JPS63232849A - Production of high-temperature combustion catalyst - Google Patents

Production of high-temperature combustion catalyst

Info

Publication number
JPS63232849A
JPS63232849A JP6557487A JP6557487A JPS63232849A JP S63232849 A JPS63232849 A JP S63232849A JP 6557487 A JP6557487 A JP 6557487A JP 6557487 A JP6557487 A JP 6557487A JP S63232849 A JPS63232849 A JP S63232849A
Authority
JP
Japan
Prior art keywords
combustion
alumina
catalyst
powder
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6557487A
Other languages
Japanese (ja)
Inventor
Masamichi Ito
伊東 正道
Akio Ogoshi
大越 昭男
Kenjirou Shizukawa
靜川 賢次郎
Terunobu Hayata
早田 輝信
Tomiaki Furuya
富明 古屋
Chikau Yamanaka
矢 山中
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6557487A priority Critical patent/JPS63232849A/en
Publication of JPS63232849A publication Critical patent/JPS63232849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To enhance catalytic activity at high temp. by adding oxide powder of rare earth elements alumina sol to Al2O3 powder contg. rare earth elements, crushing and mixing the mixture and sticking it on the surface of a carrier and thereafter calcining it. CONSTITUTION:After blending oxide powder of at least one kind of element selected from among lanthanum, praseodymium and neodymium and alumina sol with alumina powder contg. at least one kind of element selected from among lanthanum, praseodymium and neodymium, the mixture is crushed and mixed for 1-100hr. After sticking this crushed mixture on the surface of the base material of a carrier to form an alumina layer, this is calcined in the nonoxidative atmosphere and a high-temp. combustion catalyst is obtained by depositing noble metal on this carrier. As the kind of noble metal, in the case of combustion of methane, Pd is preferably used and in the case of combustion of propane, Pt is used.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高温燃焼触媒の製造方法に関し、さらに詳・
シ〈は、約800〜1500℃の温度範囲において高い
活性を有し、かつ寿命の長い高温燃焼触媒を製造する方
法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing a high-temperature combustion catalyst.
The present invention relates to a method for producing a high-temperature combustion catalyst that has high activity in the temperature range of about 800 to 1500°C and has a long life.

(従来の技術) 近年、石油資源等の枯渇化に伴い、エネルギー資源を効
率的に使用するため1例えば、ガスタービン等において
は、できるだけ高温において燃ネ1を燃焼させることが
望まれている。
(Prior Art) In recent years, with the depletion of petroleum resources and the like, in order to use energy resources efficiently, for example, in gas turbines and the like, it is desired to burn fuel 1 at as high a temperature as possible.

しかしながら、従来は、燃料と空気の混合物を、スパー
クプラグ等を用いて着火燃焼せしめる方法であるため、
燃焼器内において、部分的に2000℃を超える高温部
が存在する。そして。
However, the conventional method is to ignite and burn a mixture of fuel and air using a spark plug or the like.
Inside the combustor, there is a high temperature area that partially exceeds 2000°C. and.

この高温部において、窒素酸化物(NOx)が多Uに生
成し、環境汚染等の問題を生ずることが知られている。
It is known that nitrogen oxides (NOx) are generated in large quantities in this high temperature section, causing problems such as environmental pollution.

このような問題を解消するために、触媒を用いて燃ネ°
1と空気の混合物を燃焼せしめる触媒燃焼方式が提案さ
れている。この燃焼方式によれば、均一燃焼が可能であ
り、且つ、NOxが生成しない上限温度である1500
℃程度まで、燃焼温度を高めることができる。
In order to solve these problems, catalysts are used to reduce fuel consumption.
A catalytic combustion method has been proposed in which a mixture of 1 and air is combusted. According to this combustion method, uniform combustion is possible and the upper limit temperature at which no NOx is generated is 1500℃.
The combustion temperature can be increased to about ℃.

