JP3841794B2 - Inspection method for corrosion and thinning by the two-probe method - Google Patents

Inspection method for corrosion and thinning by the two-probe method Download PDF

Info

Publication number
JP3841794B2
JP3841794B2 JP2004059482A JP2004059482A JP3841794B2 JP 3841794 B2 JP3841794 B2 JP 3841794B2 JP 2004059482 A JP2004059482 A JP 2004059482A JP 2004059482 A JP2004059482 A JP 2004059482A JP 3841794 B2 JP3841794 B2 JP 3841794B2
Authority
JP
Japan
Prior art keywords
wave
inspection
waves
mode conversion
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059482A
Other languages
Japanese (ja)
Other versions
JP2005249550A (en
Inventor
洋 宮沢
信隆 臼井
高治 服部
Original Assignee
日本工業検査株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本工業検査株式会社 filed Critical 日本工業検査株式会社
Priority to JP2004059482A priority Critical patent/JP3841794B2/en
Publication of JP2005249550A publication Critical patent/JP2005249550A/en
Application granted granted Critical
Publication of JP3841794B2 publication Critical patent/JP3841794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

超音波検査方法による金属の腐食及び減肉の検査方法に関するものであり、特に、化学プラントや石油プラントや原子力プラントなどにおける配管や機器及び底板の腐食深さ及び減肉深さ及び残肉厚さの検査に関するものである。   It relates to the inspection method of metal corrosion and thinning by ultrasonic inspection method, especially corrosion depth, thinning depth and residual thickness of piping, equipment and bottom plate in chemical plant, petroleum plant, nuclear power plant etc. It is related to the inspection.

超音波検査方法による腐食及び減肉の検査は垂直探触子を用いて板厚を測定する方法が存在した。精密に減肉位置と減肉深さを測定する方法としては現在も有効に活用されている。しかしながら、垂直探触子を用いる方法は検査個所の表面に探触子を当てる空間がなければ検査することができず、化学プラントの配管のように定間隔にあるH型鋼のような障害物がある場所や当て板やサポート材が溶接されている場所には適応することができなかった。また、石油タンクの底板に当て板、サポート材が溶接されている底板部の検査ができなかった。   In the inspection of corrosion and thinning by the ultrasonic inspection method, there is a method of measuring the plate thickness using a vertical probe. It is still effectively used as a method for precisely measuring the thinning position and thinning depth. However, the method using a vertical probe cannot be inspected unless there is a space for placing the probe on the surface of the inspection site, and there are obstacles such as H-shaped steel at regular intervals like piping in chemical plants. It was not possible to adapt to a certain place or a place where a patch plate or support material was welded. In addition, the bottom plate where the backing plate and the support material are welded to the bottom plate of the oil tank could not be inspected.

化学プラントの配管の検査においてはラックと呼ばれるH型鋼に乗っているような場合において検査個所の表面に直接触れられない場合、超音波の表面波伝播距離の差を用いて検査する手法もあった。(たとえば特許文献1)しかしながら、表面波のみで検査する方法は、表面が大きく荒れている場合には表面波が大きく減衰し測定が困難であることが多く、表面波の伝播距離の差を用いる方法は表面のみの検査しかできないことや、腐食状態の形状によって推定深さに誤差を生じてしまう欠点があった。   In the inspection of chemical plant piping, there is also a method to inspect using the difference in ultrasonic wave propagation distance when the surface of the inspection site cannot be touched directly when riding on H-shaped steel called rack . However, in the method of inspecting only with the surface wave, for example, when the surface is greatly rough, the surface wave is greatly attenuated and measurement is often difficult, and the difference in the propagation distance of the surface wave is used. The method has a drawback that only the surface can be inspected, and an error occurs in the estimated depth due to the shape of the corrosion state.

本発明によれば、垂直探触子を用いる方法に比べて高速に検査することができ、表面波伝播距離の差を用いて検査する方法と比べて表面及び裏面の減肉を形状に影響されることなく正確な減肉深さを測定することができるようになった。
特許公開公報 2002-5905号
According to the present invention, the inspection can be performed at a higher speed than the method using the vertical probe, and the thinning of the front and back surfaces is affected by the shape as compared with the method using the difference in surface wave propagation distance. It is now possible to measure the exact thickness of the thinning without having to.
Patent Publication No. 2002-5905

