬経路を解析し、円管の平均肉厚、円管内外面に存在する欠陥、ライニングされた円管のライニングの欠陥、並びに、円管内部の液体の種類及び/又は状態の何れか1つ以上を求める。
【0007】
流体を内部に含む円管の円周方向に入射された横波は、円管の内外表面で反射を繰り返しながら周方向に伝搬する。円管内部に流体又は固体が隙間なく接しているときには、円管内面で反射する波のエネルギーの一部が、円管内面に接する流体又は固体に伝わる。その結果、円管の壁内のみを伝搬する波、及び、円管壁内を伝搬し次いで円管内面に接する流体又は固体中を通過し更に円管壁内に入射し伝搬する波が、超音波センサーによって受信される。後者には相互に異なる経路を通過する複数の波が含まれ、それらの伝搬時間は、相互に且つ円管壁内のみを伝搬する波とは異なるため、これらを観測し解析することにより、円管及び/又は円管内部の流体の評価が可能となる。
【0008】
円管の内面及び/又は外面(内外面)に欠陥が存在すると、波は乱反射されるので、受信振幅が低下する。また、円管の内面にライニングが施されている場合には、超音波は、一般にライニングと円管内面の間の不完全な接合部分では透過しない。受信波形の各波の到着時間及び振幅を解析することにより、各波の伝搬経路を定めることができる。ここで、円管や、ライニング材料、内部流体の音響特性が既知であれば、伝搬時間差から円管の肉厚、ライニングの厚さを求めることができ、また、振幅から欠陥の有無を、さらには、欠陥からの散乱波の伝搬時間から欠陥位置が求められる。
【0009】
【発明の実施の形態】
以下、図面を参照し本発明の実施形態例に基づいて本発明を更に詳細に説明する。図1は、本発明の一実施形態例に係わる円管の健全性評価装置による円管の評価方法の原理を示す、円管の模式的横断面図である。
【0010】
健全性評価装置は、円管10の外表面に接して配置された一対の超音波探触子21、22から成る超音波センサ11、超音波センサ11の一方の探触子21に超音波発生のためのパルスを送信し、且つ、超音波センサ11の他方の探触子22で受信した超音波の電気信号を受信するパルス送受信機12、パルス送受信機12で受信した信号を収録するデジタル収録装置13、及び、収録された信号を解析して円管の評価を行うデジタル波形処理装置14から構成される。円管10の内部には、高圧ガス又は各種液体が収容される。
【0011】
本実施形態例の健全性評価装置では、円管10外周の任意の位置(図面上ではその頂部)より、超音波センサ11の一方の探触子21を利用して円周方向に伝搬する横波を入射し、超音波受信センサー11の他方の探触子22を用いて、伝搬してきた波を検出する。パルス受信機12は、この信号を送信した超音波と同期させて受信し、デジタル波形収録装置13に収録する。パーソナルコンピュータとして構成されたデジタル波形処理装置14は、収録された波形から、超音波の伝搬時間及び振幅を定量的に解析し算出する。
【0012】
図2は、超音波の送信位置と同じ位置で受信した超音波の収録波に、各伝搬経路に対応する波形が含まれる旨を示している。同図(a)の波形は円管の内部が空気の場合に、同図(b)は円管の内部が水の場合に夫々得られたものである。図2(a)及び(b)の双方において、最左端の波W1は送信波を、その右側のW2は隣接する探触子に直接に達する波を、波W3は円管の壁内を1周して伝搬する波を夫々示している。同図(b)では、W3に隣接して、これとは経路が異なる波W4、W5を含む波束が検出されており、水等の液体を透過する超音波が有効に検出できる旨が理解できる。
【0013】
超音波の代表的な伝播経路としては、3つの経路がある。つまり、図3に示すように、点Pを超音波の入射点として、円管壁内のみを通過する波W3がたどる第1の経路、弧PBを経由して円管壁内を通過し、次いで、弦BCを経由して円管内の流体を通過し再び点Cで円管壁内に入射する波W4がたどる第2の経路、及び、弧PAを経由して円管壁内を通過し、次いで、弦AB及び弦BCを経由して円管内の流体を通過し点Cで再び円管壁内に入射する波W5がたどる第3の経路である。
【0014】
円管壁内の横波音速をVT、流体中の縦波音速をVLとすると、上記各経路の伝搬時間は次式で与えられる。
第1の経路を伝搬する波W3の伝播時間t0は、
0=C・π・(d−t)/VT (1)
