JPS6014939A - Combustion catalyst for gas turbine - Google Patents

Combustion catalyst for gas turbine

Info

Publication number
JPS6014939A
JPS6014939A JP58121038A JP12103883A JPS6014939A JP S6014939 A JPS6014939 A JP S6014939A JP 58121038 A JP58121038 A JP 58121038A JP 12103883 A JP12103883 A JP 12103883A JP S6014939 A JPS6014939 A JP S6014939A
Authority
JP
Japan
Prior art keywords
carrier layer
catalyst
combustion
carrier
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121038A
Other languages
Japanese (ja)
Other versions
JPH0512021B2 (en
Inventor
Tomiaki Furuya
富明 古屋
Terunobu Hayata
早田 輝信
Chikau Yamanaka
矢 山中
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58121038A priority Critical patent/JPS6014939A/en
Publication of JPS6014939A publication Critical patent/JPS6014939A/en
Publication of JPH0512021B2 publication Critical patent/JPH0512021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To prevent formation of alloy during use and to utilize its activity effectively by allowing Pt and Pd in an active carrier layer to be isolated from each other. CONSTITUTION:Pt and Pd are supported in an active carrier layer 2 by covering the surface of the carrier 1 with a mixture comprising a material for the carrier layer such as alumina sol or gamma-alumina, fine powder of Pd or PdO or Pd salt, and drying and sintering the mixture, then covering the carrier layer with slurry of mixture comprising fine powder of Pt or PtO or Pt salt and a material of the carrier layer such as alumina sol or gamma-alumina, and drying and sintering. In this way, Pt is supported on the outside layer on the carrier layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービン用燃焼触媒に関し、更に詳しく
は、約300〜1500℃の温度範囲において、高活性
を有するガスタービン用燃焼触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a combustion catalyst for a gas turbine, and more particularly to a combustion catalyst for a gas turbine that has high activity in a temperature range of about 300 to 1500°C.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油資源等の枯渇化に伴い、エネルギー資源を効
率的に使用するため、例えば、ガスタービン等において
は、できるだけ高温において燃料を燃焼させることが望
まれている。
In recent years, with the depletion of petroleum resources and the like, in order to use energy resources efficiently, for example, in gas turbines and the like, it is desired to burn fuel at as high a temperature as possible.

しかしながら、従来の燃焼方法は、燃料と空気の混合物
を、ス/e−クプラグ等を用いて着火して、気相燃焼せ
しめる方法であるため、燃焼器内には部分的に2000
℃を超える高温部が存在することになる。そして、この
場合、高温部において、窒素酸化物(NO! ”)が多
量に生成し、環境汚染等の問題を生ずることが知られて
いる。
However, in the conventional combustion method, a mixture of fuel and air is ignited using a spark plug or the like to cause gas phase combustion.
There will be a high temperature area exceeding ℃. In this case, it is known that a large amount of nitrogen oxides (NO!'') are generated in the high temperature section, causing problems such as environmental pollution.

このような問題を解消するために、触媒を用いて燃料と
空気の混合物を燃焼せしめる触媒燃焼方式が提案されて
いる。この燃焼方式によれば、均一な燃焼が可能となシ
、且つ、NOxが生成しない上限温度である1500℃
程度まで、燃焼温度を高めることができる。
In order to solve these problems, a catalytic combustion method has been proposed in which a mixture of fuel and air is combusted using a catalyst. According to this combustion method, uniform combustion is possible and the upper limit temperature at which no NOx is generated is 1500°C.
The combustion temperature can be increased to a certain degree.

この触媒燃焼方式をガスタービンに適用する場合、用い
る燃焼触媒には相反する2つの特性が要求される。すな
わち、低温着火性と耐熱性である。
When this catalytic combustion method is applied to a gas turbine, the combustion catalyst used is required to have two contradictory characteristics. That is, low-temperature ignitability and heat resistance.

現在実用されているガスタービンにおいて、燃焼用空気
は300℃程度に予熱された後、圧縮送風機で燃焼器に
導入されている。そして、火炎燃焼した混合気は120
0℃程度に冷却された後タービン内へ送入される。従っ
て、ガスタービン燃焼器内に燃焼用触媒充填部を設置し
た場合、該燃焼触媒には300℃程度の温度で燃料用ガ
スを着火させると共に、燃焼ガスによる1200℃程度
の温度に耐えることが要求されることになる。
In gas turbines currently in use, combustion air is preheated to about 300° C. and then introduced into the combustor using a compressor blower. And the mixture that burns in flame is 120
After being cooled to about 0°C, it is sent into the turbine. Therefore, when a combustion catalyst filling part is installed in a gas turbine combustor, the combustion catalyst is required to ignite the fuel gas at a temperature of about 300°C and to withstand a temperature of about 1200°C caused by the combustion gas. will be done.