現在、触媒燃焼方式に使用される触媒とじては、白金(
pt)系の貴金属触媒が知られている。このような11
L金屈系燃焼触媒は、例えば、一定の機械的強度を有す
る担体上に、活性担体としてγ−アルミナ(γ−A見2
03)を塗布し、更に、浸漬法により、貴金属を担持さ
せる方法により製造されたものである。
Currently, the catalyst used in catalytic combustion systems is platinum (
pt)-based noble metal catalysts are known. 11 like this
For example, the L-metallic combustion catalyst is made of γ-alumina (γ-A2) as an active carrier on a carrier having a certain mechanical strength.
03) and further, by a dipping method, a noble metal was supported.

しかしながら、上記の製造方法を適用して得られた貴金
属系燃焼触媒は、その耐熱温度が通常600 ’0と言
われており、それ以上の温度域では触媒活性が急速に低
下し、使用することができないという問題点を有してい
る。
However, the noble metal combustion catalyst obtained by applying the above manufacturing method is said to have a heat resistance temperature of 600'0, and its catalytic activity rapidly decreases in the temperature range higher than that, making it unsuitable for use. The problem is that it cannot be done.

600℃以上の温度において、触媒活性が急速に低下す
る原因は、次のように考えることができる。先ず、第1
に、担体表面の貴金属粒子が熱移動により凝集して粗大
化するため、触媒表面積が減少し、燃焼性能が低下する
。そして、第2に、γ−AU、03が1000℃付近か
らそれ以上の温度において、α−A文203に相転移す
るため、A1203層内において或いはA!L20.と
担体との間においてクラックが生じ、Al1203層が
触媒金属と共に剥離脱落することに起因すると考えられ
る。
The reason why the catalyst activity rapidly decreases at a temperature of 600° C. or higher can be considered as follows. First, the first
Second, the noble metal particles on the surface of the carrier aggregate and become coarse due to heat transfer, resulting in a decrease in the catalyst surface area and a deterioration in combustion performance. Second, since γ-AU, 03 undergoes a phase transition to α-A pattern 203 at temperatures around 1000° C. or higher, within the A1203 layer or A! L20. This is thought to be due to the fact that cracks occur between the substrate and the Al1203 layer and the Al1203 layer peels off together with the catalyst metal.

そこで、111金属系燃焼触媒の耐熱性を向上せしめる
ために、γ−AJ1203層を改良し、γ−A文、03
層上のpt粒子をAfL20.に強く吸着させて熱移動
による凝集を防11二すると共に、γ−A文203層の
α化を防止してクラックの発生を防ぐことが試みられて
いる。
Therefore, in order to improve the heat resistance of the 111 metal combustion catalyst, the γ-AJ1203 layer was improved, and the γ-A pattern and 03
AfL20.PT particles on the layer. Attempts have been made to prevent agglomeration due to heat transfer by strongly adsorbing the γ-A layer, and also to prevent the occurrence of cracks by preventing α-ization of the γ-A texture layer.

その結果、γ−AfL203層へ金属を添加せしめたも
のが開発されており、このものは例えば自動車用触媒と
して800″C前後までの使用に耐えることが確認され
ているが、しかし、それ以上の温度での耐熱性について
は未だ充分とは言えず、さらに改良の余地が残されてい
る。
As a result, a product with metal added to the γ-AfL203 layer has been developed, and it has been confirmed that this product can withstand use up to around 800"C as an automobile catalyst, for example. The heat resistance at high temperatures is still not sufficient, and there is still room for further improvement.

(発明が解決しようとする問題点) このように、従来の燃焼触媒の製造方法にあっては、得
られた燃焼触媒の高温、例えば800℃以上における耐
熱性が充分ではなく。
(Problems to be Solved by the Invention) As described above, in the conventional method for producing a combustion catalyst, the obtained combustion catalyst does not have sufficient heat resistance at high temperatures, for example, 800° C. or higher.

高活性を維持することができないという問題がある。There is a problem that high activity cannot be maintained.

