JPS60180167A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60180167A
JPS60180167A JP3435484A JP3435484A JPS60180167A JP S60180167 A JPS60180167 A JP S60180167A JP 3435484 A JP3435484 A JP 3435484A JP 3435484 A JP3435484 A JP 3435484A JP S60180167 A JPS60180167 A JP S60180167A
Authority
JP
Japan
Prior art keywords
impurity layer
type impurity
conduction type
conductivity type
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3435484A
Other languages
Japanese (ja)
Inventor
Yukihiro Tominaga
冨永 之廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3435484A priority Critical patent/JPS60180167A/en
Publication of JPS60180167A publication Critical patent/JPS60180167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To manufacture an MOSFET having high withstand voltage through a simple process by simultaneously forming a pinch-off region and a low resistance section flowing currents generated at a gate end on breakdown. CONSTITUTION:A pair of reverse conduction type impurity layers 25, 26 as a source and a drain are formed to the surface section of one conduction type semiconductor substrate 21, and an opening section 28 is formed between a pair of said impurity layers 25, 26 while being extended to one part on one impurity layer 26 in an insulating film 27 on the surface of the semiconductor substrate 21. The ions of one conduction type impurity 31 are implanted to the substrate section through the opening section 28, and thermally treated. Accordingly, one conduction type high-concentration impurity layer 32 is shaped to the substrate section between a pair of said reverse conduction type impurity layers 25, 26 while one part of one reverse conduction type impurity layer 26 adjacent to the high-concentration impurity layer 32 is turned into a reverse conduction type low-concentration impurity layer 33.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体装置の製造方法、詳しくは、すぐれた
耐圧特性を有するMOS FETの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a MOS FET having excellent breakdown voltage characteristics.

(従来技術) 従来の高耐圧MO8FET の製造方法を第1図を参照
して説明する。
(Prior Art) A conventional method for manufacturing a high voltage MO8FET will be explained with reference to FIG.

まず、P型シリコン基板1の所定の領域に、イオン打込
みおよび高温熱処理によりP+型不純物層2を形成する
。次に、前記と同領域にN型の不純物をイオン打込み法
で注入して、熱処理を行うことによシ、前記P+型不純
物層2の表面側の濃度を低下させ、この部分t−P一層
3とする。(第1図(a))この後、ソース・ドレイン
としてのN型不純物層4.5を形成する。その場合、ド
レインとしてのN型不純物層5は、前記P+型不純物層
2から所定距離離間した基板部表面に形成される。一方
、ソースとしてのN型不純物層4は、前記P+型不純物
層2上に(P一層3に)前記ドレインとしてのN型不純
物層5と反対側において形成される。(第1図Φ)) しかる後、N型不純物層4側において前記N型不純物層
5と隣接する基板部にN一層6、つまシ、N型不純物層
5と同一導電型の低濃度の領域を形成する。(第1図(
C)) その後、V層6とN型不純物層4間の基板上にゲート絶
縁膜7を形成し、その上にはゲート電極8を形成する。
First, a P+ type impurity layer 2 is formed in a predetermined region of a P type silicon substrate 1 by ion implantation and high temperature heat treatment. Next, by implanting an N-type impurity into the same region as described above by ion implantation and performing heat treatment, the concentration on the surface side of the P+ type impurity layer 2 is lowered, and this portion t-P becomes even thicker. Set it to 3. (FIG. 1(a)) After this, an N-type impurity layer 4.5 as a source/drain is formed. In that case, the N-type impurity layer 5 as a drain is formed on the surface of the substrate portion separated from the P+ type impurity layer 2 by a predetermined distance. On the other hand, an N-type impurity layer 4 serving as a source is formed on the P+ type impurity layer 2 (on the P layer 3) on the opposite side from the N-type impurity layer 5 serving as the drain. (Fig. 1 Φ)) After that, on the N-type impurity layer 4 side, a low concentration region of the same conductivity type as the N-type impurity layer 5 is formed in the substrate portion adjacent to the N-type impurity layer 5. form. (Figure 1 (
C)) Thereafter, a gate insulating film 7 is formed on the substrate between the V layer 6 and the N-type impurity layer 4, and a gate electrode 8 is formed thereon.