このようなガスタービン用燃焼触媒としては、第1図に
例示したような構造の貴金属系触媒が知られている。す
なわち、一定の機械的強度を有するα−アルミナのよう
な耐熱性担体1の表面にγ−アルミナのような活性担体
の多孔質層2を設け、該担体層2の表面に各種の貴金属
の粒子3を1種又は2種以上浸漬法などによって付着・
担持せしめたものである。この場合、担体層2を設ける
に当シ、その材料に貴金属の触媒源を混合しこの混合物
で耐熱性担体1の表面を被覆してもよい。いずれにして
も、触媒能を有する貴金属は担体層2の表面に均一に担
持されるか又は一部を表面に露出した状態で担体層2に
均一に分散している。
As such a combustion catalyst for a gas turbine, a noble metal catalyst having a structure as illustrated in FIG. 1 is known. That is, a porous layer 2 of an active carrier such as γ-alumina is provided on the surface of a heat-resistant carrier 1 such as α-alumina having a certain mechanical strength, and particles of various noble metals are provided on the surface of the carrier layer 2. 3 by one or more types of immersion method etc.
This is what I was made to carry. In this case, when providing the carrier layer 2, a noble metal catalyst source may be mixed with the material and the surface of the heat-resistant carrier 1 may be coated with this mixture. In any case, the noble metal having catalytic ability is uniformly supported on the surface of the carrier layer 2 or is uniformly dispersed in the carrier layer 2 with a portion thereof exposed on the surface.

とくに、この種の触媒においては、貴金属として白金(
pt)tノ+ラジウム(pa )又はそれらの合金が多
用されている。とくにptとPdを同時に混在した状態
で担持する触媒が知られている。
In particular, this type of catalyst uses platinum (
pt) and radium (pa) or alloys thereof are frequently used. In particular, catalysts that support pt and Pd in a mixed state are known.

しかしながら、PtとPdを混在して担持する触媒には
次のような問題がある。すなわち、低温から高温に至る
温度域全般に亘って高活性を示さないということである
However, catalysts that support a mixture of Pt and Pd have the following problems. That is, it does not exhibit high activity over the entire temperature range from low to high temperatures.

したがって、このような触媒は、300℃〜1500℃
という広範囲な温度域においても高活性を必要とするよ
うなガスタービン用の燃焼触媒として必ずしも有効なも
のではない。
Therefore, such a catalyst is suitable for temperatures between 300°C and 1500°C.
It is not necessarily effective as a combustion catalyst for gas turbines that require high activity even in such a wide temperature range.

〔発明の目的〕[Purpose of the invention]

本発明は、上記したような従来のガスタービン用燃焼触
媒における欠点を解消し、低温での着火性に優れ、30
0〜1500℃の温度域にあっても高活性テある新規な
構造のガスタービン用燃焼触媒の提供を目的とする。
The present invention eliminates the drawbacks of conventional combustion catalysts for gas turbines as described above, has excellent ignition performance at low temperatures, and has a
An object of the present invention is to provide a combustion catalyst for a gas turbine having a novel structure that has high activity even in a temperature range of 0 to 1500°C.

〔発明の概要〕[Summary of the invention]

本発明者らは、Pt 、 Pdを担持する触媒における
上記した問題点を解決すべく鋭意研究を重ねた結果、天
然ガスを燃料にした場合、Pdは600℃以下の低温域
では優れた活性を示し、Ptは600℃以上の高温域で
は優れた活性を示すという事実を見出し、また、活性担
体層にptとPdが混在する場合には、両者は相互に近
接して位置するので使用中に触媒中のptとPdがそれ
ぞれ熱移動し遂にはPdよシ低温における活性の低いp
t /paの合金を形成してしまうという事実を見出し
た。これらの事実から、活性担体層におけるptとPd
の存在形態を、混在した状態ではなく相互に隔離しあっ
た状態で存在させれば、使用中の合金化は起らず、それ
ぞれの活性が有効に利用できるとの着想を得、本発明の
ガスタービン用燃焼触媒を開発するに到った。
The present inventors have conducted extensive research to solve the above-mentioned problems with catalysts supporting Pt and Pd, and have found that when natural gas is used as fuel, Pd has excellent activity at low temperatures below 600°C. They found that Pt exhibits excellent activity in the high temperature range of 600°C or higher, and also found that when Pt and Pd are mixed in the active carrier layer, they are located close to each other, so it is difficult to use during use. Pt and Pd in the catalyst transfer heat, and eventually Pd has lower activity at low temperatures than Pd.
It has been discovered that an alloy of t/pa is formed. From these facts, it is clear that pt and Pd in the active carrier layer
The present invention was developed based on the idea that if the forms of existence of the We have developed a combustion catalyst for gas turbines.