本発明は従来のかかる問題を解消し、約800〜150
0℃の温度範囲においても高い活性を有し、かつ長寿命
の高温燃焼触媒を製造しうる方法の提供を目的とする。
The present invention solves this conventional problem, and the
The object of the present invention is to provide a method for producing a high-temperature combustion catalyst that has high activity even in a temperature range of 0° C. and has a long life.

[発明の構成] (問題点を解決するための手段および作用)本発明者ら
は、上記目的を達成すべく鋭意研究を重ねた結果、アル
ミナに希土類元素を配合するに当り、配合されるべき希
土類元素の一部を予めA文203粉末に含有せしめてお
き、残部を酸化物粉末として混合するという2段階の配
合方式を採用すると、得られる触媒の耐熱性において優
れた効果が得られることを見出して本発明を完成するに
至った。
[Structure of the Invention] (Means and effects for solving the problem) As a result of intensive research to achieve the above object, the present inventors have found that when a rare earth element is blended into alumina, it should be blended. It has been found that by adopting a two-step blending method in which a part of the rare earth element is pre-contained in the A-203 powder and the remainder is mixed as an oxide powder, an excellent effect on the heat resistance of the resulting catalyst can be obtained. This discovery led to the completion of the present invention.

すなわち、本発明の高温燃焼触媒の製造方法は、ランタ
ン、プラセオジムおよびネオジムから選ばれた少なくと
も1種の元素を含有してなるアルミナ粉末に、ランタン
、プラセオジムおよびネオジムから選ばれた少なくとも
1種の元素の酸化物粉末およびアルミナゾルを配合して
1〜100時間粉砕φ混合する工程と;この粉砕混合物
を担体基材表面に付着せしめてアルミナ層を形成する工
程・と;これを非酸化性雰囲気中で焼成する工程と:該
担体に貴金属を担持せしめる工程とからなることを特徴
とする。
That is, in the method for producing a high-temperature combustion catalyst of the present invention, at least one element selected from lanthanum, praseodymium, and neodymium is added to alumina powder containing at least one element selected from lanthanum, praseodymium, and neodymium. A step of blending the oxide powder and alumina sol and pulverizing and mixing for 1 to 100 hours; A step of adhering this pulverized mixture to the surface of a carrier base material to form an alumina layer; It is characterized by comprising a step of firing and a step of supporting the noble metal on the carrier.

以下に本発明方法を適用した燃焼触媒の製造工程を順次
説明する。
The manufacturing process of a combustion catalyst to which the method of the present invention is applied will be sequentially explained below.

第1の工程は、アルミナ(AfL203)粉末に所定の
添加物を配合、粉砕・混合していわゆるアルミナコーテ
イング液を調製する工程である。
The first step is to prepare a so-called alumina coating liquid by blending, pulverizing and mixing specified additives with alumina (AfL203) powder.

この工程においては、まず、アルミナ粉末として希土類
元素であるランタン(La)、プラセオジム(P r)
およびネオジム(N d)から選ばれた少なくとも1種
の元素を含有してなるものを使用する。このとき、人文
203粉末へ希土類元素を含有せしめる方法はとくに制
限されるものではなく1例えば含浸法など通常の方法を
適用することができる。含浸法を適用する場合は、希土
類元素とA9.2osとの反応を充分に進行させるため
に、含浸後、900℃以上で焼成することが好ましい、
このとき、A文203粉末に対する希土類元素の含有量
は、各元素の酸化物に換算して!〜301[−%とする
ことが好ましい、なお、使用するA見203粉末は最終
的に得られる触媒の比表面積を増大させるために微細な
ものであることが好ましいが、過度に微細なものを使用
すると触媒の耐熱性が低下するため1通常、平均粒径が
0.1μIR〜1■程度のものを使用することが好まし
い、また、このAJ1203粉末は、γ−AfL203
もしくはこれ以上の耐熱性を有する高温型A又203で
あることが好ましく、水酸化物型のAl2O3を使用す
る場合は400〜800℃で一旦熱処理したのち使用に
供することが好ましい。
In this process, first, rare earth elements lanthanum (La) and praseodymium (Pr) are used as alumina powder.
and neodymium (Nd). At this time, the method of incorporating the rare earth element into the Humanities 203 powder is not particularly limited, and a conventional method such as an impregnation method can be applied. When applying the impregnation method, in order to sufficiently advance the reaction between the rare earth element and A9.2os, it is preferable to bake at 900 ° C. or higher after impregnation.
At this time, the content of rare earth elements in the A-mon 203 powder is converted into oxides of each element! It is preferable that the A-203 powder to be used is fine in order to increase the specific surface area of the catalyst finally obtained, but it is preferable to set the powder to 301 [-%. Since the heat resistance of the catalyst decreases when used, it is usually preferable to use particles with an average particle size of about 0.1μIR to 1μ.
Alternatively, it is preferable to use a high temperature type A or 203 having higher heat resistance, and when hydroxide type Al2O3 is used, it is preferable to use it after heat treatment at 400 to 800°C.