化学プラント等の配管は、ある間隔毎にラックと呼ばれているH型鋼に乗っている。このH型鋼に接触している部分については、配管に腐食が発生しても目視などの光学的な手段を使用することができず、垂直探触子を用いた板厚測定もできないため、適切な検査の方法がなかった。そこで、このような目視及び測定ができなかった部分の検査を合理的に行う方法を提供する。石油タンクなどの構造物は定期的に底板を検査しなければならない。一般的な垂直探触子を用いた板厚測定による方法ではサポート溶接部等の障害物があり、その下側で検査できなかった部分の検査を合理的に行う方法を提供する。   Piping in chemical plants or the like rides on H-shaped steel called racks at certain intervals. For the part in contact with this H-shaped steel, optical means such as visual inspection cannot be used even if corrosion occurs in the pipe, and plate thickness measurement using a vertical probe cannot be performed. There was no proper way of inspection. Therefore, a method for rationally inspecting such a portion that cannot be visually observed and measured is provided. Structures such as oil tanks must be regularly inspected for bottom plates. In a method by plate thickness measurement using a general vertical probe, there is an obstacle such as a support welded portion, and a method for rationally inspecting a portion that cannot be inspected below is provided.

本発明においては2個以上の探触子を被検査材の検査部位を挟む位置に向かい合わせに配置させる。1つの探触子から超音波を被検査材に入射する。入射された超音波は被検査材の表面近傍を伝わる縦波となって他の探触子に向かって進む。表面近傍を伝わる縦波は伝播中に常に超音波のモード変換によって横波を発生させている。モード変換によって発生する横波の角度をθとすると、(1)式で表される。
In the present invention, two or more probes are arranged so as to face each other at a position sandwiching the inspection site of the inspection object. Ultrasonic waves are incident on the material to be inspected from one probe. The incident ultrasonic wave becomes a longitudinal wave that propagates in the vicinity of the surface of the material to be inspected and travels toward another probe. Longitudinal waves traveling near the surface always generate transverse waves by mode conversion of ultrasonic waves during propagation. When the angle of the transverse wave generated by the mode conversion is θ, it is expressed by equation (1).

ここで、鋼中の横波音速を3230(m/s)、縦波音速を5920(m/s)とすると、横波角度は約33度となる。したがって表面近傍を伝わる縦波は被検査材の表面を伝播するときに常にモード変換し約33度の角度で横波を発生しながら進むため、被検査材の表面から裏面に向かって約33度の角度で横波が降り注ぐ現象が起こっている。裏面に到達した横波は裏面にて再度モード変換を起こし、縦波が発生する。この縦波は裏面の表面近傍を伝わる縦波と被検査材を横断する縦波となって伝播する。裏面を伝播する縦波は伝播中にさらにモード変換して約33度の角度で横波を発生させるため、被検査材の裏面から表面に向かって連続的に横波が横断している現象が起こっている。 Here, if the transverse wave velocity in steel is 3230 (m / s) and the longitudinal wave velocity is 5920 (m / s), the transverse wave angle is about 33 degrees. Therefore, the longitudinal wave that travels in the vicinity of the surface always changes its mode when propagating on the surface of the material to be inspected, and proceeds while generating a transverse wave at an angle of about 33 degrees. There is a phenomenon in which a transverse wave falls at an angle. The transverse wave that has reached the back surface undergoes mode conversion again on the back surface, and a longitudinal wave is generated. This longitudinal wave propagates as a longitudinal wave that propagates in the vicinity of the front surface of the back surface and a longitudinal wave that crosses the material to be inspected. Longitudinal waves propagating on the back surface are further mode-converted during propagation to generate transverse waves at an angle of about 33 degrees, resulting in a phenomenon in which the transverse waves continuously traverse from the back surface to the surface of the material being inspected. Yes.

この現象を利用したとき、被検査材に腐食や減肉した部分があると、横波の伝播距離が短くなる。縦波の伝播距離は若干変化するが実際には測定結果には影響の出ない程度の微小な変化である。本発明は上記超音波の性質を利用して伝播距離の差を計測し、腐食深さ及び減肉深さを計測する検査方法である。超音波の伝播経路のうち少なくとも1回以上数回についても二次元の視覚表現とすることで、評価を容易にすることができる。 When this phenomenon is used, if the material to be inspected is corroded or thinned, the propagation distance of the transverse wave is shortened. Although the propagation distance of the longitudinal wave changes slightly, it is actually a minute change that does not affect the measurement result. The present invention is an inspection method in which the difference in propagation distance is measured using the properties of the ultrasonic waves, and the corrosion depth and the thinning depth are measured. Evaluation can be facilitated by using two-dimensional visual representation at least once or several times in the ultrasonic propagation path.