すなわち、本発明のガスタービン用燃焼触媒は、耐熱性
担体と、該担体の表面を被覆して形成される活性担体層
と、該担体層内又は表面に分散して担持される白金及び
・やラジウムの粒子とから成るガスタービン用燃焼触媒
において、該白金及びノ9ラジウムの粒子が、該担体層
内又は表面に混在して分散するのではなく、それぞれ別
個に層を成して存在していることを特徴とする。
That is, the combustion catalyst for gas turbines of the present invention includes a heat-resistant carrier, an active carrier layer formed by coating the surface of the carrier, and platinum and/or etc. dispersed and supported within or on the carrier layer. In a gas turbine combustion catalyst consisting of radium particles, the platinum and radium particles are not mixed and dispersed in or on the carrier layer, but are present in separate layers. It is characterized by the presence of

本発明の触媒の1例を第2図に示す。図で1は耐熱性担
体である。本発明において使用される耐熱性担体は、1
500℃程度の高温酸化性雰囲気中においても安定な性
質を有するものであればいかなるものでもよく、これら
の具体例としては、コージライト、ムライト、α−アル
ミナ、ジルコニアスピネル、チタニア等のセラミック製
担体等が挙げられる。担体の形状は、通常、触媒体とし
て使用されている形状であれば特(制限はなく、例えば
、ペレット状、)・ニカム状尋が挙げられる。
An example of the catalyst of the present invention is shown in FIG. In the figure, 1 is a heat-resistant carrier. The heat-resistant carrier used in the present invention is 1
Any material may be used as long as it has stable properties even in a high-temperature oxidizing atmosphere of about 500°C, and specific examples thereof include ceramic supports such as cordierite, mullite, α-alumina, zirconia spinel, and titania. etc. The shape of the carrier is not particularly limited as long as it is in a shape normally used as a catalyst, such as pellets, nicum-like, etc.

2は、耐熱性担体1の表面を被覆して形成される活性担
体の層で、γ−アルミナ、α−アルミナ。
2 is an active carrier layer formed by coating the surface of the heat-resistant carrier 1, which is γ-alumina and α-alumina.

ジルコニアなどの多孔質セラミックス又はこれに各種の
希土類を含有せしめて成る層であシ、本発明にあっては
特別に限定されるものではない。
The present invention is not particularly limited to a layer made of porous ceramics such as zirconia or a layer made of porous ceramics containing various rare earth elements.

4.5はそれぞれPd 、 Ptの粒子である。本発明
にあっては、Pd l Ptが担体層2の表面に混在し
て存在するのではなく、各金属が担体lの表面垂直方向
にある間隔をおいていわば触媒表面に広がる層状に別々
に存在することを最大の特徴とする。
4.5 are Pd and Pt particles, respectively. In the present invention, Pd l Pt is not present in a mixed manner on the surface of the carrier layer 2, but each metal is separately present in a layer-like manner spread over the catalyst surface at certain intervals in the direction perpendicular to the surface of the carrier l. Its greatest feature is that it exists.

活性担体層2へのPd 、 Ptの担持は次のようにし
て行なうことができる。第1の方法。まず、アルミナゾ
ル又はγ−アルミナなどの担体層の材料とPdあるいは
PdOの微粉又はPdの塩の微粉を混合し、この混合物
のスラリーで担体1の表面を被覆した後、乾燥して焼成
する。担体層が形成されそこにはPd 4が担持される
。このとき用いるPdの塩としては、塩化パラジウム、
Pd(、t2(NH5)2 r(NH4)2PdCt4
. Pd(OH)2などをあげることができる。
Pd and Pt can be supported on the active carrier layer 2 as follows. First method. First, a carrier layer material such as alumina sol or γ-alumina is mixed with fine powder of Pd or PdO or fine powder of Pd salt, and the surface of the carrier 1 is coated with a slurry of this mixture, and then dried and fired. A carrier layer is formed on which Pd 4 is supported. The Pd salts used at this time include palladium chloride,
Pd(,t2(NH5)2 r(NH4)2PdCt4
.. Examples include Pd(OH)2.

