JPS6388041A - Oxidizing catalyst - Google Patents

Oxidizing catalyst

Info

Publication number
JPS6388041A
JPS6388041A JP23159486A JP23159486A JPS6388041A JP S6388041 A JPS6388041 A JP S6388041A JP 23159486 A JP23159486 A JP 23159486A JP 23159486 A JP23159486 A JP 23159486A JP S6388041 A JPS6388041 A JP S6388041A
Authority
JP
Japan
Prior art keywords
pdo
earth metal
layer
rare earth
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23159486A
Other languages
Japanese (ja)
Inventor
Hitoshi Tsuji
斉 辻
Masato Okada
真人 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP23159486A priority Critical patent/JPS6388041A/en
Publication of JPS6388041A publication Critical patent/JPS6388041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the lowering in catalytic activity at an early stage, by laminating an intermetallic compound layer of a PdM or PdMO type wherein M is a rare earth metal and a catalytically active layer composed of Pd and PdO to a carrier composed of ceramics. CONSTITUTION:An activated Al2O3 layer 2 is formed to a monolithic structure 1 and a Pd-rare earth metal intermetallic compound layer 4 is provided on said layer 2 and a catalytically active component 2 composed of Pd, PdO or Pd/PdO is applied to the layer 4 to obtain an oxidizing catalyst. The amounts of the rare earth metal and O to Pd of the intermetallic compound layer 4 are pref. 0.1-10% and 0-5% by wt. of total Pd. The oxidizing catalyst obtained does not change from the state before use even when said catalyst is used in the catalytic combustion of methane at 1,100 deg.C for 100hr and the deterioration of the catalytic activity thereof is hardly noted. Further, the consumption of Pd or PdO being the active component is also hardly confirmed.

Description

【発明の詳細な説明】 (産業上の利用分野) 触媒の酸化作用を利用して燃料を燃焼させる接触燃焼法
によれば、大気汚染物質である窒素酸化物(NOx)の
発生を著しく抑制でき、かつ得られるクリーンな燃焼ガ
スは発電用などの作業熱流体として広範な分野に利用で
きる。
[Detailed Description of the Invention] (Industrial Application Field) According to the catalytic combustion method, which uses the oxidizing action of a catalyst to burn fuel, the generation of nitrogen oxides (NOx), which are air pollutants, can be significantly suppressed. , and the resulting clean combustion gas can be used in a wide range of fields as a working thermal fluid for power generation and other purposes.

本発明は酸化用触媒、特に600〜1500℃の温度で
使用される各種燃料の接触燃焼用触媒に関する。
The present invention relates to an oxidation catalyst, particularly a catalyst for catalytic combustion of various fuels used at temperatures of 600 to 1500C.

(従来技術とその問題点) 一般に、炭化水素などを空気もしくは酸素の存在下で炭
酸ガスと水に完全酸化させる酸化用触媒としては、通常
、アルミナなどの構造体、もしくはムライトなどのセラ
ミック構造体にアルミナなどを被覆したものを担体とし
、これらの担体にPtなどの白金族金属もしくはこれら
の金属酸化物もしくはこれらの金属と金属酸化物との混
合物もしくはこれら金属の合金を主成分として被覆した
ものが使用される。
(Prior art and its problems) In general, oxidation catalysts that completely oxidize hydrocarbons etc. into carbon dioxide gas and water in the presence of air or oxygen usually use structures such as alumina or ceramic structures such as mullite. The carrier is coated with alumina or the like, and these carriers are coated with platinum group metals such as Pt, oxides of these metals, mixtures of these metals and metal oxides, or alloys of these metals as the main component. is used.

これら白金族金属の中でも、炭化水素などを接触燃焼さ
せる場合の使用触媒として、低温活性および安定燃焼性
に優れるPdもしくはPdOもしくはPdとPdOとの
混合物を活性成分とする酸化用触媒が適している。しか
し、この触媒を600〜1500℃の温度で使用すると
、PdおよびPdOの凝集・成長が起こり、触媒活性が
著しく低下する。
Among these platinum group metals, oxidation catalysts containing Pd, PdO, or a mixture of Pd and PdO as an active ingredient, which have excellent low-temperature activity and stable combustibility, are suitable as catalysts for catalytic combustion of hydrocarbons, etc. . However, when this catalyst is used at a temperature of 600 to 1500°C, aggregation and growth of Pd and PdO occur, resulting in a significant decrease in catalytic activity.