超音波伝播の減衰量による評価方法、表面を伝播する表面波の凹凸による迂回時間の増加による評価方法(特許文献1)は、表面状況による伝達量減衰の影響が大きいが、本発明においては表面状況の影響が少なく、現場作業において簡便な処理となるため作業効率が向上する。   The evaluation method by the attenuation amount of ultrasonic propagation and the evaluation method by increasing the detour time due to the unevenness of the surface wave propagating on the surface (Patent Document 1) are greatly affected by the attenuation of the transmission amount due to the surface condition. There is little influence of the situation, and the work efficiency is improved because it is a simple process in the field work.

ラック上配管等の腐食検査は、外面でも内面でも検査対象となっているので、本発明の方法は、探触子を配置する面側の腐食であっても反対面の腐食であっても同一の測定結果となるので有効である。   Corrosion inspection of pipes on racks is subject to inspection on both the outer surface and the inner surface, so the method of the present invention is the same regardless of whether the surface on which the probe is placed or the opposite surface. This is effective because

測定結果として縦軸に超音波の到達時間、横軸に探触子の座標を表示すれば、座標毎の腐食深さと腐食の長さを評価できる。平板についても同様であり、探触子の移動方向を変えれば、二次元の腐食座標を得ることもできる。   If the arrival time of the ultrasonic wave is displayed on the vertical axis and the probe coordinates are displayed on the horizontal axis as the measurement results, the corrosion depth and corrosion length for each coordinate can be evaluated. The same applies to the flat plate. If the moving direction of the probe is changed, two-dimensional corrosion coordinates can be obtained.

本発明の原理を図を使って詳細に説明する。図1に超音波を被検査材に入射したときの受信探触子に最初に到達する超音波の経路を示す。探触子間距離をW、被検査材の板厚をT、縦波の音速をS1、横波の音速をS2とする。図1の経路の超音波伝播時間t0
となる。
The principle of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the path of the ultrasonic wave that first reaches the receiving probe when the ultrasonic wave is incident on the inspection object. The distance between the probes is W, the thickness of the material to be inspected is T, the acoustic velocity of the longitudinal wave is S 1 , and the acoustic velocity of the transverse wave is S 2 . The ultrasonic propagation time t 0 of the path in FIG.
It becomes.

次に図2に最初の底面から到達する超音波の経路を示す。縦波が探触子から被検査材に入射されたあと、底面にて反射した縦波が受信用の探触子にて受信される経路である。図2の経路の超音波伝播時間t1
となる。
Next, Fig. 2 shows the path of ultrasonic waves that reach from the first bottom surface. This is a path through which the longitudinal wave reflected from the bottom surface is received by the receiving probe after the longitudinal wave is incident on the inspection object from the probe. The ultrasonic propagation time t 1 of the path in FIG.
It becomes.

図3に1回遅れで底面から到達する超音波の経路を示す。送信用探触子から縦波が被検査材に入射され、モード変換によって発生した横波が被検査材を横断し、横波が底面に達したときにさらにモード変換により発生した縦波が受信用探触子に到達する経路である。図3の超音波伝播時間t2は表面を伝播する縦波の距離をLとすると
Fig. 3 shows the path of ultrasonic waves that arrive from the bottom with a single delay. When a longitudinal wave is incident on the inspection object from the transmitting probe, the transverse wave generated by the mode conversion crosses the inspection object, and when the transverse wave reaches the bottom surface, the longitudinal wave generated by the mode conversion is further received by the receiving probe. This is the path to reach the tentacle. The ultrasonic wave propagation time t 2 in FIG.