第2の経路を伝播する波W4の伝播時間t1は、
1=L/VL+t0・(2π−∠COB)/2π (2)
第3の経路を伝搬する波W5の伝播時間t2は、
2=2L/VL+t0・(2π−∠COA)/2π (3)
である。
【0015】
上式(1)〜(3)で、Cは円管の外形と肉厚に依存する補正係数、dは円管の外径、tはその肉厚、Lは弦AB及びBCの長さである。弦AB及び弦BCの中心角度(∠AOB及び∠COB)は、送受信超音波センサーの角度、円管の内径、スネルの法則(円管の横波音速、流体の縦波音速)により幾何学的に定まる。
【0016】
円管内部の横波音速VT、及び、円管外径dが既知のとき、波W3の伝播時間t0を実測することにより、式(1)から円管の肉厚tが求められる。
【0017】
円管内部に流体が存在する場合或いはその密度がより大きい場合には、流体中を通過する波の成分が増加するので、内部に流体が存在するか否かの判定や内部流体の状態の検出も可能である。円管の横波音速VT、外径d及び厚さtが既知であれば、測定した各波の到着時間t0、t1、t2から、繰り返し計算により流体中の縦波音速を求めることができる。これによって流体の種類及び密度を推定できる。
【0018】
上記各波の振幅は、円管の内外表面に欠陥が無いときに最大である。円管壁内を進行する超音波横波では、円管の内外表面で円周方向位置に欠陥が存在すると、波が乱反射を受け、図3に示す経路以外にも波が伝搬する。このため、図3に示す経路に対応する波の受信振幅が減少する。したがって各波の振幅を相互に比較することにより、特定位置における欠陥の有無及び大きさを推定できる。入射側の超音波センサーの位置を円周方向に順次に変更(走査)することにより、図3に示した円管の内外表面での反射位置が変わるので、これを解析することで任意の位置に存在する欠陥が検出できる。円管の内面又は外面にライニングが存在する場合にも、同様な考え方により、ライニングの不完全部を検出できる。
【0019】
例えば、円管の欠陥として減肉があると、式(2)で得られたt1と実測された波W4の伝播時間とが異なる。また、欠陥によって内表面の形状が変化し乱反射が生じると、観測される振幅が変化する。更に、円管の外表面の欠陥は、式(1)の伝播時間t0の実測値で判断できる。この場合、式(2)の伝播時間t1も変化する。
【0020】
弦AB及び弦BCの長さLが既知であり、且つ、肉厚が健全な場合には、計算で得られた伝播時間t1及びt2とそれらの実測値との差から、流体の種類が判定できる。この場合、流体の密度が大であれば、点Bが点Aから遠ざかる方向にずれ、伝播時間が短くなる。
【0021】
【実施例】
鋼製の円管表面における鋼側の屈折角が70度であり、送受信用超音波探触子が同じ位置に配設され、周波数が5MHzの場合について計算を行った。外径が60mm、厚さが3mmで、横波音速が3250m/sである鋼製の円管では、内側に流体が存在しない場合には、円管の壁内を一周した波だけが有効に観測される。超音波の到着時間(伝播時間)は計算では63μsである。この円管内部に水が満たされている場合には、この波以外に等間隔の時間差で到達する2つの波が観測される。到着時間差は、約12μsである。
【0022】
図4は、外径が60mm、厚さが3mmで、横波音速が3250m/sの鋼製円管における伝播経路を計算によって求めた結果を示している。ここで、第3の経路における、鋼と水の境界面での鋼から水への入射点A、反射点B、及び、鋼から水への入射点Cは夫々、超音波の入射点Pを0度位置として、反時計回りに約90度、218度、346度の位置になる。反射点Bは、第2の経路における、鋼から水への入射点でもある。
【0023】
実際には、円管壁内を伝搬する超音波は、既に超音波探触子からの入射地点において、円周上に立てた垂線から約60度〜90度の拡がりをもつため、図5に示すように、超音波は帯状の波になる。なお、水の縦波音速は、1500m/sであるので、スネルの法則より、鋼側屈折角が70度の場合には、水側の屈折角は約26度になる。
【0024】
上記構造の円管の内表面に厚さ2mmの塩化ビニールシートを貼り付けたものを各種用意した。超音波は、この厚みの塩化ビニルシートを透過できない。塩化ビニルシートを、円管の内表面全てに貼付したもの、全く貼付しなかったもの、及び、内表面を円周方向に12等分し、その分割した各部分の内の何れかの部分に開放窓を開けた鋼製円管を各種製作し、鋼側から水側へ、或いは、水側から鋼側への波の伝播経路を遮断/開放することにより、上記鋼製の円管における超音波の伝播経路を確認することとした。
