JP2018205185A5 - - Google Patents

Download PDF

Info

Publication number
JP2018205185A5
JP2018205185A5 JP2017111991A JP2017111991A JP2018205185A5 JP 2018205185 A5 JP2018205185 A5 JP 2018205185A5 JP 2017111991 A JP2017111991 A JP 2017111991A JP 2017111991 A JP2017111991 A JP 2017111991A JP 2018205185 A5 JP2018205185 A5 JP 2018205185A5
Authority
JP
Japan
Prior art keywords
thin plate
change
wave
mhz
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017111991A
Other languages
Japanese (ja)
Other versions
JP2018205185A (en
JP6802113B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017111991A priority Critical patent/JP6802113B2/en
Priority claimed from JP2017111991A external-priority patent/JP6802113B2/en
Publication of JP2018205185A publication Critical patent/JP2018205185A/en
Publication of JP2018205185A5 publication Critical patent/JP2018205185A5/ja
Application granted granted Critical
Publication of JP6802113B2 publication Critical patent/JP6802113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (5)

薄板構造物の板厚変化又は水滴付着を検出する超音波検査方法であって、
前記薄板構造物を構成する少なくとも1つの薄板の一方側端面及び反対側端面に送信用探触子及び受信用探触子をそれぞれ配置し、
前記薄板を伝播する板波を励起する横波を、前記薄板の厚さ変化又は水滴付着に応じて板波の速度変化が得られるように予め設定した周波数にて、前記送信用探触子から前記薄板の一方側端面に入射し、
前記薄板を伝播した板波を前記受信用探触子で受信し、
前記受信用探触子で受信した板波の伝播時間を演算し、この伝播時間を予め取得した参照時間と比較することにより、前記薄板の厚さ変化又は水滴付着を検出することを特徴とする超音波検査方法。
An ultrasonic inspection method for detecting a change in the thickness of a thin plate structure or adhesion of water droplets,
A transmission probe and a reception probe are arranged on one end surface and the opposite end surface of at least one thin plate constituting the thin plate structure, respectively.
A transverse wave that excites a plate wave propagating through the thin plate, at a preset frequency so that a change in the thickness of the thin plate or a change in the speed of the plate wave in accordance with the attachment of water droplets, from the transmission probe, Incident on one end face of the thin plate,
The plate wave propagated through the thin plate is received by the receiving probe,
Calculating the propagation time of the plate wave received by the receiving probe, and comparing the propagation time with a previously acquired reference time to detect a change in thickness of the thin plate or adhesion of water droplets. Ultrasound method.
請求項1に記載の超音波検査方法において、
前記送信用探触子は、単一の周波数f1を有する横波を前記薄板の一方側端面に入射しており、
前記周波数f1は、前記薄板の厚さ変化又は水滴付着に応じてA0モード成分の板波の速度変化が得られるように、0.1MHz≦f1≦1MHzの範囲内で設定したことを特徴とする超音波検査方法。
In the ultrasonic inspection method according to claim 1,
The transmitting probe has a transverse wave having a single frequency f1 incident on one end surface of the thin plate,
The frequency f1 is set within a range of 0.1 MHz ≦ f1 ≦ 1 MHz so as to obtain a change in the speed of the plate wave of the A0 mode component in accordance with a change in the thickness of the thin plate or adhesion of water droplets. Ultrasound method.
請求項1に記載の超音波検査方法において、
前記送信用探触子は、単一の周波数f2を有する横波を前記薄板の一方側端面に入射しており、
前記周波数f2は、前記薄板の厚さ変化又は水滴付着に応じてS0モード成分の板波の速度変化が得られるように、1MHz≦f≦5MHzの範囲内で設定したことを特徴とする超音波検査方法。
In the ultrasonic inspection method according to claim 1,
The transmitting probe has a transverse wave having a single frequency f2 incident on one end surface of the thin plate,
The frequency f2 is set within a range of 1 MHz ≦ f 2 ≦ 5 MHz so as to obtain a change in the speed of the plate wave of the S0 mode component in accordance with a change in the thickness of the thin plate or adhesion of water droplets. Sonic inspection method.
請求項1に記載の超音波検査方法において、
前記送信用探触子は、第1の周波数f1から第2の周波数f2まで変化するチャープ波形の横波を前記薄板の一方側端面に入射しており、
前記第1の周波数f1は、前記薄板の厚さ変化又は水滴付着に応じてA0モード成分の板波の速度変化が得られるように、0.1MHz≦f1≦1MHzの範囲内で設定し、
前記第2の周波数f2は、前記薄板の厚さ変化又は水滴付着に応じてS0モード成分の板波の速度変化が得られるように、1MHz≦f2≦5MHzの範囲内で設定したことを特徴とする超音波検査方法。
In the ultrasonic inspection method according to claim 1,
The transmitting probe has a transverse wave of a chirp waveform that changes from a first frequency f1 to a second frequency f2 incident on one end surface of the thin plate,
The first frequency f1 is set within a range of 0.1 MHz ≦ f1 ≦ 1 MHz so as to obtain a change in the thickness of the thin plate or a change in the speed of the plate wave of the A0 mode component according to the adhesion of water droplets,
The second frequency f2 is set within a range of 1 MHz ≦ f2 ≦ 5 MHz so as to obtain a change in the speed of the plate wave of the S0 mode component according to a change in the thickness of the thin plate or adhesion of water droplets. Ultrasonic inspection method.
請求項1に記載の超音波検査方法において、
空調ダクトを構成する少なくとも1つの薄板の一方側端面及び反対側端面に前記送信用探触子及び前記受信用探触子をそれぞれ常設して定期的に検査を実施することを特徴とする超音波検査方法。
In the ultrasonic inspection method according to claim 1,
Ultrasound characterized in that the transmission probe and the reception probe are permanently installed on one end face and the opposite end face of at least one thin plate constituting an air conditioning duct, respectively, and are periodically inspected. Inspection methods.
JP2017111991A 2017-06-06 2017-06-06 Ultrasonography method Active JP6802113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111991A JP6802113B2 (en) 2017-06-06 2017-06-06 Ultrasonography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111991A JP6802113B2 (en) 2017-06-06 2017-06-06 Ultrasonography method