となる。このときLの値が大きくなると伝播時間は大きくなるが、図4に示すような経路を考えると図3と対称な位置で横波が横断しているので一番伝播時間が長いのは2つの超音波探触子の中点位置となる。板厚Tがプローブ間距離Wと比べて十分小さいことから最初に到達する超音波波形を測定すれば測定誤差は十分許容範囲内となる。図5にこの経路で減肉部分が存在したときの超音波経路の変化を示す。伝播距離が減肉深さによって板厚を横断する横波と縦波の距離が短くなる。これによって腐食及び減肉が存在するときの伝播時間と存在しないときの伝播時間の差を計測することにより腐食深さ及び減肉深さを測定することができる。 It becomes. If the value of L increases at this time, the propagation time increases. However, considering the path shown in FIG. 4, the transverse wave crosses at a position symmetrical to FIG. This is the midpoint position of the acoustic probe. Since the plate thickness T is sufficiently smaller than the inter-probe distance W, the measurement error is sufficiently within the allowable range if the first ultrasonic waveform is measured. FIG. 5 shows changes in the ultrasonic path when a thinned portion exists in this path. The distance of the transverse wave and the longitudinal wave that crosses the plate thickness is shortened depending on the thickness of the propagation distance. Accordingly, the corrosion depth and the thinning depth can be measured by measuring the difference between the propagation time when corrosion and thinning are present and the propagation time when there is no corrosion and thinning.

図6に2回遅れで底面から到達する超音波の経路を示す。2回遅れの経路は板厚方向に2回横波が横断している経路である。図7に示すように腐食に伴う横波の横断距離に2通りの経路が生じてしまう。一般に測定対象の減肉部分の面積が大きいときは図5に示す1回遅れの経路で測定ができるため図5の経路で測定し、図5の経路に現れない小さい面積の場合は図7の2回遅れの経路で測定することで測定精度を確保できる。   Fig. 6 shows the path of an ultrasonic wave that arrives from the bottom surface with a delay of two times. The two-time delayed path is a path in which the transverse wave crosses twice in the thickness direction. As shown in FIG. 7, two paths are generated in the transverse distance of the transverse wave due to corrosion. In general, when the area of the thinned portion to be measured is large, measurement can be performed with the one-time delay path shown in FIG. 5, so measurement is performed with the path of FIG. Measurement accuracy can be ensured by measuring with a delay of 2 times.

同様に図8、図9に3回遅れで対面から到達する超音波の経路を示す。この場合も上記と同様に順次行うことで、さらに小さい面積の腐食及び減肉を見逃すことなく測定することができる。   Similarly, FIG. 8 and FIG. 9 show the paths of ultrasonic waves that arrive from the opposite face with a delay of three times. In this case as well, the measurement can be performed without missing a smaller area of corrosion and thinning by sequentially performing the same as described above.

図10に示す板厚12mmの鋼板に直径25mm深さ1.1mmの半楕円型人口減肉Aと直径38mm深さ1.7mmの半楕円型人口減肉Bと直径56mm深さ3.4mmの半楕円型人工減肉Cを作成して検査を行った結果を示す。図10から読み取れるように、1回遅れの経路では人口減肉Cの波形は十分に読み取れるが他の2つの人口減肉は読み取りにくい。2回遅れの経路の結果を見ると人口減肉BとCが読み取ることができるが、やはり人口減肉Aについては視認しにくい。3回遅れの経路では人口減肉A・B・Cのすべてが視認できる。   The steel plate with a thickness of 12 mm shown in Fig. 10 has a semi-elliptical population thinning A with a diameter of 25 mm and a depth of 1.1 mm, a semi-elliptical thinning B with a diameter of 38 mm and a depth of 1.7 mm, and a semi-elliptical with a diameter of 56 mm and a depth of 3.4 mm. The result of making and inspecting the type artificial thinning C is shown. As can be seen from FIG. 10, the waveform of population thinning C can be read sufficiently in the one-lag route, but the other two population thinnings are difficult to read. If you look at the results of the two-time delay path, you can read population thinning B and C, but population thinning A is still difficult to see. You can see all of the thinning A, B, and C on the route that is delayed three times.

1回遅れの経路にて人口減肉Cについて測定してみると、底面エコーの伝播時間が46.6μSであり、人口減肉Cによる短くなった伝播時間は45.7μSなので到達時間の差は0.9μSでる。一方、(4)式において板厚Tが12mmとして伝播時間を計算し、(4)式において3.4mmの減肉している部分の板厚Tを12mm−3.4mm=8.6mmとして伝播時間を計算し、伝播時間の差を求めると0.9μSとなり一致する。   Measured for population thinning C with a one-time delay path, the propagation time of the bottom echo is 46.6μS, and the shortened propagation time due to population thinning C is 45.7μS, so the difference in arrival time is 0.9μS Out. On the other hand, the propagation time is calculated assuming that the plate thickness T is 12mm in the equation (4), and the propagation time is calculated in the equation (4) with the plate thickness T of the reduced thickness of 3.4mm being 12mm-3.4mm = 8.6mm When the difference in propagation time is obtained, it becomes 0.9 μS, which is the same.