またPd、PdOは高温の酸化性雰囲気で担体との結合
力が弱く脱落し易いために消耗が激しい。
In addition, Pd and PdO have a weak bond with the carrier in a high-temperature oxidizing atmosphere and easily fall off, so they are rapidly consumed.

しかるに、従来技術による活性成分をPdもしくはPd
OもしくはPdとPdOの混合物とする酸化用触媒は活
性低下および寿命の点で問題がある。
However, the active ingredient according to the prior art is Pd or Pd
Oxidation catalysts using O or a mixture of Pd and PdO have problems in terms of decreased activity and short life.

(発明の目的) 本発明は前記の問題点を改良すべくなされたものであり
、炭化水素などの酸化に対するPd、PdoもしくはP
d/PdOの低温活性を生かすとともに、触媒活性の早
期低下を克服して、酸化用触媒の長寿命化を図ることを
目的になされたものである。
(Object of the invention) The present invention has been made to improve the above-mentioned problems, and is to improve the oxidation of Pd, Pdo or P.
This was done to take advantage of the low-temperature activity of d/PdO and to overcome the early decline in catalytic activity to extend the life of the oxidation catalyst.

(発明の構成) 本発明はアルミナなどの担体もしくはムライトなどのセ
ラミックス構造体にアルミナなどを被覆した担体に活性
成分としてPd、PdOもしくはPd/PdOを被覆し
た酸化用触媒において、活性成分と担体との間にPdM
型若しくはPdMO型であり、かつMが希土類金属であ
る金属間化合物層を設けたことを特徴とするものである
(Structure of the Invention) The present invention provides an oxidation catalyst in which a carrier such as alumina or a ceramic structure such as mullite coated with alumina or the like is coated with Pd, PdO or Pd/PdO as an active ingredient. During PdM
The present invention is characterized in that it is provided with an intermetallic compound layer of type or PdMO type, and M is a rare earth metal.

以下、図をもって本発明について詳述する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は、従来より行われている担持法によりモノリス
型構造体1上に活性A 1 z O32を被覆し、さら
にその上にPd3を被覆した酸化用触媒の初期状態の断
面を模式的に示すものである。活性A 1 z Os 
2の細孔径は非常に小さく制御でき通常数100〜数1
000人である。この様な活性A1zo:+2の上にP
d3を担持した場合、Pd3の粒子径としては数10〜
数100人に制御可能である。
FIG. 3 schematically shows a cross section of an oxidation catalyst in an initial state in which active A 1 z O32 is coated on a monolithic structure 1 using a conventional supporting method, and Pd3 is further coated thereon. It shows. Active A 1 z Os
The pore size of No. 2 can be controlled to be very small, usually several hundred to several 1.
000 people. Such activity A1zo: P on +2
When supporting d3, the particle size of Pd3 is several tens to
It is possible to control several hundred people.

第4図は、メタンの接触燃焼において、温度1100℃
で100時間使用した従来製法による酸化用触媒の断面
を模式的に示すものである。この様にPd3の粒子径は
0.1〜数10μmにまで凝集・成長し、100時間使
用後の触媒活性は初期と比べて低下しており、かつ脱落
によるPd3の消耗も多い。
Figure 4 shows the temperature of 1100℃ in methane catalytic combustion.
This figure schematically shows a cross section of an oxidation catalyst manufactured by a conventional method that was used for 100 hours. As described above, the particle size of Pd3 aggregates and grows to a size of 0.1 to several tens of micrometers, and the catalyst activity after 100 hours of use is lower than that at the initial stage, and more Pd3 is consumed due to falling off.