次に、との担体層の上を、Ptあるいはptoの微粉又
はその塩の微粉とアルミナゾル又はγ−アルミナなどの
担体層の材料から成る混合物スラリーで被覆した後乾燥
して焼成する。用いるptの塩としては、ヘキサクロロ
白金酸、塩化白金、テトラクロロ白金酸などをあげるこ
とができる。
Next, the carrier layer is coated with a slurry of a mixture consisting of a fine powder of Pt or pto, or a fine powder of its salt, and a carrier layer material such as alumina sol or γ-alumina, and then dried and fired. Examples of the pt salt used include hexachloroplatinic acid, platinum chloride, and tetrachloroplatinic acid.

このようにして、第2図のように担体層2の内側にはP
dが担持され、それからある間隔をおいて外側にはpt
が担持されている担体層が構成される。
In this way, as shown in FIG.
d is carried, and then, at a certain interval, pt is carried on the outside.
A carrier layer on which is carried is constituted.

第2の方法。担体1の表面に例えばアルミナゾル、γ−
アルミナのスラリーのみを用いて活性担体層2を形成す
る。つぎに、これを所定濃度の例えば塩化パラジウム溶
液に浸漬して活性担体層2の表面にPdを担持させる。
Second method. For example, alumina sol, γ-
The active carrier layer 2 is formed using only an alumina slurry. Next, this is immersed in, for example, a palladium chloride solution of a predetermined concentration, so that Pd is supported on the surface of the active carrier layer 2.

その後、この上に上記と同様にして再び活性担体層を形
成し、それを例えばヘキサクロロ白金酸溶液に浸漬して
ptを第2の活性担体層に担持させる。かくして、担体
、第1の活性担体層、 Pd0層、第2の活性担体層。
Thereafter, an active carrier layer is again formed on this in the same manner as above, and it is immersed in, for example, a hexachloroplatinic acid solution to support pt on the second active carrier layer. Thus, the carrier, the first active carrier layer, the Pd0 layer, the second active carrier layer.

pto層がそれぞれ所定の間隔を置いて形成される。PTO layers are formed at predetermined intervals.

すなわち、この場合もPd 、 Ptは互いに近接する
ことなく存在することになる。この場合、活性担体層は
多孔質なので内側のPdにも燃料と空気の混合気は接触
することができる。
That is, in this case as well, Pd and Pt exist without being close to each other. In this case, since the active carrier layer is porous, the mixture of fuel and air can also come into contact with the Pd inside.

なお、2つの方法において、活性担体層へのPd 、 
Ptの存在順序を逆にしても何ら不都合を生しないこと
はいうまでもない。
In addition, in the two methods, Pd to the active carrier layer,
Needless to say, there is no problem even if the order of Pt is reversed.

〔発明の実施例〕[Embodiments of the invention]

(1)触媒の調製 アルミナゾルZoo、!9.硝酸セリウム7g、塩化・
母ラジウム水溶液20I!を適当量の水に分散させてス
ラ9−(I)を調製した。また、アルミナゾル100)
F、硝酸セリウム711.ヘキサクロロ白金酸溶液15
gを適当量の水に分散させてスラリ=(■)を調製した
(1) Preparation of catalyst Alumina sol Zoo! 9. 7g of cerium nitrate, chloride
Mother radium aqueous solution 20I! Sura 9-(I) was prepared by dispersing it in an appropriate amount of water. Also, alumina sol 100)
F, cerium nitrate 711. Hexachloroplatinic acid solution 15
A slurry (■) was prepared by dispersing g in an appropriate amount of water.

内径25簡、長さ150+mnのコーノライト製のハニ
カム担体をスラリー(I)で被覆し、乾燥後1000℃
で焼成した。更にこの上をスラリ=(I[)で被覆し、
乾燥後1000Cで焼成した。これを触媒Aとした。
A cornolite honeycomb carrier with an inner diameter of 25 mm and a length of 150+ mm was coated with slurry (I) and dried at 1000°C.
It was fired in Furthermore, coat this with slurry = (I[),
After drying, it was fired at 1000C. This was designated as catalyst A.