ついで、上記の希土類元素含有/1,03粉末に、La
、PrおよびNdから選ばれた少なくとも1種の希土類
元素耐化物粉末と、アルミナゾルを加えて、1〜100
時間粉砕・混合を行なう、このとき、希土類元素として
は、上述したAfL20.粉末に含有せしめたものと同
種であっても、異種であってもよい、そして、例えばL
a酸化物を使用する場合、ミツシュメタルなども使用す
ることができる。また、使用するアルミナゾルとしても
とくに制限されるものではないが、中性もしくはアルカ
リ性のものを使用することが操作上右利である。また、
各添加物のA文203粉末に対する配合割合はとくに限
定されるものではないが、希土類酸化物粉末を5〜20
改量%、アルミナゾルを80〜95重量%とすることが
好ましい。
Next, La was added to the above rare earth element-containing/1,03 powder.
, at least one rare earth element resistant powder selected from Pr and Nd, and alumina sol,
At this time, the rare earth element is AfL20. It may be the same type as that contained in the powder or it may be different type, and for example, L
When using a oxide, Mitshu metal etc. can also be used. Further, the alumina sol to be used is not particularly limited, but it is advantageous for operation to use a neutral or alkaline one. Also,
The blending ratio of each additive to the A203 powder is not particularly limited, but 5 to 20% of the rare earth oxide powder is
It is preferable that the amount of modified alumina sol is 80 to 95% by weight.

そして、An203粉末と上記の添加物を粉砕・混合す
る混合器は、とくに制限されるものではなく、例えば、
ボールミル、V字型混合器、スクリュー型混合器などを
適用することができる。そして、このときの粉砕・混合
時間は1〜100時間に設定することが必要である。粉
砕・混合時間が上記範囲を逸脱すると最終的に得られる
触媒の耐久性が低下するという不都合が生ずる。
The mixer for crushing and mixing the An203 powder and the above-mentioned additives is not particularly limited, and for example,
A ball mill, a V-shaped mixer, a screw mixer, etc. can be applied. It is necessary to set the grinding/mixing time at this time to 1 to 100 hours. If the crushing/mixing time exceeds the above range, the durability of the ultimately obtained catalyst will be reduced.

第2の工程は、上記第1の工程により得られた粉砕会混
合物、すなわち、AjL203コーティンダ液を、担体
基材上に付着せしめてアルミナ層を形成する工程である
。担体基材としては、1500″C程度の高温酸化性雰
囲気においても安定な性質を有するものであれば、とく
に限定されるものではなく、例えば、コージライト、ム
ライト、α−アルミナ、ジルコニアスピネル、チタニア
等のセラミック製担体等が挙げられる。担体の形状は、
通常、触媒体として使用されている形状であれば特に制
限はなく、例えば、ペレット状、ハニカム状等が挙げら
れる。また、これらの担体に、アルミナコーテイング液
を付着せしめる方法としては、例えば、塗布法、浸債法
、吹き付は法などをあげることができる。なお、塗布量
は担体の形状、寸法、玉量などによって適宜法められる
ことが好ましい。
The second step is a step of depositing the pulverized mixture obtained in the first step, that is, the AjL203 coating agent onto the carrier base material to form an alumina layer. The carrier base material is not particularly limited as long as it has stable properties even in a high temperature oxidizing atmosphere of about 1500"C, and examples thereof include cordierite, mullite, α-alumina, zirconia spinel, and titania. Ceramic carriers such as
There is no particular restriction on the shape as long as the shape is normally used as a catalyst, and examples thereof include pellets, honeycomb shapes, and the like. Further, examples of methods for applying the alumina coating liquid to these carriers include a coating method, a dipping method, and a spraying method. Note that the amount of coating is preferably determined as appropriate depending on the shape, size, amount of beads, etc. of the carrier.