【0025】
図6は、ビニルシート15なしのもの(同図(a))、及び、全面に貼付したもの(同図(b))からの受信波を比較して示す。内周全面に塩化ビニル15を貼付した円管では、同図(b)に示すように、円管壁内を伝搬する波のみが観測され、塩化ビニルを貼付しなかった円管では、同図(a)に示すように、3種類の波が観測された。
【0026】
同様に、角度210°〜240°及び角度330°〜360°に塩化ビニル15が貼付されなく、従って、経路BC間が窓16で開放されている円管(図7(a))、上記に加えて角度90゜〜120°に塩化ビル15が貼付されなく、従って、経路AB及びBC間が窓16で開放されている円管(同図(b))、及び、(b)の円管の開放窓16の何れか1つを少しずらした3種類の円管(同図(c)〜(e))を用意して、夫々の円管内を伝搬する超音波を観測した。
【0027】
図7(a)では、第1及び第2の経路の波W3、W4が観測され、同図(b)では、第1〜第3の経路の波W3、W4、W5が全て観測された。同図(c)では、鋼から水への入射点Aの遮断によって第1及び第2の波W3、W4のみが観測され、同図(d)では、反射点Bの遮断によって第1の経路の波W3のみが観測され、同図(e)では、水から鋼への入射点Cの遮断によって同様に第1の経路の波W3のみが観測された。これら観測結果から、前記計算により得られた波の伝播経路は正しいものと判断できる。
【0028】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の円管の評価方法は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
【0029】
【発明の効果】
以上説明したように、本発明に係る円管の評価方法によると、円管に入射した超音波の伝播時間及び/又は振幅を計測するという極めて簡易な方法によって、円管及び/又は円管内部の流体の評価が可能となる効果がある。
【図面の簡単な説明】
【図1】本発明の評価方法を実施する健全性評価装置の模式的ブロック図。
【図2】図1の評価装置で観測される波形を示すグラフ。
【図3】円管内部を通過する波の伝播経路を示す円管の横断面図。
【図4】計算上の波の伝播経路を示す円管の横断面図。
【図5】計算上の波束の伝播経路を示す円管の横断面図。
【図6】(a)及び(b)は夫々、実施例で計測した円管の横断面図及び観測された波形を示すグラフ。
【図7】(a)〜(e)は夫々、実施例で計測した各種円管の横断面図及び観測された波形を示すグラフ。
【符号の説明】
10:円管
11:超音波センサ
12:パルス送受信機
13:デジタル波形収録装置
14:デジタル波形処理装置
15:ライニングシート
16:開放窓
21、22:超音波探触子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating a circular tube, and in particular, the thickness, presence / absence or size of a circular tube and a cylindrical container (in the present specification, these are collectively referred to simply as a circular tube) using ultrasonic waves. The present invention also relates to a method for detecting the presence or absence or size of a lining defect on the inner and outer surfaces of a circular tube, and the type and / or state of a liquid or high-pressure gas (hereinafter referred to as fluid) inside the circular tube.
