JPS60200021A - Combustor of gas turbine - Google Patents

Combustor of gas turbine

Info

Publication number
JPS60200021A
JPS60200021A JP59056339A JP5633984A JPS60200021A JP S60200021 A JPS60200021 A JP S60200021A JP 59056339 A JP59056339 A JP 59056339A JP 5633984 A JP5633984 A JP 5633984A JP S60200021 A JPS60200021 A JP S60200021A
Authority
JP
Japan
Prior art keywords
catalyst
stage catalyst
stage
gas turbine
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59056339A
Other languages
Japanese (ja)
Inventor
Terunobu Hayata
早田 輝信
Tomiaki Furuya
富明 古屋
Chikau Yamanaka
矢 山中
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59056339A priority Critical patent/JPS60200021A/en
Publication of JPS60200021A publication Critical patent/JPS60200021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To reduce NOX by improving low-temperature ignitability and high activity, by so constituting the titled combustor that three kinds of catalysts having different predetermined composition are arranged in order according to a flow of an air-fuel mixture, in a catalytic combustion type gas turbine combustor. CONSTITUTION:A first stage - thrid stage catalysts 4-6 are arranged from the upper stream to the lower stream against a flow 9 of a mixture of air 8 and fuel. As for the first stage catalyst 4, it is made into the catalyst to be obtained by providing a coated layer 2a formed of alumina containing palladium 3a or platinum 3b and cerium on a heat resisting carrier 1, as for the second stage catalyst 5, it is constituted by providing similarly a coating layer 2b containing selected article out of zirconium, strontium and barium as a metal in place of the cerium on the carrier 10, and as for the third stage catalyst 6, it is constituted by providing a coating layer 2c containing the selected article out of lanthanum and neodymium. With this constitution, low-temperature ignitability, high activity and life are improved and generation of NOX can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、触媒燃焼方式によるガスタービン燃焼器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine combustor using a catalytic combustion method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油資源等の枯渇化に伴い、エネルギー資源を効
率的に使用するため、例えば、ガスタービン等において
は、できるだけ高温(二おいて燃料を燃焼させることが
望まれている。
In recent years, with the depletion of petroleum resources and the like, in order to use energy resources efficiently, it has become desirable to burn fuel at as high a temperature as possible in, for example, gas turbines.

しかしながら、従来は、燃料と空気の混合物を、スパー
クプラグ等を用いて着火燃焼せしめる方法であるため、
燃焼器内において、部分的に2000℃を超える高温部
が存在する。そして、この高温部において、窒素酸化物
(NOx)が多量に生成し、環境汚染等の間鵬ヲ生ずる
ことが知られている。
However, the conventional method is to ignite and burn a mixture of fuel and air using a spark plug or the like.
Inside the combustor, there is a high temperature area that partially exceeds 2000°C. It is known that a large amount of nitrogen oxides (NOx) is generated in this high-temperature section, causing environmental pollution and other problems.

このような問題を解消するために、触媒を用いて燃料と
空気の混合物を燃焼せしめる触媒燃焼方式が提案されて
いる。この燃焼方式によれば、均一燃焼が可能であり、
且つ、NOxが生成しない上限温度である1500℃程
度まで、燃焼温度を高めることができる。
In order to solve these problems, a catalytic combustion method has been proposed in which a mixture of fuel and air is combusted using a catalyst. According to this combustion method, uniform combustion is possible,
Moreover, the combustion temperature can be raised to about 1500° C., which is the upper limit temperature at which NOx is not generated.

しかし、前記した触媒燃焼方式をガスタービンに適用す
る場合には、その燃焼用触媒に相反する二つの特性、即
ち1、低温着火性及び耐熱性が要求される。現在実用化
されているガスタービンにおいて、燃焼用空気300℃
程度に予熱された後、圧縮送風機で燃焼器に導入されて
いる。そして、火炎燃焼した燃焼ガスは1200℃程度
に冷却された後、タービン内へ送入される。従って、ガ
スタービン燃焼器では、該燃焼用触媒は300℃程度の
温度で前記混合物を着火させると共に、燃焼ガス(二よ
る1200℃程度の温度に耐えることが要求されること
になる。
However, when the above-mentioned catalytic combustion method is applied to a gas turbine, two contradictory characteristics are required of the combustion catalyst, namely, low-temperature ignitability and heat resistance. In gas turbines currently in practical use, the combustion air is heated to a temperature of 300°C.
After being preheated to a certain degree, it is introduced into the combustor using a compressor blower. Then, the flame-combusted combustion gas is cooled to about 1200° C. and then sent into the turbine. Therefore, in a gas turbine combustor, the combustion catalyst is required to ignite the mixture at a temperature of about 300°C and to withstand a temperature of about 1200°C due to combustion gas.