さらに、ソース・ドレインとしてのN型不純物層4,5
に接続してソース電極9、ドレイン電極10’に形成す
る。(第1図(d))このようにして製造されたMOS
 FET においては、N一層6が、ドレインとしての
N型不純物層5とゲート電極8の間にあってピンチオフ
領域となるため、いわゆるオフセットゲート型の構造と
なっている。このため、高い耐圧特性を示す。
Furthermore, N-type impurity layers 4 and 5 as sources and drains
The source electrode 9 and the drain electrode 10' are connected to the source electrode 9 and the drain electrode 10'. (Figure 1(d)) MOS manufactured in this way
In the FET, the N layer 6 is located between the N-type impurity layer 5 as a drain and the gate electrode 8 and serves as a pinch-off region, so that it has a so-called offset gate type structure. Therefore, it exhibits high breakdown voltage characteristics.

さらに、ゲート絶縁膜7の下にP+型不純物層2がある
ため、ブレークダウン時、ゲート端で発生した正孔電流
は低抵抗のP+型不純物層2を通ってソースとしてのN
型不純物層4に流れる。このため、ゲートバイアスの発
生が小さく、負性抵抗現象による耐圧降下は小さくなっ
ている。
Furthermore, since there is a P+ type impurity layer 2 under the gate insulating film 7, the hole current generated at the gate end at the time of breakdown passes through the low resistance P+ type impurity layer 2 and is transferred to N as a source.
It flows into the type impurity layer 4. Therefore, the occurrence of gate bias is small, and the breakdown voltage drop due to the negative resistance phenomenon is small.

しかるに、上述した従来の方法では、ピンチオフ領域と
なるN一層6と、ブレークダウン時、ゲート端で発生し
た電流を流す低抵抗部であるP型不純物層2の2つを別
々に作らねば々らず、しかも、P+型不純物層2の形成
に、P+層の形成と、その一部をP”−4とする工程を
必要とし、工程が繁雑になる欠点があった。
However, in the conventional method described above, it is necessary to separately create two layers: the N layer 6, which serves as a pinch-off region, and the P-type impurity layer 2, which serves as a low-resistance portion through which the current generated at the gate end flows during breakdown. Moreover, the formation of the P+ type impurity layer 2 requires a step of forming a P+ layer and converting a part of it to P''-4, which has the disadvantage of making the process complicated.

(発明の目的) この発明は上記の点に鑑みなされたもので、その目的は
、工程簡単にして高耐圧のMOS FETを製造できる
半導体装置の製造方法を提供することにある。
(Objective of the Invention) The present invention has been made in view of the above points, and its object is to provide a method for manufacturing a semiconductor device that can manufacture a high voltage MOS FET with a simple process.

(発明の概要) この発明の要点は、半導体基板表面上の絶縁膜に、ソー
ス・ドレインとしての一対の不純物層間において、さら
には前記一方の不純物層上に大きく延在して開口部を形
成し、その開口部を通して一導電型の不純物を基板部に
イオン注入し熱処理することにより、ピンチオフ領域と
、ブレークダウン時、ゲート端で発生した電流を流す低
抵抗部とを同時に形成することにある。
(Summary of the Invention) The key point of the present invention is to form an opening in an insulating film on the surface of a semiconductor substrate, between a pair of impurity layers serving as a source and a drain, and further extending widely over one of the impurity layers. By implanting ions of impurities of one conductivity type into the substrate through the opening and heat-treating the substrate, a pinch-off region and a low-resistance region through which current generated at the gate end flows during breakdown are simultaneously formed.