[0002]
[Prior art]
In order to measure the wall thickness distribution and the average wall thickness along the circumferential direction of the circular tube, since the pulse echo type ultrasonic thickness meter that is generally used is used in contact with the position to be measured, It requires measurement at a very large number of points. Further, there is a disadvantage that the defect cannot be detected at a position away from the defect.
[0003]
In addition to the above-mentioned pulse echo type ultrasonic thickness gauge, a method of measuring the thickness of a circular tube using a plate wave propagating along the wall of a thin circular tube is also known. However, this method requires special analysis to identify the waves of multiple modes.
[0004]
Due to the problems in the above prior art, a method for easily measuring the thickness of a circular tube has been desired. In addition, the soundness of the lining formed in the circular pipe, the presence or absence and size of defects on the inner and outer surfaces of the circular pipe, and the type and state of the fluid inside the circular pipe can be easily determined. Or a method of evaluation is desired.
[0005]
[Problems to be solved by the invention]
The present invention relates to the average thickness of a circular tube containing fluid, the presence or absence and size of defects on the inner surface of the circular tube, defects in the lining of the inner surface of the circular tube, and the type of fluid in the circular tube, Provided is a method for evaluating a circular tube, which is suitable for inspecting a state.
[0006]
[Means for Solving the Problems]
In a preferred embodiment of the method for evaluating a circular tube according to the present invention, an ultrasonic wave is incident on the circular tube by an ultrasonic sensor, and the ultrasonic wave is propagated along the circumferential direction of the circular tube. Ultrasound is observed at a specific position, and the first wave propagating in the tube wall while being reflected multiple times on the inner and outer surfaces of the tube, propagating in the tube wall, and then fluid in the tube at the first predetermined position A second wave that enters the inside of the tube wall again after entering the inside, and propagates through the inside of the tube wall and then enters the fluid inside the tube at a second predetermined position. The third wave that is reflected by the inner surface of the tube at a predetermined position and then enters the tube wall again is stored in the digital memory after the waveform is synchronously added multiple times, and the waveform data is digitally processed. Calculate the propagation time and amplitude of each wave. Based on the calculated propagation time and amplitude, the propagation path of each wave is analyzed, the average thickness of the tube, the defects existing on the inner and outer surfaces of the tube, the lining defects of the lined tube, and the inside of the tube Any one or more of the types and / or states of the liquid is determined.
[0007]
The transverse wave incident in the circumferential direction of the circular tube containing the fluid propagates in the circumferential direction while repeatedly reflecting on the inner and outer surfaces of the circular tube. When the fluid or solid is in contact with the inside of the circular tube without a gap, part of the energy of the wave reflected on the inner surface of the circular tube is transmitted to the fluid or solid that is in contact with the inner surface of the circular tube. As a result, a wave propagating only in the wall of the circular tube and a wave propagating in the circular tube wall and then passing through the fluid or solid in contact with the inner surface of the circular tube and incident on the circular tube wall are propagated. Received by sonic sensor. The latter includes a plurality of waves that pass through different paths, and their propagation time is different from the waves that propagate to each other and only within the tube wall. It is possible to evaluate the fluid inside the tube and / or the circular tube.
[0008]
If there is a defect on the inner surface and / or the outer surface (inner / outer surface) of the circular tube, the wave is irregularly reflected, so that the reception amplitude decreases. When the inner surface of the circular pipe is lined, ultrasonic waves generally do not pass through an incomplete joint between the lining and the inner surface of the circular pipe. By analyzing the arrival time and amplitude of each wave of the received waveform, the propagation path of each wave can be determined. Here, if the acoustic characteristics of the circular tube, the lining material, and the internal fluid are known, the thickness of the circular tube and the thickness of the lining can be obtained from the difference in propagation time. The defect position is obtained from the propagation time of the scattered wave from the defect.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail based on embodiments of the present invention with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a circular pipe showing the principle of a circular pipe evaluation method by a circular pipe soundness evaluation apparatus according to an embodiment of the present invention.