上記した燃焼用触媒としては、白金(pt)系の貴金属
系触媒を使用することが考えられる。かかる貴金属系触
媒としては、例えば、第1図に示したように、−足の機
械的強度を有する耐熱性担体1上に、活性担体としての
γ−アルミナ(γ−AI403)被覆層2を設け、浸漬
法等により貴金属粒子3を担持せしめたもの等が知られ
ている。
As the above-mentioned combustion catalyst, it is possible to use a noble metal catalyst such as platinum (pt). For example, as shown in FIG. 1, such a noble metal-based catalyst may include a heat-resistant carrier 1 having a mechanical strength of -1, and a coating layer 2 of γ-alumina (γ-AI403) as an active carrier. , those in which noble metal particles 3 are supported by a dipping method or the like are known.

しかしながら、このような貴金属系触媒においては、通
常、着火温度が300℃以下の低温であるものは、その
耐熱温度が600℃以下と言われており、それ以上の温
度領域では触媒活性が急速に低下するため実用には適さ
ないという問題点を有している。
However, for such noble metal catalysts, those whose ignition temperature is usually 300°C or lower are said to have a heat resistance temperature of 600°C or lower, and their catalytic activity rapidly decreases at higher temperatures. This has the problem that it is not suitable for practical use.

600℃以上の温度において、触媒活性が急速に低下す
る理由は、次のように考えることができる。
The reason why the catalyst activity rapidly decreases at temperatures of 600° C. or higher can be considered as follows.

先ず、第1に、活性担体表面の貴金属粒子が熱移動によ
り凝集して粗大化するため、触媒表面積が減少し、燃焼
性能が低下する。そして、第2C1゛γ−At、03が
1000℃付近からそれ以上の温度において、α−Az
3osに相転移するため、被覆層内において或いは被覆
層と耐熱性担体との間においてクラックが生じ、前記被
覆層が触媒金属と共に剥離脱落すること(二起因すると
考えられる。
First, the noble metal particles on the surface of the active carrier aggregate and become coarse due to heat transfer, which reduces the catalyst surface area and lowers the combustion performance. Then, when the second C1゛γ-At, 03 is at a temperature from around 1000°C to above, α-Az
Due to the phase transition to 3os, cracks occur within the coating layer or between the coating layer and the heat-resistant carrier, and the coating layer peels off together with the catalyst metal (two possible causes).

そこで、貴金属系燃焼用触媒の耐熱性を向上せしめるた
めに、たとえばγ−At20.被覆層では、前記被覆層
全改良し、またγ−八へ03被覆層上の貴金属粒子をγ
−AI40g +二価く吸着させて熱移動による凝集を
防止すると共に、γ−A140gのα化を防止してクラ
ックの発生を防ぐことが試みられている。
Therefore, in order to improve the heat resistance of noble metal combustion catalysts, for example, γ-At20. In the coating layer, the entire coating layer is improved, and the noble metal particles on the γ-8 to 03 coating layer are
Attempts have been made to prevent agglomeration due to heat transfer by adsorbing 40 g of -AI + divalent material, and to prevent the formation of cracks by preventing 140 g of γ-A from becoming alpha.

そのため、γ−At203被覆層への希土類を含む多く
の金属の添加等が試みられており、自動車触媒等では一
部実用化されつつあるが、ガスタービン燃焼器に用いる
触媒にめられるような600℃を超える温度で長時間触
媒性能を発揮し持続した例はない。
For this reason, many attempts have been made to add many metals, including rare earths, to the γ-At203 coating layer, and some are being put into practical use in automobile catalysts, etc. There is no example of a catalyst exhibiting and sustaining catalytic performance for a long time at temperatures exceeding ℃.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低温着火性ζ二優れ、且つ600〜1
200℃の温度範囲においても、高活性及び長寿命を有
する触媒を備えて、NOxの発生が大幅に低減されたガ
スタービン燃焼器を提供することにある。
The purpose of the present invention is to have excellent low temperature ignition property ζ2 and 600 to 1
An object of the present invention is to provide a gas turbine combustor that is equipped with a catalyst that has high activity and long life even in a temperature range of 200° C., and in which the generation of NOx is significantly reduced.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記した現況に鑑みて、600℃以上の
高温においても使用可能な触媒について鋭意検討を重ね
た結果、各種金属全添加したアルミナと貴金属との高温
における相関を把握することによりガスタービン燃焼器
(二用いる触媒に要求される温度領域で特異な活性を有
する触媒を見い出し本発明となったものである。
In view of the above-mentioned current situation, the inventors of the present invention have conducted intensive studies on catalysts that can be used even at high temperatures of 600°C or higher, and as a result, they have determined that the relationship between alumina containing all types of metals and precious metals at high temperatures has been determined. The present invention was achieved by discovering a catalyst that has unique activity in the temperature range required for catalysts used in gas turbine combustors.