本発明者らはこのPd3もしくはPd03の凝集・成長
について詳細に検討した結果、Pd3もしくはPd03
は下地のAI、0,2との結合が弱いために高温の雰囲
気化にさらした場合、Pd3もしくはPd03は容易に
活性A j! z O32の上を移動し、Pd3もしく
はPd03の粒子同士の凝集・成長が起こるものである
という結論に達した。
As a result of the detailed study of the aggregation and growth of Pd3 or Pd03, the present inventors found that Pd3 or Pd03
Because the bond with the underlying AI, 0,2 is weak, when exposed to a high temperature atmosphere, Pd3 or Pd03 easily becomes active A j! It was concluded that particles of Pd3 or Pd03 move on top of zO32 and aggregate and grow together.

さらにPd3もしくはPd03の消耗についても活性A
 l t O32との結合力が弱いため脱落し易(、そ
の結果、触媒寿命が短くなる。
Furthermore, active A also has an effect on the consumption of Pd3 or Pd03.
Since the binding force with l t O32 is weak, it easily falls off (as a result, the catalyst life is shortened).

そこで本発明者らは、PdもしくはPdOもしくはPd
/PdOと活性A Il t O3との結合力を高めれ
ばPdもしくはPdOの凝集・成長を防げ、かつ長寿命
な酸化用触媒が得られると考え、種々検討した結果Pd
もしくはPdOもしくはPd/PdOとAlzO3の間
にPd−希土類金属の金属間化合物層を設ければPdと
Aβ!0.の結合力を飛躍的に向上できるという結論に
達した。
Therefore, the present inventors investigated Pd, PdO, or Pd
We thought that increasing the bonding strength between PdO and active A Il t O3 would prevent the agglomeration and growth of Pd or PdO and provide a long-life oxidation catalyst.As a result of various studies, we found that Pd
Alternatively, if a Pd-rare earth metal intermetallic compound layer is provided between PdO or Pd/PdO and AlzO3, Pd and Aβ! 0. We have reached the conclusion that the bonding strength of the two can be dramatically improved.

第1図は本発明による酸化用触媒の断面を模式的に示す
ものである。モノリス型構造体1に活性A l 203
2が被覆されこのA l z O32と活性成分Pdも
しくはPdOもしくはP d/P d 00間にPd−
希土類金属金属間化合物層4が存在している状態を示し
ている。
FIG. 1 schematically shows a cross section of an oxidation catalyst according to the present invention. Active Al 203 in monolithic structure 1
2 is coated, and Pd-
A state in which a rare earth metal intermetallic compound layer 4 is present is shown.

第2図はメタンの接触燃焼において温度が1100℃で
100時間使用した後の図3に示した本発明による酸化
用触媒の断面を模式的に示すものであり、第1図に示し
た使用前の状態とほとんど変化しなかった。また100
時間の使用前後において触媒活性もほとんど変化するこ
となく高かった。さらに活性成分のPd5PdOの消耗
はほとんど認められなかった。
Figure 2 schematically shows the cross section of the oxidation catalyst of the present invention shown in Figure 3 after being used for 100 hours at a temperature of 1100°C in methane catalytic combustion, and the cross section of the oxidation catalyst of the present invention shown in Figure 1 before use. The situation was almost unchanged. 100 again
The catalyst activity remained high with almost no change before and after use. Furthermore, almost no depletion of the active ingredient Pd5PdO was observed.

この様にPdもしくはPdOもしくはPd5PdOと活
性AlzOxの間にPd−希土類金属の金属間化合物層
を設けることでPdの長所である炭化水素などに対する
低温活性および安定燃焼性を維持しつつPdの消耗を防
ぎ、酸化用触媒の長寿命化をはかることができる。
In this way, by providing a Pd-rare earth metal intermetallic compound layer between Pd, PdO, or Pd5PdO and activated AlzOx, consumption of Pd can be reduced while maintaining the low-temperature activity and stable combustibility against hydrocarbons, which are the advantages of Pd. It is possible to prevent this and extend the life of the oxidation catalyst.