Publications (3)

Publication Number Publication Date
JP2018205185A JP2018205185A (en) 2018-12-27
JP2018205185A5 true JP2018205185A5 (en) 2020-02-13
JP6802113B2 JP6802113B2 (en) 2020-12-16

Family

ID=64955593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111991A Active JP6802113B2 (en) 2017-06-06 2017-06-06 Ultrasonography method

Country Status (1)

Country Link
JP (1) JP6802113B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319620B2 (en) * 2019-01-15 2023-08-02 ヤマハ発動機株式会社 Internal condition detection device and vehicle
JP7323494B2 (en) * 2020-07-08 2023-08-08 日立Geニュークリア・エナジー株式会社 Air conditioning duct monitoring system
CN113607818B (en) * 2021-08-04 2024-02-27 中北大学 Ultrasonic detection device and method for multi-interface bonding quality

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187609A (en) * 1981-05-13 1982-11-18 Hitachi Ltd Measuring device for decrease in wall thickness
JPH05322736A (en) * 1992-05-15 1993-12-07 Koji Toda Plate wave ultrasonic device and viscosity sensor with it
US5456114A (en) * 1993-04-23 1995-10-10 Panametrics, Inc. Elastic wave sensing system
JP4656754B2 (en) * 2001-05-01 2011-03-23 秀郎 西野 Pipe parameter estimation method, pipe material state evaluation method, pipe inspection method, and pipe parameter estimation apparatus used therefor
JP3913144B2 (en) * 2002-08-27 2007-05-09 株式会社日立製作所 Piping inspection method and apparatus
JP4094464B2 (en) * 2003-03-28 2008-06-04 コスモ石油株式会社 Nondestructive inspection method and nondestructive inspection device
JP2006058291A (en) * 2004-07-23 2006-03-02 Tokyo Institute Of Technology Defect inspection device and method
JP4686378B2 (en) * 2006-02-27 2011-05-25 株式会社東芝 Pipe inspection device
NO327139B1 (en) * 2006-05-30 2009-05-04 Clampon As Method and system for determining loss of material thickness in a solid structure
EP2120046A1 (en) * 2008-05-13 2009-11-18 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Ultrasonic modelling
EP2304422B1 (en) * 2008-07-22 2020-01-08 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Corrosion monitoring
JP5431905B2 (en) * 2009-12-18 2014-03-05 日立Geニュークリア・エナジー株式会社 Nondestructive inspection method and nondestructive inspection apparatus using guide wave

Similar Documents

Publication Publication Date Title
US10180410B2 (en) Ultrasonic test system, ultrasonic test method and aircraft structural object
US10481131B2 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
US8499632B1 (en) Characterizing anomalies in a laminate structure
JP5629265B2 (en) Ultrasonic flow meter
Zhang et al. Efficient immersion imaging of components with nonplanar surfaces
CN103292754B (en) Multi-medium-layer ultrasonic thickness test method
RU2010127782A (en) DEVICE AND METHOD FOR PIPELINE CONTROL USING ULTRASONIC WAVES OF TWO DIFFERENT TYPES
JP2018205185A5 (en)
ATE525659T1 (en) AERODYNAMIC MEASURING PROBE FOR MEASURING AIR FLOW ALONG A WALL
JP2006322902A5 (en)
Demčenko et al. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure
RU2014125222A (en) METHOD OF ULTRASONIC MEASUREMENT OF ELASTIC PROPERTIES
CN102680585B (en) Ultrasonic detector based design method for water-logging probe water-spray coupling device
JP6802113B2 (en) Ultrasonography method
JP5904339B2 (en) Liquid detection method and liquid detection apparatus
Santhanam et al. Reflection and transmission of fundamental Lamb wave modes obliquely incident on a crack in a plate
Memmolo et al. Guided wave propagation and interaction with ice layers in marine structures
CN106841385B (en) Detection method based on sound-ultrasound polypropylene production pipeline powder coherent condition
CN112915452B (en) Non-intrusive fire hydrant water pressure detection method based on multi-ultrasonic-signal time delay accumulation
Massaad et al. Acoustic design of a transducer array for ultrasonic clamp-on flow metering
RU2437066C1 (en) Method for ultrasonic measurement of level of liquid in reservoirs and apparatus for ultrasonic measurement of level of liquid in reservoirs
JP3810661B2 (en) Defect detection method for piping
Clarke et al. Evaluation of the temperature stability of a low‐frequency A0 mode transducer developed for SHM applications
Soldatov et al. Echography of in-tube sealing units: Simulation and experiment
Kato et al. Detection of low-frequency components in ultrasonic waves transmitted through contact solids