第3の工程は、第2の工程により、アルミナ層が形成さ
れた担体基材を焼成する工程である。この焼成工程は非
醜化性雰囲気中で行なうことが必要である。ここで非鹸
化性雰囲気とは酸素を含まない雰囲気をいい、具体的に
は、N2ガス雲囲気、CO2ガス雰囲気、Ar、Heな
との不活性ガス雰囲気、あるいはこれらのうち2種以上
の混合ガス雰囲気などをあげることができる。なお、焼
成温度は、とくに制限されるものではないが。
The third step is a step of firing the carrier base material on which the alumina layer has been formed in the second step. This firing step must be carried out in a non-disfiguring atmosphere. Here, the non-saponifiable atmosphere refers to an atmosphere that does not contain oxygen, and specifically includes an N2 gas cloud atmosphere, a CO2 gas atmosphere, an inert gas atmosphere such as Ar or He, or a mixture of two or more of these. Examples include gas atmosphere. Note that the firing temperature is not particularly limited.

触媒の機械的強度を充分なものとするために、600〜
1200℃、とくに700〜1100℃に設定すること
が好ましい。
In order to ensure sufficient mechanical strength of the catalyst, 600~
It is preferable to set the temperature to 1200°C, particularly 700 to 1100°C.

f7’、4の工程は、上記のアルミナ層にさらに貴金属
を担持せしめる工程であり、この工程には従来法1例え
ば、含浸法、などを適用することができる。さらに、使
用する貴金属としては、従来使用されているパラジウム
(Pd)、白金(pt)、ロジウム(Rh)などをあげ
ることができる、このとき、貴金属の種類は、対象とな
る燃料の種類に応じて決めることが好ましく、例えば、
燃料がメタンの場合はPd、プロパンの場合はptをそ
れぞれ使用することが好ましい。
Step f7', 4 is a step of further supporting a noble metal on the alumina layer, and conventional method 1, such as an impregnation method, can be applied to this step. Furthermore, the noble metals used include conventionally used palladium (Pd), platinum (pt), rhodium (Rh), etc. In this case, the type of noble metal depends on the type of target fuel. For example, it is preferable to decide based on
When the fuel is methane, it is preferable to use Pd, and when the fuel is propane, it is preferable to use pt.

(実施例) 実施例1 (1)燃焼触媒の製造 平均粒径約1a+mのγ−A文203粉末に硝酸ランタ
ン水溶液を含浸させたのち乾燥し、ついで、空気中で、
1000℃において1時間焼成し、La酸化物を5!i
f%含有してなるLa含有AJLz03粉末を得た。
(Example) Example 1 (1) Production of combustion catalyst γ-A Bun 203 powder with an average particle size of about 1a+m was impregnated with an aqueous lanthanum nitrate solution, dried, and then in air.
After firing at 1000°C for 1 hour, the La oxide was heated to 5! i
A La-containing AJLz03 powder containing f% was obtained.

ついで、このLa含有AJ1203粉末100gに対し
て、La酸化物25gおよびアルミナゾル(固形分80
重量%)120gを配合し、ボールミルにより10時間
粉砕・混合してアルミナコーテイング液を調製した。
Next, 25 g of La oxide and alumina sol (solid content 80 g) were added to 100 g of this La-containing AJ1203 powder.
(% by weight) was blended and ground and mixed in a ball mill for 10 hours to prepare an alumina coating liquid.