同様のハニカム担体をスラリー(I)で被覆し、乾燥後
1000℃で焼成したものを触媒B1スラリー(■)で
被覆し乾燥後焼成したものを触媒c1スラ’)−(I)
とスラリー(II)を混合した混合スラリーで被覆し乾
燥後焼成したものを触媒りとしだ。
A similar honeycomb carrier was coated with slurry (I), dried and calcined at 1000°C, then coated with catalyst B1 slurry (■), dried and calcined to form catalyst c1 slurry')-(I).
The catalyst was coated with a mixed slurry of and slurry (II), dried and calcined, and then used as a catalyst.

これら触媒のうち触媒Aが本発明の触媒である。Among these catalysts, catalyst A is the catalyst of the present invention.

(2) 触媒の効果 以上4種類の触媒の中に、濃度3%のメタンガス流を入
口流速20m/@eeで流入し、各触媒温度におけるメ
タン転化率を測定した。その結果を第3図に示した。図
から明らかなように、触媒A(曲線a)、触媒D(曲”
線d)は低温域からメタン転化率が太き(500℃以上
でガスは完全燃焼した。触媒B(曲線b)は低温域から
メタンガスは転化するが、600℃以上でも完全燃焼す
ることがない。触媒C(曲線C)は500℃以下ではほ
とんどメタンを転化しないが600℃以上で完全燃焼し
た。
(2) Effects of catalyst A methane gas flow with a concentration of 3% was introduced into four types of catalysts at an inlet flow rate of 20 m/@ee, and the methane conversion rate at each catalyst temperature was measured. The results are shown in Figure 3. As is clear from the figure, catalyst A (curve a), catalyst D (curve “
Line d) indicates that the methane conversion rate is large from the low temperature range (gas was completely combusted at temperatures above 500°C. For catalyst B (curve b), methane gas is converted from the low temperature range, but complete combustion does not occur even above 600°C). Catalyst C (curve C) hardly converted methane at temperatures below 500°C, but completely burned at temperatures above 600°C.

次に、これら4種類の触媒を予め空気中で1000’0
.30時間加熱しておき、それを用いて上と同様の条件
でメタン転化率を測定した。その結果を第4図に示しだ
。触媒A(曲線a/ )は低温域からメタン転化率は高
く520℃以上で完全燃焼した。
Next, these four types of catalysts were preliminarily heated at 1000'0 in air.
.. After heating for 30 hours, the methane conversion rate was measured under the same conditions as above. The results are shown in Figure 4. Catalyst A (curve a/ ) had a high methane conversion rate in the low temperature range and was completely combusted at 520°C or higher.

触媒B(曲線b/)は低温域からメタンを転化するが6
00℃以上の高温域でもガスを完全燃焼させることはな
かった。触媒C(曲線C′)は550℃以下の低温域で
はほとんどメタンを転化しなかったが、620℃でガス
を完全燃焼させた。そして、触媒D(曲線d′)は、第
3図の曲線dとは全く異なり、540℃の低温域ではほ
とんどメタンを転化することなく、650℃以上の高温
域ではじめてメタンを完全燃焼させた。
Catalyst B (curve b/) converts methane from the low temperature range, but 6
Even at high temperatures of 00°C or higher, the gas was not completely combusted. Catalyst C (curve C') hardly converted methane at low temperatures below 550°C, but completely combusted the gas at 620°C. Catalyst D (curve d') is completely different from curve d in Figure 3; it converts almost no methane in the low temperature range of 540°C, and completely burns methane only in the high temperature range of 650°C or higher. .

〔発明の効果〕〔Effect of the invention〕

本発明のガスタービン用燃焼触媒は、従来の貴金属系燃
焼触媒に比べて、低温着火性を保持し力から、その耐熱
性が大幅に向上したものである。
The combustion catalyst for gas turbines of the present invention maintains low-temperature ignitability and has significantly improved heat resistance compared to conventional noble metal-based combustion catalysts.