2回遅れの経路の伝播時間t3は計算式(5)式で表される。
The propagation time t 3 of the path delayed twice is expressed by the formula (5).

2回遅れの経路にて人工減肉Bについて測定してみると、底面エコーの伝播時間が50.0μSであり、人口減肉Bによる短くなった伝播時間は49.5μSなので、伝播時間の差は0.5μSである。一方、図7の経路にて(5)式を用いて伝播時間差を計算すると0.44μSとなりほぼ一致する。人工減肉Aについて測定してみると、人口減肉Aによる短くなった伝播時間は49.7μSなので、伝播時間の差は0.3μSである。同様に伝播時間差を(5)式で計算すると0.28μSとなりほぼ一致する。このように、計算値と一致するため、伝播時間の差から減肉深さが測定できる。 When artificial thinning B is measured with a delay of 2 times, the propagation time of the bottom echo is 50.0μS, and the shortened propagation time due to population thinning B is 49.5μS, so the difference in propagation time is 0.5 μS. On the other hand, when the propagation time difference is calculated using the equation (5) in the path of FIG. 7, it is 0.44 μS, which is almost the same. When artificial thinning A is measured, the shortened propagation time due to population thinning A is 49.7 μS, so the difference in propagation time is 0.3 μS. Similarly, when the propagation time difference is calculated by equation (5), it is 0.28 μS, which is almost the same. Thus, since it corresponds with the calculated value, the thickness reduction can be measured from the difference in propagation time.

メンテナンス上の腐食検査を行う場合において、従来方法に比べて短時間の検査時間で、減肉部分が他の部材で覆われている場合でも減肉の幅と深さが測定できる超音波による検査方法である。   When performing a corrosion inspection for maintenance, an ultrasonic inspection that can measure the width and depth of thinning even when the thinned portion is covered with other members in a shorter inspection time than the conventional method. Is the method.

最初の超音波の経路の説明図Illustration of the first ultrasound path 最初の底面からの超音波の経路の説明図Illustration of the path of ultrasonic waves from the first bottom 1回遅れの超音波の経路の説明図Illustration of the path of the ultrasonic wave delayed once 1回遅れの超音波の経路2の説明図Explanatory diagram of ultrasonic wave path 2 delayed once 1回遅れの超音波の経路で減肉部がある場合の説明図Explanatory drawing when there is a thinning part in the path of ultrasonic waves delayed once 2回遅れの超音波の経路の説明図Illustration of the path of ultrasonic waves delayed twice 2回遅れの超音波の経路で減肉部がある場合の説明図Explanatory drawing when there is a thinned part in the path of ultrasonic waves delayed twice 3回遅れの超音波の経路の説明図Illustration of the path of the ultrasonic wave delayed 3 times 3回遅れの超音波の経路で減肉部がある場合の説明図Explanatory drawing when there is a thinning part in the path of ultrasonic waves delayed three times 測定結果の図Figure of measurement results

Claims (2)