このコーテイング液2gをニーシライトよりなる1■体
基材(25I1mφX25a+m、200セル)に塗布
して120℃で2時間乾燥させたのち、N2雰囲%中、
1100℃において4時間焼成した。
2 g of this coating liquid was applied to a one-piece base material made of Nisilite (25I1mφX25a+m, 200 cells) and dried at 120°C for 2 hours, and then
It was baked at 1100°C for 4 hours.

しかるのち、この担体に、さらにPdCJLzを、Pd
に換算して1.Ogとなるように担持させたのち600
℃で2時間焼成することにより目的とする触媒を得た。
After that, PdCJLz was added to this carrier.
Convert to 1. 600 after being supported so that it becomes Og.
The target catalyst was obtained by calcining at ℃ for 2 hours.

(2)触媒の評価試験(ガスタービン燃焼試験)市販の
PdM媒(例えば、Pdの担持量が10g/l以−ヒで
、A2203層中にLaなどの希土類元素が15重礒%
含有されているもの)を前段とし、上記により製造され
た本発明の燃焼触媒を後段として二段式の燃焼触媒ユニ
ットを構成した。
(2) Catalyst evaluation test (gas turbine combustion test) Commercially available PdM medium (for example, the amount of supported Pd is 10 g/l or more, and the amount of rare earth elements such as La in the A2203 layer is 15% by weight)
A two-stage combustion catalyst unit was constructed, with the combustion catalyst of the present invention manufactured as described above being the latter stage and the combustion catalyst of the present invention produced as described above.

この燃焼触媒ユニットを触媒燃焼方式のガスタービン燃
焼器に組み込んで、燃焼触媒の燃焼特性を評価した。す
なわち、このときの燃焼条件は、ガス琉球30 m/s
ec 、燃料濃度メタン3%、触媒体積12ccとし、
燃焼時間100時間後の触媒温度と燃焼効率を測定し、
その結果を表に示した。
This combustion catalyst unit was installed in a catalytic combustion type gas turbine combustor, and the combustion characteristics of the combustion catalyst were evaluated. That is, the combustion conditions at this time are Gas Ryukyu 30 m/s
ec, fuel concentration methane 3%, catalyst volume 12cc,
Measure the catalyst temperature and combustion efficiency after 100 hours of combustion time,
The results are shown in the table.

実施例2〜12.比較例1〜6 A文203粉末に含有せしめる希土類元素の種類、Af
L、03粉末に配合される希土類耐化物の種類および粉
砕・混合時間および焼成時の雰囲気を表に示したごとく
種々に変えたほかは、上記実施例1と同様にして燃焼触
媒を製造したのち、同様のJf価試験を行なって結果を
表中に示した。
Examples 2-12. Comparative Examples 1 to 6 Types of rare earth elements contained in A-mon 203 powder, Af
A combustion catalyst was produced in the same manner as in Example 1 above, except that the type of rare earth refractory compound blended into the L, 03 powder, the crushing/mixing time, and the atmosphere during firing were varied as shown in the table. A similar Jf value test was conducted and the results are shown in the table.