[0010]
The soundness evaluation apparatus generates ultrasonic waves in the ultrasonic sensor 11 including a pair of ultrasonic probes 21 and 22 disposed in contact with the outer surface of the circular tube 10 and in one probe 21 of the ultrasonic sensor 11. For transmitting and receiving the ultrasonic electrical signal received by the other probe 22 of the ultrasonic sensor 11, and digital recording for recording the signal received by the pulse transceiver 12 It comprises a device 13 and a digital waveform processing device 14 for analyzing the recorded signal and evaluating the circular tube. Inside the circular tube 10, high-pressure gas or various liquids are accommodated.
[0011]
In the soundness evaluation apparatus of the present embodiment, a transverse wave that propagates in the circumferential direction from one position on the outer periphery of the circular tube 10 (the top in the drawing) using one probe 21 of the ultrasonic sensor 11. And the propagating wave is detected using the other probe 22 of the ultrasonic receiving sensor 11. The pulse receiver 12 receives this signal in synchronization with the transmitted ultrasonic wave and records it in the digital waveform recording device 13. The digital waveform processing device 14 configured as a personal computer quantitatively analyzes and calculates the propagation time and amplitude of the ultrasonic wave from the recorded waveform.
[0012]
FIG. 2 shows that a waveform corresponding to each propagation path is included in the recorded ultrasonic wave received at the same position as the transmission position of the ultrasonic wave. The waveform in FIG. 6A is obtained when the inside of the circular tube is air, and FIG. 5B is obtained when the inside of the circular tube is water. 2 (a) and 2 (b), the leftmost wave W1 is a transmitted wave, the right W2 is a wave that directly reaches an adjacent probe, and the wave W3 is 1 in the wall of the circular tube. Each wave traveling around is shown. In FIG. 5B, it can be understood that a wave packet including waves W4 and W5 having different paths is detected adjacent to W3, and ultrasonic waves that pass through a liquid such as water can be detected effectively. .
[0013]
There are three typical propagation paths of ultrasonic waves. That is, as shown in FIG. 3, with the point P as the incident point of the ultrasonic wave, the wave W3 that passes only within the circular tube wall passes through the circular tube wall via the arc PB, Next, the fluid passes through the fluid in the circular pipe through the chord BC and again passes through the circular pipe wall through the second path along which the wave W4 that enters the circular pipe wall at the point C and the arc PA. Then, the third path follows the wave W5 that passes through the fluid in the circular tube via the strings AB and BC and enters the circular tube wall again at the point C.
[0014]
When the transverse wave velocity in the circular tube wall is V T and the longitudinal wave velocity in the fluid is V L , the propagation time of each path is given by the following equation.
The propagation time t 0 of the wave W3 propagating through the first path is
t 0 = C · π · (dt) / V T (1)
The propagation time t 1 of the wave W4 propagating through the second path is
t 1 = L / V L + t 0 · (2π−∠COB) / 2π (2)
Propagation time t 2 of the wave W5 propagating the third path,
t 2 = 2L / V L + t 0 · (2π−∠COA) / 2π (3)
It is.
[0015]
In the above formulas (1) to (3), C is a correction coefficient depending on the outer shape and thickness of the circular tube, d is the outer diameter of the circular tube, t is its thickness, and L is the length of the strings AB and BC. is there. The central angles of the strings AB and BC (∠AOB and ∠COB) are geometrically determined by the angle of the transmitting / receiving ultrasonic sensor, the inner diameter of the circular tube, and Snell's law (sound wave velocity of the tube, longitudinal velocity of the fluid). Determined.
[0016]
When the transverse sound velocity V T inside the circular tube and the outer diameter d of the circular tube are known, the wall thickness t of the circular tube is obtained from the equation (1) by actually measuring the propagation time t 0 of the wave W3.
[0017]
When fluid is present inside the tube or when its density is higher, the component of the wave that passes through the fluid increases, so it is possible to determine whether there is fluid inside and to detect the state of the fluid inside. Is also possible. If the transverse wave sound velocity V T , outer diameter d and thickness t of the circular tube are known, the longitudinal wave sound velocity in the fluid is obtained by repeated calculation from the measured arrival times t 0 , t 1 and t 2 of each wave. Can do. As a result, the type and density of the fluid can be estimated.