(実施例) 以下この発明の一実施例を第2図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第2図(a)において、21は(100)結晶軸、2〜
5Ω・mのP型のシリコン基板(半導体基板)であシ、
まず、この基板21上に酸化膜22を形成する。次に、
その酸化膜22にホトリソ工程で開口部23.24’e
形成した後、その開口部23゜24を用いて拡散技術に
よシ、ソース・ドレインとしての一対のN型不純物層(
逆導電型不純物層)25.26を基板21表面部に形成
する。(第2図(a)) しかる後、酸化処理を行って、前記開口部23゜24を
埋めるように酸化膜を成長させることによシ、前記基板
21上の酸化膜をほぼ均一な厚さく 5000〜100
00X厚)の酸化膜(絶縁@)27とする。次いで、こ
の酸化膜27にホトリソ工程で開口部28を形成する。
In Fig. 2(a), 21 is the (100) crystal axis, 2~
5Ω・m P-type silicon substrate (semiconductor substrate),
First, an oxide film 22 is formed on this substrate 21. next,
Openings 23.24'e are formed in the oxide film 22 by a photolithography process.
After forming, a pair of N-type impurity layers (as source and drain) are formed using the openings 23 and 24 by diffusion technology.
Opposite conductivity type impurity layers 25 and 26 are formed on the surface of the substrate 21. (FIG. 2(a)) Thereafter, an oxidation treatment is performed to grow an oxide film so as to fill the openings 23 and 24, thereby making the oxide film on the substrate 21 approximately uniform in thickness. 5000~100
An oxide film (insulating@) 27 with a thickness of 00X is used. Next, an opening 28 is formed in this oxide film 27 by a photolithography process.

この開口部28は、前記一対のN型不純物層25.26
間のゲート領域において、さらにはドレインとしての一
方のN型不純物層26上に大きく(10〜15μm長の
N型不純物層26に対して2〜5μm位)延在して形成
される。その後、比較的低温、例えば800℃で酸化処
理を行う。すると、前記開口部28により露出したゲー
ト領域の基板部表面に30OA厚程度のゲート部酸化膜
29が形成される。同時に、同じく前記開口部28によ
り露出したN型不純物層26の表面部にドレイン開口部
酸化膜30が形成されるが、N型不純物層26は不純物
が高濃度に拡散されているため、ドレイン開口部酸化膜
30は、低温酸化においては、500〜800λ厚の厚
い膜となる。(第2図伽)) その後、基板21と同一導電型の不純物であるP型不純
物31例えばボロンを、開口部28より酸化膜29.3
0’!&通して基板21中にイオン注入法で打込む。こ
の時、ゲート部酸化膜29下の基板部に打込まれたP型
不純物31は、ゲート部敵化膜29が薄いため深い濃度
プロファイルを示す。一方、ドレイン開口部酸化膜30
下のドレインとしてのN型不純物層26中に打込まれた
P型不純物31は、ドレイン開口部酸化膜30が厚いた
め浅い濃度プロファイルを示す。勿論、この時の打込み
電圧および濃度は、50〜100v程度の耐圧特性によ
り適当な値に設定される必要がある。(第2図(C)) 次に、900℃、60〜90分程度の熱処理を02豚囲
気中で行う。すると、前記打込まれたP型不純物31が
活性化され、ソース・ドレインとしての一対のN型不純
物層25.26間の基板部にP+型不純物層(高濃度不
純物層)32が形成される。同時に、このP型不純物層
32と隣接する前記ドレインとしてのN型不純物層26
の一部が、その部分に打込まれたP型不純物31により
N〜層(低濃度不純物層)33となる。さらに、他部に
比較しでは薄い酸化膜29.30の部分の厚さが増して
全体がほぼ均一な厚さとなるように基板21上に酸化膜
34が形成される。しかる後、酸化膜34に、P壓不純
物層32上のゲート領域において開口部35を形成し、
それにより露出したP+型不純物層32の表面部にゲー
ト絶縁膜36を形成する。次いで、任意のスレッショル
ド電圧(例えば1.0〜1.5 V )を得るため、N
型不純物37例えばリンまたはヒ素などを前記ゲート絶
縁膜36を介してP型不純物層32の表面部に打込む。
This opening 28 is formed by the pair of N-type impurity layers 25 and 26.