本発明における金属間化合物層のPdに対する希土類金
属およびOの量は、全Pdに対して0.1−1%〜10
wt%および0〜5wt%が適当であり、希土類金属が
0.1wt%を下回るとPd  AJzO+結合力強化
にその効果がなく、希土類金属およびOが10wt%お
よび5wt%を超えるとPdの触媒活性を低下せしめる
ものである。
The amount of rare earth metal and O relative to Pd in the intermetallic compound layer in the present invention is 0.1-1% to 10% relative to the total Pd.
wt% and 0 to 5 wt% are appropriate; if the rare earth metal is less than 0.1 wt%, it has no effect on strengthening the Pd AJzO+ bonding force, and if the rare earth metal and O exceeds 10 wt% and 5 wt%, the catalytic activity of Pd is This reduces the

さらに本発明のPd−希土類金属の金属間化合物層はP
dM型もしくはPdMO型(Mはアルカリ土金属)のい
ずれでも効果のあるものである。
Furthermore, the Pd-rare earth metal intermetallic compound layer of the present invention is Pd
Either the dM type or the PdMO type (M is an alkaline earth metal) is effective.

本発明の酸化用触媒を製造するにはモノリス型構造体に
活性Al2O3を被覆した担体に、Pdの水溶性塩およ
びアルカリ土金属の水溶性塩の混合水溶液を、浸漬など
の方法で塗布した後、乾燥後、温度300〜1000℃
で焼成すれば得られる。この場合還元性雰囲気下で焼成
すればPdM型が、酸化性雰囲気下で焼成すればPdM
O型がそれぞれ得られる。ここでMは希土類金属である
。また物理被覆、化学被覆などの方法をとっても可能で
あり、結果的にPdと活性A42zChの間にPd−希
土類金属の金属間化合物層が生成するどのような方法を
とって製造しても良い。
To produce the oxidation catalyst of the present invention, a mixed aqueous solution of a water-soluble salt of Pd and a water-soluble salt of an alkaline earth metal is applied to a carrier having a monolithic structure coated with active Al2O3 by a method such as dipping. , After drying, temperature 300-1000℃
It can be obtained by firing. In this case, if fired in a reducing atmosphere, PdM type is produced, and if fired in an oxidizing atmosphere, PdM type is produced.
O type is obtained respectively. Here, M is a rare earth metal. It is also possible to use methods such as physical coating and chemical coating, and any method that results in the formation of a Pd-rare earth metal intermetallic compound layer between Pd and active A42zCh may be used.

以下本発明の効果を明瞭ならしるために従来例及び実施
例について説明する。
In order to clarify the effects of the present invention, conventional examples and embodiments will be described below.

(従来例) セルピッチ5 、5 amを有する直径50龍、長さ2
511mのムライト製ハニカム構造体にγ−Al2O3
を100g/β被覆した担体を、PdC1zの塩酸溶液
に浸漬し、乾燥の後、500℃、H2雰囲気下で焼成し
、P d / T A l 2os/ムライト担体から
成る酸化用触媒を得た。この時Pdの担持量は20g/
lであった。
(Conventional example) Diameter 50 mm with cell pitch 5,5 am, length 2
γ-Al2O3 in a 511m mullite honeycomb structure
The carrier coated with 100 g/β of PdC1z was immersed in a hydrochloric acid solution of PdC1z, dried, and then calcined at 500°C in an H2 atmosphere to obtain an oxidation catalyst consisting of a Pd/TA12os/mullite carrier. At this time, the amount of Pd supported was 20g/
It was l.

(実施例1) 従来例と同工程でγ−A1t03を被覆した担体を、硝
酸パラジウム水溶液に硝酸ランタンをPdに対するLa
の比率が1.5wt%になるように添加し、この溶液に
前記ハニカム担体を浸漬し、800℃大気中で焼成した
後、500℃水素雰囲気下で還元処理を施し、Pa/P
dLaO2/TAj!203/ムライト担体から成る酸
化用触媒を得た。この時のPdの担持総量は20g/l
であった。
(Example 1) A carrier coated with γ-A1t03 in the same process as the conventional example was prepared by adding lanthanum nitrate to a palladium nitrate aqueous solution.
The honeycomb carrier was immersed in this solution and fired in the atmosphere at 800°C, and then subjected to a reduction treatment in a hydrogen atmosphere at 500°C.
dLaO2/TAj! An oxidation catalyst consisting of 203/mullite carrier was obtained. The total amount of Pd supported at this time was 20g/l
Met.