[0018]
The amplitude of each wave is maximum when there are no defects on the inner and outer surfaces of the circular tube. In the ultrasonic transverse wave traveling inside the circular tube wall, if there is a defect in the circumferential position on the inner and outer surfaces of the circular tube, the wave undergoes irregular reflection, and the wave propagates other than the path shown in FIG. For this reason, the reception amplitude of the wave corresponding to the path shown in FIG. 3 decreases. Therefore, by comparing the amplitudes of the waves with each other, the presence / absence and size of a defect at a specific position can be estimated. By sequentially changing (scanning) the position of the ultrasonic sensor on the incident side in the circumferential direction, the reflection position on the inner and outer surfaces of the circular tube shown in FIG. 3 changes. Can be detected. Even when the lining is present on the inner surface or the outer surface of the circular tube, an incomplete portion of the lining can be detected by the same concept.
[0019]
For example, if there is a thinning as a defect in a circular tube, t 1 obtained by Equation (2) is different from the actually measured propagation time of the wave W4. Further, when the shape of the inner surface changes due to a defect and irregular reflection occurs, the observed amplitude changes. Further, the defect on the outer surface of the circular pipe can be determined by the actually measured value of the propagation time t 0 in the equation (1). In this case, the propagation time t 1 in equation (2) also changes.
[0020]
When the length L of the strings AB and BC is known and the wall thickness is sound, the type of fluid is determined from the difference between the propagation times t 1 and t 2 obtained by the calculation and the actually measured values. Can be determined. In this case, if the density of the fluid is large, the point B is shifted away from the point A, and the propagation time is shortened.
[0021]
【Example】
The calculation was performed for the case where the steel-side refraction angle on the surface of the steel circular tube was 70 degrees, the transmission / reception ultrasonic probe was disposed at the same position, and the frequency was 5 MHz. In a steel tube with an outer diameter of 60 mm, a thickness of 3 mm, and a shear wave velocity of 3250 m / s, when there is no fluid inside, only the waves that have made a round around the wall of the tube are effectively observed. Is done. The arrival time (propagation time) of the ultrasonic wave is 63 μs in the calculation. When this circular tube is filled with water, two waves that arrive at an equal time difference are observed in addition to this wave. The arrival time difference is about 12 μs.
[0022]
FIG. 4 shows the result of calculating the propagation path in a steel circular pipe having an outer diameter of 60 mm, a thickness of 3 mm, and a transverse wave speed of 3250 m / s. Here, the incident point A from the steel to water, the reflection point B, and the incident point C from the steel to water at the boundary surface of the steel and water in the third path are respectively the ultrasonic incident point P. The 0-degree position is about 90 degrees, 218 degrees, and 346 degrees counterclockwise. The reflection point B is also an incident point from steel to water in the second path.
[0023]
Actually, since the ultrasonic wave propagating in the tube wall has an extent of about 60 to 90 degrees from the perpendicular line standing on the circumference at the incident point from the ultrasonic probe, FIG. As shown, the ultrasonic wave becomes a band-like wave. Since the longitudinal acoustic velocity of water is 1500 m / s, according to Snell's law, when the steel-side refraction angle is 70 degrees, the water-side refraction angle is about 26 degrees.
[0024]
Various materials were prepared by attaching a vinyl chloride sheet having a thickness of 2 mm to the inner surface of the circular tube having the above structure. Ultrasonic waves cannot penetrate this thickness of vinyl chloride sheet. The vinyl chloride sheet was affixed to the entire inner surface of the circular tube, the item was not affixed at all, and the inner surface was divided into 12 equal parts in the circumferential direction. Various steel circular pipes with open windows are manufactured, and the wave propagation path from the steel side to the water side or from the water side to the steel side is cut off / opened, so that It was decided to confirm the propagation path of the sound wave.
[0025]
FIG. 6 shows a comparison of received waves from the one without the vinyl sheet 15 (FIG. 6A) and the one attached to the entire surface (FIG. 6B). In the circular pipe with vinyl chloride 15 affixed to the entire inner surface, only a wave propagating inside the circular pipe wall was observed, as shown in FIG. As shown in (a), three types of waves were observed.