検査部位を挟んで配置する超音波探触子より被検査材に入射した表面近傍を伝わる縦波からモード変換によって連続的に発生する横波が被検査材を横断し、被検査材を横断した横波が被検査材の裏面に到達したときにモード変換によって縦波が発生し、裏表面近傍を伝播する縦波からモード変換によって連続的に横波が発生して被検査材を横断し、横波が被検査材の表面に達したときにモード変換によってさらに縦波が発生し、この縦波によってもモード変換によって横波が発生するというように縦波と横波がモード変換を繰り返す性質があり、縦波と横波がモード変換を繰り返して伝播する経路のうち少なくとも1回以上被検査材を横波が横断する超音波の経路を利用して、また、向かい合う2個の探触子を向かい合う方向と交差する方向に移動して、腐食部及び減肉部の存在により生じる縦波と横波の伝搬時間の差と超音波の強度を画像に表現し、画像から評価及び計測することを特徴とする腐食深さ及び減肉深さを評価する二探触子法による腐食及び減肉の検査方法。 Transverse waves generated continuously by mode conversion from longitudinal waves traveling near the surface incident on the inspection material from the ultrasonic probe placed across the inspection site across the inspection material and transverse waves crossing the inspection material When a wave reaches the back surface of the material to be inspected, a longitudinal wave is generated by mode conversion, and a transverse wave is continuously generated from the longitudinal wave propagating in the vicinity of the back surface by the mode conversion and crosses the material to be inspected. Longitudinal waves are generated by mode conversion when the surface of the inspection material is reached, and longitudinal waves and transverse waves have the property of repeating mode conversion such that longitudinal waves are also generated by mode conversion. Use the ultrasonic wave path that the transverse wave traverses the material to be inspected at least once among the paths that the transverse wave propagates by repeating the mode conversion, and in the direction that intersects the two facing probes. The depth and reduction of corrosion , characterized by moving to express the difference in the propagation time of longitudinal and transverse waves caused by the presence of corroded and thinned parts and the intensity of ultrasonic waves, and evaluating and measuring from the images Inspection method for corrosion and thinning by the two-probe method to evaluate the depth of the meat. 請求項1の発明において、表面近傍を伝わる縦波のモード変換によって発生する横波が被検査材を板厚方向に横断する回数ごとに計測される底面で反射するエコーと、腐食部及び減肉部によって伝播距離が短くなったときのエコーとの伝播時間の差を計測し、計測された伝播時間の差から腐食深さ及び減肉深さを算出する二探触子法による腐食及び減肉の検査方法。
In the invention of claim 1, the echo reflected by the bottom surface measured every time the transverse wave generated by the mode conversion of the longitudinal wave transmitted in the vicinity of the surface crosses the material to be inspected in the plate thickness direction, and the corroded portion and the thinned portion Measure the difference in propagation time from the echo when the propagation distance is shortened by, and calculate the corrosion depth and thinning depth from the measured propagation time difference. Inspection method.
JP2004059482A 2004-03-03 2004-03-03 Inspection method for corrosion and thinning by the two-probe method Expired - Lifetime JP3841794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059482A JP3841794B2 (en) 2004-03-03 2004-03-03 Inspection method for corrosion and thinning by the two-probe method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059482A JP3841794B2 (en) 2004-03-03 2004-03-03 Inspection method for corrosion and thinning by the two-probe method

Publications (2)

Publication Number Publication Date
JP2005249550A JP2005249550A (en) 2005-09-15
JP3841794B2 true JP3841794B2 (en) 2006-11-01

Family

ID=35030161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059482A Expired - Lifetime JP3841794B2 (en) 2004-03-03 2004-03-03 Inspection method for corrosion and thinning by the two-probe method

Country Status (1)

Country Link
JP (1) JP3841794B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097989A (en) * 2007-10-17 2009-05-07 Nippon Kogyo Kensa Kk Probe moving apparatus
JP5112942B2 (en) * 2008-04-30 2013-01-09 川崎重工業株式会社 Ultrasonic flaw detection method and apparatus
EA202092468A1 (en) * 2018-04-13 2021-01-20 Тойо Инджиниринг Корпорейшн METHOD FOR PRODUCING UREA

Also Published As

Publication number Publication date
JP2005249550A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4785151B2 (en) Ultrasonic flaw detection apparatus and method
US9672187B2 (en) System and method for directing guided waves through structures
US10996203B2 (en) Detection, monitoring, and determination of location of changes in metallic structures using multimode acoustic signals
JP5922558B2 (en) Ultrasonic thickness measurement method and apparatus
JP5663319B2 (en) Guide wave inspection method and apparatus
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5530405B2 (en) Nondestructive inspection method and nondestructive inspection device
Sakamoto et al. Study on the ultrasound propagation in cast austenitic stainless steel
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP3841794B2 (en) Inspection method for corrosion and thinning by the two-probe method
JP2007271407A (en) Method and device for measuring crack depth
JP4952489B2 (en) Flaw detection method and apparatus
Furukawa et al. Simulation and visualization of guided wave propagation by large-scale 3D FEM
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
Edalati et al. Defect detection in thin plates by ultrasonic lamb wave techniques
JP4270040B2 (en) Ultrasonic flaw detection method
JP2009244076A (en) Method and system of detecting alteration state of heterogeneous substance in medium using electromagnetic wave radar
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
Burch et al. M-skip: a quantitative technique for the measurement of wall loss in inaccessible components
Magda et al. Corrosion assessment using ultrasound
Howard et al. Monitoring thicknesses along a line using SH guided waves
JP2014211398A (en) Tubular structure defect inspection method and device
JP3715177B2 (en) Evaluation method of circular pipe
JP5720846B1 (en) Metal pipe corrosion state evaluation method and metal pipe corrosion state evaluation apparatus used therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3841794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term