(実施例2) 従来例と同工程で、T  AlzOaを被覆した担体を
PdCJzの塩酸溶液に塩化セリウムをPdに対するC
eの比率が5.5wt%になるように添加し、この溶液
に前記ハニカム担体を浸漬し、乾燥後、800℃大気中
で焼成し、さらに水素バーナー炎で部分還元し、Pd−
Pd0/PdCe0z/A2□03/ムライトからなる
酸化用触媒を得た。
(Example 2) In the same process as in the conventional example, a support coated with T AlzOa was added to a hydrochloric acid solution of PdCJz and cerium chloride was added to C for Pd.
The honeycomb carrier was immersed in this solution, dried, fired in the atmosphere at 800°C, and further partially reduced with a hydrogen burner flame to form Pd-
An oxidation catalyst consisting of Pd0/PdCe0z/A2□03/mullite was obtained.

この時のPd担持総量は20g/lであった。The total amount of Pd supported at this time was 20 g/l.

次に従来例、実施例1および実施例2の触媒を用いてメ
タン90%を含む天然ガスの接触燃焼を常圧下、空気量
30n?N/h、触媒入口部ガス流速10m/sec、
燃焼温度1200℃の条件下で行い、燃焼開始温度、1
時間および1000時間後の燃焼効率さらに1000時
間後の触媒成分減少率、比表面減少率を測定したところ
、下表のような結果が得られた。
Next, natural gas containing 90% methane was catalytically burned using the catalysts of the conventional example, Example 1, and Example 2 under normal pressure in an air amount of 30 n? N/h, catalyst inlet gas flow rate 10 m/sec,
The combustion temperature was 1200℃, and the combustion start temperature was 1
When measuring time and combustion efficiency after 1000 hours, as well as catalyst component reduction rate and specific surface reduction rate after 1000 hours, the results shown in the table below were obtained.

上表より明らかな如く、実施例1.2の燃焼開始温度は
従来例とほとんど変わることなく高活性であり、寿命を
示す1000時間後の燃焼効率および触媒成分減少、比
表面積減少率は従来例と比し大幅に改善された。
As is clear from the above table, the combustion start temperature of Example 1.2 is almost the same as that of the conventional example, and the activity is high, and the combustion efficiency, catalyst component reduction, and specific surface area reduction rate after 1000 hours, which indicates the life, are higher than that of the conventional example. It was significantly improved compared to .

このように本発明による実施例1.2の触媒はPdの低
温活性と安定燃焼性という長所を損なうことなく、高温
で長時間使用しても活性低下が極めて小さく、長寿命で
あることが判る。
As described above, it can be seen that the catalyst of Example 1.2 according to the present invention has a long life with very little decrease in activity even when used at high temperatures for a long time without impairing the advantages of Pd's low-temperature activity and stable combustibility. .