[0026]
Similarly, a circular pipe (FIG. 7 (a)) in which the vinyl chloride 15 is not attached at an angle of 210 ° to 240 ° and an angle of 330 ° to 360 ° and thus the path BC is opened by the window 16 (FIG. 7A), In addition, the circular pipe 15 (b) and the circular pipe (b) in which the chloride building 15 is not attached at an angle of 90 ° to 120 ° and therefore the path AB and BC are opened by the window 16 is shown. Three kinds of circular tubes (FIGS. (C) to (e)) in which any one of the open windows 16 is slightly shifted were prepared, and ultrasonic waves propagating through the respective circular tubes were observed.
[0027]
In FIG. 7A, the waves W3 and W4 of the first and second paths were observed, and in FIG. 7B, all of the waves W3, W4 and W5 of the first to third paths were observed. In FIG. 4C, only the first and second waves W3 and W4 are observed by blocking the incident point A from the steel to the water. In FIG. 4D, the first path is blocked by blocking the reflection point B. Only the first wave W3 was observed in the same manner as shown in FIG. 2E due to the interception of the incident point C from the water to the steel. From these observation results, it can be determined that the wave propagation path obtained by the calculation is correct.
[0028]
As mentioned above, although this invention was demonstrated based on the suitable embodiment example, the evaluation method of the circular pipe of this invention is not limited only to the structure of the said embodiment example, From the structure of the said embodiment example. Various modifications and changes are also included in the scope of the present invention.
[0029]
【The invention's effect】
As described above, according to the method for evaluating a circular tube according to the present invention, the inside of the circular tube and / or the circular tube is measured by a very simple method of measuring the propagation time and / or amplitude of the ultrasonic wave incident on the circular tube. It is possible to evaluate the fluid.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a soundness evaluation apparatus for implementing an evaluation method of the present invention.
FIG. 2 is a graph showing waveforms observed by the evaluation apparatus of FIG.
FIG. 3 is a cross-sectional view of a circular tube showing a propagation path of a wave passing through the inside of the circular tube.
FIG. 4 is a cross-sectional view of a circular tube showing a propagation path of a wave in calculation.
FIG. 5 is a cross-sectional view of a circular tube showing a propagation path of a calculated wave packet.
FIGS. 6A and 6B are a cross-sectional view of a circular tube measured in an example and a graph showing an observed waveform, respectively.
7A to 7E are cross-sectional views of various circular tubes measured in Examples and graphs showing observed waveforms, respectively.
[Explanation of symbols]
10: Circular tube 11: Ultrasonic sensor 12: Pulse transceiver 13: Digital waveform recording device 14: Digital waveform processing device 15: Lining sheet 16: Open window 21, 22: Ultrasonic probe

Claims (5)

円管又は円筒容器(以下円管と呼ぶ)の周方向に沿って超音波を伝搬させつつ円管外周の特定位置で超音波を検出し、
円管壁内を伝搬し次いで第1の所定位置で円管内部の流体中に入射した後に再び円管壁内に入射する第1の波、及び、円管壁内を伝搬し次いで第2の所定位置で円管内部の流体中に入射し、更に、前記第1の所定位置で円管の内面で反射した後に再び円管壁内に入射する第2の波の少なくとも一方について、伝播時間及び/又は振幅を計測し、
前記計測結果から、円管及び/又は円管内の流体についての評価を行うことを特徴とする円管の評価方法。
Detecting the ultrasonic wave at a specific position on the outer periphery of the circular tube while propagating the ultrasonic wave along the circumferential direction of the circular tube or cylindrical container (hereinafter referred to as a circular tube),
A first wave propagating in the tube wall and then entering the fluid inside the tube at a first predetermined position and then entering the tube wall again; and a second wave propagating in the tube wall and then the second wave Propagation time and at least one of the second waves incident on the fluid inside the circular tube at a predetermined position and reflected on the inner surface of the circular tube at the first predetermined position and then incident on the circular tube wall again. / Or measure amplitude,
An evaluation method for a circular pipe, comprising: evaluating a circular pipe and / or a fluid in the circular pipe from the measurement result.