[発明の効果] 以上の説明から明らかなように1本発明方法を適用して
製造された燃焼触媒は、例えば、ガスタービン燃焼器に
使用した際に、その高温耐久性の指標となる100時間
後の触媒温度が極めて高く、さらに燃焼効率が高いこと
が確認された。したがって、ガスタービン燃焼器などに
おいて燃焼エネルギーの節約および燃焼エネルギーの効
率的利用がu)能でり、さらにNOxの発生なども防止
れているた力、その工業的価値は極めて大である。
[Effects of the Invention] As is clear from the above description, the combustion catalyst manufactured by applying the method of the present invention can be used for example in a gas turbine combustor for up to 100 hours, which is an index of its high-temperature durability. It was confirmed that the subsequent catalyst temperature was extremely high and the combustion efficiency was also high. Therefore, it is possible to save combustion energy and efficiently utilize combustion energy in a gas turbine combustor, etc., and furthermore, the generation of NOx is prevented, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] ランタン、プラセオジムおよびネオジムから選ばれた少
なくとも1種の元素を含有してなるアルミナ粉末に、ラ
ンタン、プラセオジムおよびネオジムから選ばれた少な
くとも1種の元素の酸化物粉末およびアルミナゾルを配
合して1〜100時間粉砕・混合する工程と;この粉砕
混合物を担体基材表面に付着せしめてアルミナ層を形成
する工程と;これを非酸化性雰囲気中で焼成する工程と
;該担体に貴金属を担持せしめる工程とからなることを
特徴とする高温燃焼触媒の製造方法。
Alumina powder containing at least one element selected from lanthanum, praseodymium, and neodymium is blended with an oxide powder of at least one element selected from lanthanum, praseodymium, and neodymium, and alumina sol. A step of time-pulverizing and mixing; A step of adhering this pulverized mixture to the surface of a carrier base material to form an alumina layer; A step of firing this in a non-oxidizing atmosphere; A step of making the carrier support a noble metal. A method for producing a high-temperature combustion catalyst, characterized by comprising:
JP6557487A 1987-03-23 1987-03-23 Production of high-temperature combustion catalyst Pending JPS63232849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6557487A JPS63232849A (en) 1987-03-23 1987-03-23 Production of high-temperature combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6557487A JPS63232849A (en) 1987-03-23 1987-03-23 Production of high-temperature combustion catalyst

Publications (1)

Publication Number Publication Date
JPS63232849A true JPS63232849A (en) 1988-09-28

Family

ID=13290913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6557487A Pending JPS63232849A (en) 1987-03-23 1987-03-23 Production of high-temperature combustion catalyst

Country Status (1)

Country Link
JP (1) JPS63232849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833897A (en) * 2016-04-21 2016-08-10 中广核研究院有限公司 Double-layer structured catalyst used for methane catalytic combustion and preparation method thereof
CN109160823A (en) * 2018-10-09 2019-01-08 萍乡市华星环保工程技术有限公司 Coke oven flue gas processing proppant and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833897A (en) * 2016-04-21 2016-08-10 中广核研究院有限公司 Double-layer structured catalyst used for methane catalytic combustion and preparation method thereof
CN105833897B (en) * 2016-04-21 2019-08-30 中广核研究院有限公司 Double-layer structural catalyst and preparation method thereof for methane catalytic combustion
CN109160823A (en) * 2018-10-09 2019-01-08 萍乡市华星环保工程技术有限公司 Coke oven flue gas processing proppant and preparation method thereof

Similar Documents

Publication Publication Date Title
US4857499A (en) High temperature combustion catalyst and method for producing the same
JP4148997B2 (en) Method for producing ternary conversion catalyst
EP1742733B1 (en) Production process for an exhaust gas purifying catalyst
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JPS63205141A (en) Catalyst for purifying exhaust gas
JPS6014938A (en) Combustion catalyst for gas turbine
JPS60200021A (en) Combustor of gas turbine
CN110665524A (en) Preparation method of single-layer coating three-way catalyst with high noble metal dispersion
JPS5952529A (en) High temperature combustion catalyst
JPS63232849A (en) Production of high-temperature combustion catalyst
JPS62216642A (en) Catalytic material for gas turbine combustor
JPH0512021B2 (en)
JPS60202235A (en) Combustor of gas turbine
JPH0424099B2 (en)
JPS60205129A (en) Combustor for gas-turbine
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JPH0215254B2 (en)
JP2974342B2 (en) High temperature combustion catalyst and method for producing the same
JPS62282640A (en) Catalyst for purifying exhaust gas
JP2585253B2 (en) Catalyst for gas turbine combustor
JPS6388041A (en) Oxidizing catalyst
JPS63232854A (en) High-temperature combustion catalyst and its production
JP2585212B2 (en) Gas turbine combustor
JP2633554B2 (en) Method for producing high temperature combustion catalyst
JP2523484B2 (en) Gas turbine combustor