In the gate region between them, it is formed to extend greatly (approximately 2 to 5 μm with respect to the N type impurity layer 26 having a length of 10 to 15 μm) on one of the N type impurity layers 26 serving as a drain. Thereafter, oxidation treatment is performed at a relatively low temperature, for example, 800°C. Then, a gate oxide film 29 having a thickness of about 30 OA is formed on the substrate surface of the gate region exposed through the opening 28. At the same time, a drain opening oxide film 30 is formed on the surface of the N-type impurity layer 26 exposed by the opening 28, but since the N-type impurity layer 26 has impurities diffused at a high concentration, the drain opening The partial oxide film 30 becomes a thick film with a thickness of 500 to 800λ in low-temperature oxidation. (Fig. 2)) Then, a P-type impurity 31, such as boron, which is an impurity of the same conductivity type as the substrate 21, is added to the oxide film 29.3 through the opening 28.
0'! & is implanted into the substrate 21 by ion implantation. At this time, the P-type impurity 31 implanted into the substrate below the gate oxide film 29 exhibits a deep concentration profile because the gate oxide film 29 is thin. On the other hand, the drain opening oxide film 30
The P-type impurity 31 implanted into the N-type impurity layer 26 serving as the lower drain exhibits a shallow concentration profile because the drain opening oxide film 30 is thick. Of course, the implantation voltage and concentration at this time need to be set to appropriate values based on the withstand voltage characteristics of about 50 to 100V. (FIG. 2(C)) Next, heat treatment is performed at 900° C. for about 60 to 90 minutes in the 02 pig enclosure. Then, the implanted P type impurity 31 is activated, and a P+ type impurity layer (high concentration impurity layer) 32 is formed in the substrate portion between the pair of N type impurity layers 25 and 26 serving as the source and drain. . At the same time, the N-type impurity layer 26 as the drain adjacent to this P-type impurity layer 32
A part of the layer becomes an N~ layer (low concentration impurity layer) 33 due to the P type impurity 31 implanted into that part. Further, the oxide film 34 is formed on the substrate 21 so that the thickness of the oxide film 29, 30, which is thinner than other parts, is increased so that the entire thickness becomes substantially uniform. Thereafter, an opening 35 is formed in the oxide film 34 in the gate region above the P impurity layer 32,
A gate insulating film 36 is formed on the surface portion of the P+ type impurity layer 32 exposed thereby. Then, to obtain an arbitrary threshold voltage (e.g. 1.0-1.5 V), N
A type impurity 37, such as phosphorus or arsenic, is implanted into the surface of the P-type impurity layer 32 through the gate insulating film 36.