少なくとも計測された振幅に基づいて、円管内面での欠陥の有無又は大きさを求める、請求項1に記載の円管の評価方法。The method for evaluating a circular pipe according to claim 1, wherein the presence / absence or size of a defect on the inner surface of the circular pipe is obtained based on at least the measured amplitude. 計測された伝播時間から流体の種類及び/又は状態を判定する、請求項1に記載の円管の評価方法。  The method for evaluating a circular tube according to claim 1, wherein the type and / or state of the fluid is determined from the measured propagation time. 計測された振幅に基づいて、円管内面におけるライニングの健全性の評価を行う、請求項1に記載の円管の評価方法。The method for evaluating a circular pipe according to claim 1, wherein the soundness of the lining on the inner surface of the circular pipe is evaluated based on the measured amplitude. 円管又は円筒容器(以下円管と呼ぶ)の周方向に沿って超音波を伝搬させつつ円管外周の特定位置で超音波を検出し、  Detecting the ultrasonic wave at a specific position on the outer periphery of the circular tube while propagating the ultrasonic wave along the circumferential direction of the circular tube or cylindrical container (hereinafter referred to as a circular tube),
円管壁内及び円管内部の流体中を伝播する超音波の伝播時間を計測し、  Measure the propagation time of ultrasonic waves propagating in the fluid inside the tube wall and inside the tube,
前記計測された超音波の伝播時間に基づいて円管の平均肉厚を求めることを特徴とする円管の評価方法。  A method for evaluating a circular tube, comprising: obtaining an average thickness of the circular tube based on the measured propagation time of the ultrasonic wave.
JP2000141534A 2000-05-15 2000-05-15 Evaluation method of circular pipe Expired - Lifetime JP3715177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141534A JP3715177B2 (en) 2000-05-15 2000-05-15 Evaluation method of circular pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141534A JP3715177B2 (en) 2000-05-15 2000-05-15 Evaluation method of circular pipe

Publications (2)

Publication Number Publication Date
JP2001324483A JP2001324483A (en) 2001-11-22
JP3715177B2 true JP3715177B2 (en) 2005-11-09

Family

ID=18648632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141534A Expired - Lifetime JP3715177B2 (en) 2000-05-15 2000-05-15 Evaluation method of circular pipe

Country Status (1)

Country Link
JP (1) JP3715177B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5904339B2 (en) * 2013-03-08 2016-04-13 三菱電機株式会社 Liquid detection method and liquid detection apparatus
WO2016194331A1 (en) * 2015-05-29 2016-12-08 日本電気株式会社 Degradation analysis device, degradation analysis method, degradation analysis program, and storage medium
CN114674257A (en) * 2022-03-31 2022-06-28 中国空气动力研究与发展中心计算空气动力研究所 High-precision thickness measuring method and device based on ultrasonic transverse wave detection

Also Published As

Publication number Publication date
JP2001324483A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
US6634233B2 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
US6883376B2 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
US5092176A (en) Method for determining deposit buildup
EP0826148B1 (en) Ultrasonic inspection
JPH0352908B2 (en)
JP2005502046A (en) Pipeline inspection device
EP3710795B1 (en) Device and method for detecting deposition layers in a conduit conducting a liquid or a soft medium and/or for level detection
EP1271097A2 (en) Method for inspecting clad pipe
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JP3715177B2 (en) Evaluation method of circular pipe
JP4952489B2 (en) Flaw detection method and apparatus
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
KR100966543B1 (en) Ultrasonic evaluation system for internal deposit layer in a pipe
JP3729686B2 (en) Defect detection method for piping
JP3810661B2 (en) Defect detection method for piping
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
RU2791670C1 (en) Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection
RU2188412C2 (en) Ultrasonic device for detecting stressed state of process-channel wall metal in fast reactors
RU2596242C1 (en) Method for ultrasonic inspection
JPH04157360A (en) Supersonic probe
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
JP3841794B2 (en) Inspection method for corrosion and thinning by the two-probe method
JP2003090829A (en) Non-destructive inspection method of composite material
Hayashi et al. Defect imaging with guided waves propagating in a long range
US7418867B2 (en) Remote use of ultrasonic sensors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3715177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term