(発明の効果) 以上の説明で明らかなように、本発明の酸化用触媒は活
性成分と担体の間にMが希土類金属である、PdM型あ
るいはPdMO型から成る金属間化合物層が設けられて
いるので、活性成分と担体との結合力が大きく、活性成
分の高温での移動凝集や消耗による活性低下が極めて小
さく長期間の使用に耐えるものである。また炭化水素の
みならず水素、−酸化炭素、メタノール等の燃料にも適
用可能であり、酸化用触媒として工業的利用価値の高い
長期間使用可能なものである。
(Effects of the Invention) As is clear from the above explanation, the oxidation catalyst of the present invention is provided with an intermetallic compound layer of PdM type or PdMO type, in which M is a rare earth metal, between the active component and the support. Therefore, the binding force between the active ingredient and the carrier is large, and the decrease in activity due to migration and aggregation of the active ingredient at high temperatures and consumption is extremely small, making it durable for long-term use. Moreover, it is applicable not only to hydrocarbons but also to fuels such as hydrogen, carbon oxide, methanol, etc., and has high industrial value as an oxidation catalyst and can be used for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸化用触媒の使用前の断面模式図、第
2図は第1図の酸化用触媒を1100℃で100時間使
用後の断面積□式図、第3図は従来の酸化用触媒の初期
の断面模式図、第4図は第3図の酸化用触媒を1100
℃で100時間使用後の断面模式図である。 出願人  田中貴金属工業株式会社 第1図    第2図 第3図 第4図
Figure 1 is a schematic cross-sectional diagram of the oxidation catalyst of the present invention before use, Figure 2 is a schematic diagram of the cross-sectional area of the oxidation catalyst of Figure 1 after it has been used at 1100°C for 100 hours, and Figure 3 is the conventional An initial cross-sectional diagram of the oxidation catalyst, FIG. 4 shows the oxidation catalyst of FIG.
It is a cross-sectional schematic diagram after being used for 100 hours at °C. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)活性成分と担体との中間物質層として活性成分が
PdもしくはPdOもしくはPdとPdOとの混合物で
あり、担体がAl_2O_3を主成分とするセラミック
スにおいて、Mが希土類金属であるPdM型もしくはP
dMO型の金属間化合物層を設けたことを特徴とする酸
化用触媒。
(1) As an intermediate material layer between the active ingredient and the carrier, the active ingredient is Pd, PdO, or a mixture of Pd and PdO, and the carrier is a ceramic whose main component is Al_2O_3, and M is a rare earth metal.
An oxidation catalyst characterized by having a dMO type intermetallic compound layer.
(2)金属間化合物層のアルカリ土金属およびOの含有
量がそれぞれ全Pdに対して0.1〜10wt%および
0〜5wt%であることを特徴とする特許請求の範囲第
1項記載の酸化用触媒。
(2) The content of alkaline earth metal and O in the intermetallic compound layer is 0.1 to 10 wt% and 0 to 5 wt%, respectively, based on the total Pd. Oxidation catalyst.
JP23159486A 1986-09-30 1986-09-30 Oxidizing catalyst Pending JPS6388041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23159486A JPS6388041A (en) 1986-09-30 1986-09-30 Oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23159486A JPS6388041A (en) 1986-09-30 1986-09-30 Oxidizing catalyst

Publications (1)

Publication Number Publication Date
JPS6388041A true JPS6388041A (en) 1988-04-19

Family

ID=16925963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23159486A Pending JPS6388041A (en) 1986-09-30 1986-09-30 Oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPS6388041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102639A (en) * 1991-04-12 1992-04-07 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst compositions containing the same, and methods of use
US5169300A (en) * 1991-04-12 1992-12-08 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst, methods of combustion and regeneration
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems
US5102639A (en) * 1991-04-12 1992-04-07 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst compositions containing the same, and methods of use
US5169300A (en) * 1991-04-12 1992-12-08 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst, methods of combustion and regeneration
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides
US5750458A (en) * 1991-04-12 1998-05-12 Kennelly; Teresa Combustion catalysts containing binary oxides and processes using the same
US5863851A (en) * 1991-04-12 1999-01-26 Engelhard Corporation Combustion catalysts containing binary oxides and processes using the same

Similar Documents

Publication Publication Date Title
EP0960649B1 (en) Exhaust gas clean-up catalyst
JPS60200021A (en) Combustor of gas turbine
JPS6388041A (en) Oxidizing catalyst
JPS62216642A (en) Catalytic material for gas turbine combustor
JPH0512021B2 (en)
JPS63267804A (en) Oxidizing catalyst for high temperature service
JPS60202235A (en) Combustor of gas turbine
JP2531639B2 (en) Contact combustion catalyst
JPS6372348A (en) Oxidizing catalyst
JP2531640B2 (en) Contact combustion catalyst
JPS6388043A (en) Oxidizing catalyst
JP2531641B2 (en) Contact combustion catalyst
JPS59169536A (en) High temperature combustion catalyst
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JPS6388046A (en) Oxidizing catalyst
JPS6388042A (en) Oxidizing catalyst
JPH08206500A (en) Palladium-based catalyst, combustion catalyst, and combustion device
JP2585212B2 (en) Gas turbine combustor
JPS62149343A (en) Production of high-temperature heat-resistant catalyst
JP3827173B2 (en) Method for producing catalyst for combustion of methane fuel
JP2585253B2 (en) Catalyst for gas turbine combustor
JPH05309272A (en) Production of oxidation catalyst
JPS63232849A (en) Production of high-temperature combustion catalyst
JPH06159631A (en) Method for igniting combustion gas
JPH01317540A (en) Oxidizing catalyst