(第2図(d)) そして、その打込み後、熱処理して前記N型不純物37
を活性化させることによp、チャンネル用P−不純物層
38をP+型不純物層32の表面部に得る。しかる後、
ソース争ドレインコンタクト孔を前記酸化膜34に形成
した上でソース電極39゜ドレイン電極40、さらには
ゲート電極41を形成する。(第2図(e)) 以上で高耐圧MO8FET が完成する。なお、この例
はNチャンネル高耐圧MOS FET の場合であるが
、各部の導電型をすべて逆にして同様にしてPチャンネ
ル高耐圧MOS FET ’e製造することができる。
(FIG. 2(d)) After the implantation, heat treatment is performed to form the N-type impurity 37.
By activating P, a channel P- impurity layer 38 is obtained on the surface of the P+ type impurity layer 32. After that,
After forming source and drain contact holes in the oxide film 34, a source electrode 39, a drain electrode 40, and a gate electrode 41 are formed. (Figure 2(e)) With the above steps, the high voltage MO8FET is completed. Although this example is for an N-channel high-voltage MOS FET, a P-channel high-voltage MOS FET can be manufactured in the same manner by reversing the conductivity type of each part.

(発明の効果) 以上の一実施例から明らかなように、この発明の方法で
は、半導体基板表面上の絶縁膜に、ソース・ドレインと
しての一対の不純物層間において、さらには前記一方の
不純物層上の一部に延在して開口部を形成した後、その
開口部を通して一導電型の不純物を基板部にイオン注入
し熱処理することによシ、ピンチオフ領域となる低濃度
不純物層と、ブレークダウン時、ドレインのゲート端で
発生した電流を流す低抵抗部としての高濃度不純物層と
を同時に形成することができる。したがって、高耐圧の
MOS FET ’を比較的簡単にして製造できる。
(Effects of the Invention) As is clear from the above embodiment, in the method of the present invention, the insulating film on the surface of the semiconductor substrate is coated between a pair of impurity layers serving as a source and a drain, and furthermore, After forming an opening extending over a part of the substrate, an impurity of one conductivity type is ion-implanted into the substrate through the opening and heat-treated to form a low-concentration impurity layer that will become a pinch-off region and break down. At the same time, a high-concentration impurity layer can be formed at the same time as a low-resistance portion through which current generated at the gate end of the drain flows. Therefore, a high voltage MOS FET' can be manufactured relatively easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高耐圧MO8FET の製造方法を示す
断面図、第2図はこの発明の半導体装置の製造方法の一
実施例1を示す断面図である。 21・・・シリコン基板、25.26・・・N型不純物
層、27・・・酸化膜、28・・・開口部、31・・・
P型不純物、32・・・P+型不純物層、33・・・r
層。 特許出願人 沖電気工業株式会社
FIG. 1 is a cross-sectional view showing a conventional method for manufacturing a high voltage MO8FET, and FIG. 2 is a cross-sectional view showing a first embodiment of the method for manufacturing a semiconductor device according to the present invention. 21... Silicon substrate, 25. 26... N-type impurity layer, 27... Oxide film, 28... Opening, 31...
P type impurity, 32...P+ type impurity layer, 33...r
layer. Patent applicant Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板の表面部にソース・ドレインとして
の一対の逆導電型不純物層を形成する工程と、その後、
前記半導体基板表面上の絶縁膜に前記一対の不純物層間
において、さらには前記一方の不純物層上の一部に延在
して開口部を形成する工程と、その開口部を介して一導
電型の不純物を基板部にイオン注入した後、熱処理する
ことにより、前記一対の逆導電型不純物層間の基板部に
一導電型の高濃度不純物層を形成すると同時に、この高
濃度不純物層と隣接する前記一方の逆導電型不純物層の
一部分を逆導電型の低濃度不純物層とする工程とを具備
することを特徴とする半導体装置の製造方法。
A step of forming a pair of opposite conductivity type impurity layers as a source and drain on the surface of a semiconductor substrate of one conductivity type, and then
forming an opening in the insulating film on the surface of the semiconductor substrate between the pair of impurity layers and further extending over a part of the one impurity layer; After ion-implanting impurities into the substrate portion, heat treatment is performed to form a high concentration impurity layer of one conductivity type in the substrate portion between the pair of opposite conductivity type impurity layers, and at the same time, to form a high concentration impurity layer of one conductivity type in the substrate portion between the pair of opposite conductivity type impurity layers, and at the same time, to form a high concentration impurity layer of one conductivity type in the substrate portion between the pair of opposite conductivity type impurity layers A method of manufacturing a semiconductor device, comprising the step of: forming a part of the opposite conductivity type impurity layer into a reverse conductivity type low concentration impurity layer.
JP3435484A 1984-02-27 1984-02-27 Manufacture of semiconductor device Pending JPS60180167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3435484A JPS60180167A (en) 1984-02-27 1984-02-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3435484A JPS60180167A (en) 1984-02-27 1984-02-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60180167A true JPS60180167A (en) 1985-09-13

Family

ID=12411811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3435484A Pending JPS60180167A (en) 1984-02-27 1984-02-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60180167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060033A (en) * 1988-08-18 1991-10-22 Seiko Epson Corporation Semiconductor device and method of producing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060033A (en) * 1988-08-18 1991-10-22 Seiko Epson Corporation Semiconductor device and method of producing semiconductor device

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
JP2000260987A (en) Semiconductor device and its manufacture
US6451676B2 (en) Method for setting the threshold voltage of a MOS transistor
JPS60180167A (en) Manufacture of semiconductor device
JPH04287332A (en) Manufacture of semiconductor element
JPH1032330A (en) Manufacture of lateral mos transistor
JP2000068499A (en) Semiconductor device and manufacture of the same
JPH05226593A (en) Manufacture of semiconductor device
JPS6225457A (en) Manufacture of vertical semiconductor device
JPH06169089A (en) Manufacture of vertical mosfet
JPH10107266A (en) Manufacture of mosfet
JPH0444432B2 (en)
JPH0234937A (en) Manufacture of semiconductor device
JP2909760B2 (en) DMOSFET manufacturing method
JPH11204783A (en) Semiconductor device and manufacture therefor
JPS6410952B2 (en)
JPH0411740A (en) Manufacture of vertical-type mos field-effect transistor
JPH0346370A (en) Mos type semiconductor device and manufacture thereof
JPH0311731A (en) Manufacture of semiconductor device
JPS6367778A (en) Manufacture of semiconductor device
JP2000307105A (en) Semiconductor device and manufacture thereof
JPH0321074A (en) Semiconductor integrated circuit device
JPH0316140A (en) Manufacture of mos-type semiconductor device
JPS60142557A (en) Manufacture of semiconductor device with high withstand voltage