従って、エネルギーの節約及び効率的利用が可能であり
、又、NOx等を発生させることなく燃焼が可能である
ため、環境汚染等の問題を惹き起こすことがなく有用で
ある。
Therefore, energy can be saved and used efficiently, and combustion can be performed without generating NOx or the like, so it is useful without causing problems such as environmental pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれガスタービン用の燃焼触媒の
表面部分を模式的に表わす図で、第1図が従来のもの、
第2図が本発明のものである。 第3図は実施例の触媒の入口温度とメタン転化率の関係
図、第4図は実施例の触媒を空気中で1000℃、30
時間加熱した後における入口温度とメタン転化率の関係
図である。 1・・・耐熱性担体、2・・・活性担体層、3・・・貴
金属の粒子、4・・・Pd、5・・・Pt0第0図 第2回 第3目 き口j匙、L (0c)− λV子炙 (0C)
Figures 1 and 2 are diagrams schematically representing the surface portions of combustion catalysts for gas turbines, respectively; Figure 1 is a conventional one;
FIG. 2 shows the present invention. Fig. 3 is a diagram showing the relationship between the inlet temperature and methane conversion rate of the catalyst of the example, and Fig. 4 shows the relationship between the inlet temperature and the methane conversion rate of the catalyst of the example.
FIG. 2 is a diagram showing the relationship between inlet temperature and methane conversion rate after heating for a certain period of time. DESCRIPTION OF SYMBOLS 1...Heat-resistant carrier, 2...Active carrier layer, 3...Precious metal particles, 4...Pd, 5...Pt0 Figure 0 2nd 3rd opening spoon, L (0c) - λV Roasted (0C)

Claims (1)

【特許請求の範囲】 耐熱性担体と、該担体の表面を被覆して形成される活性
担体層と、該担体層内又は表面に分散して担持される白
金及び・やラジウムの粒子とから成るガスタービン用燃
焼触媒において、 該白金及び・母ラジウムの粒子が、該担体層内又は表面
に混在して分散するのではなく、それぞれ別個に層を成
して存在していることを特徴とするガスタービン用燃焼
触媒。
[Claims] Consisting of a heat-resistant carrier, an active carrier layer formed by coating the surface of the carrier, and particles of platinum and/or radium dispersed and supported within or on the carrier layer. The combustion catalyst for gas turbines is characterized in that the platinum and mother radium particles are not mixed and dispersed in or on the carrier layer, but are present in separate layers. Combustion catalyst for gas turbines.
JP58121038A 1983-07-05 1983-07-05 Combustion catalyst for gas turbine Granted JPS6014939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121038A JPS6014939A (en) 1983-07-05 1983-07-05 Combustion catalyst for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121038A JPS6014939A (en) 1983-07-05 1983-07-05 Combustion catalyst for gas turbine

Publications (2)

Publication Number Publication Date
JPS6014939A true JPS6014939A (en) 1985-01-25
JPH0512021B2 JPH0512021B2 (en) 1993-02-17

Family

ID=14801278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121038A Granted JPS6014939A (en) 1983-07-05 1983-07-05 Combustion catalyst for gas turbine

Country Status (1)

Country Link
JP (1) JPS6014939A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JP2007180018A (en) * 2005-12-02 2007-07-12 Mitsubishi Materials Corp Porous titanium with small contact resistance and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JP2007180018A (en) * 2005-12-02 2007-07-12 Mitsubishi Materials Corp Porous titanium with small contact resistance and its manufacturing method

Also Published As

Publication number Publication date
JPH0512021B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
JPH02214540A (en) Catalyst for purification of exhaust gas and production thereof
JPS6133233A (en) Combustion catalyst for methane fuel and combustion system using said catalyst
JPS6014939A (en) Combustion catalyst for gas turbine
JPS6014938A (en) Combustion catalyst for gas turbine
JPS60200021A (en) Combustor of gas turbine
JPS5952529A (en) High temperature combustion catalyst
JPS62216642A (en) Catalytic material for gas turbine combustor
JPS60147243A (en) Gas turbine combustor
JPS60205115A (en) Combustion catalyst system and combustion therewith
JPS60205116A (en) Combustion catalyst system and combustion therewith
JPS59169536A (en) High temperature combustion catalyst
JPH0215254B2 (en)
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JP2585212B2 (en) Gas turbine combustor
JPS60205129A (en) Combustor for gas-turbine
JP2585253B2 (en) Catalyst for gas turbine combustor
JP2633554B2 (en) Method for producing high temperature combustion catalyst
JPH07112542B2 (en) Method for producing oxidation catalyst
JPS58183948A (en) High temperature combustion catalyst
JPS6388041A (en) Oxidizing catalyst
JPS62149346A (en) Catalyst for combustion
JPH02214541A (en) Production of catalyst for purification of exhaust gas
JPS63232849A (en) Production of high-temperature combustion catalyst
JPS60147241A (en) Gas turbine combustor
JPH06159631A (en) Method for igniting combustion gas