本発明に係る触媒燃焼方式ガスタービン燃焼器は、燃焼
用触媒が第2図に示した様に三種類の異なった触媒によ
り構成されており、燃料ノズル7より噴射された燃料が
、空気8と混合して混合物をなし、ついで第1段触媒4
、第2段触媒5、および第3段触媒6(:より燃焼して
燃焼ガス9になりタービンへと流出していく。これらの
触媒は第3図で示したようにそれぞれ耐熱性担体1上6
二、パラジウム(Pa)3 aあるいは白金(pt)3
 bを含んだアルミナによる第1、第2及び第3被覆層
2a、2b、及び2Ct設けた構造をしており、ここに
おいて、前記第1、第2及び第3被覆層に添加される金
属の種類が、第1被覆層においてはセリウム(Ce)、
第2被覆層においてはジルコニウム(Zr)、ストロン
チウム(Sr)、バリウム(Ba)の少なくとも1種以
上邦3被覆層においてはランタン(LJ&)、ネオジウ
ム(Nd)の少なくとも1種である事を特徴としている
。なお、図中矢印は混合物の流れ方向?示す。本発明に
おいて使用される耐熱性担体は、1200℃程度の高温
酸化性雰囲気中においても安定な性質を有するものであ
ればいかなるものでもよく、これらの具体例としては、
コージライト、ムライト、α−アルミナ、ジルコニアス
ピネル、チタニア等のセラミック製担体等があげられる
。その形状は、ベレット状、ノ・ニカム状等があげられ
るが、特にハニカム状をとることが圧力損失等からして
も有利であり好ましい。これら第1.第2及び第3段触
媒は、第2図に示したように連続して設置する他に、条
件によっては間隔をあけて設置してもかまわない。
In the catalytic combustion type gas turbine combustor according to the present invention, the combustion catalyst is composed of three different types of catalysts as shown in FIG. Mix to form a mixture, and then add the first stage catalyst 4
, second-stage catalyst 5, and third-stage catalyst 6 (: are further combusted to become combustion gas 9 and flow out to the turbine. 6
2. Palladium (Pa) 3 a or platinum (pt) 3
The structure includes first, second and third coating layers 2a, 2b and 2Ct made of alumina containing b, in which metal added to the first, second and third coating layers is The type is cerium (Ce) in the first coating layer,
The second coating layer is characterized by at least one of zirconium (Zr), strontium (Sr), and barium (Ba), and the third coating layer is at least one of lanthanum (LJ&) and neodymium (Nd). There is. Also, is the arrow in the figure the flow direction of the mixture? show. The heat-resistant carrier used in the present invention may be any carrier as long as it has stable properties even in a high-temperature oxidizing atmosphere of about 1200°C; specific examples thereof include:
Examples include ceramic supports such as cordierite, mullite, α-alumina, zirconia spinel, and titania. The shape may be a pellet shape, a honeycomb shape, etc., but a honeycomb shape is particularly preferred since it is advantageous in terms of pressure loss and the like. These first. The second and third stage catalysts may be installed successively as shown in FIG. 2, or they may be installed at intervals depending on conditions.

また、燃料と混合物をなす空気として、場合によっては
濃縮された酸素等よりなる酸化性気体が用いられてもよ
いし、窒素あるいはその他の本質的C二は不活性なガス
によって空気がさらに希釈されていてもよい。
Further, as the air mixed with the fuel, an oxidizing gas such as concentrated oxygen may be used in some cases, or nitrogen or other essential carbon dioxide may be further diluted with an inert gas. You can leave it there.

前記耐熱性担体上に設けるアルミナとしては、たとえば
γ−アルミナが活性担体としての機能を有しており好ま
しい。また、被覆層に添加される本発明に係る金属の種
類は、その金属を含む触媒が使用される温度条件におい
て、最高の活性を示すものとして選択されたものであり
、よって、その温度条件よV第1段触媒は800℃以下
、第2段触媒は1000℃以下、第3段触媒は1200
℃以下で使用される。各々の範囲をこえた温贋で使用さ
れた場合、触媒活性は急激に低下する。
As the alumina provided on the heat-resistant carrier, for example, γ-alumina is preferable because it has a function as an active carrier. Furthermore, the type of metal according to the present invention added to the coating layer is selected as one that exhibits the highest activity under the temperature conditions in which the catalyst containing the metal is used. V 1st stage catalyst: 800°C or less, 2nd stage catalyst: 1000°C or less, 3rd stage catalyst: 1200°C or less
Used below ℃. When used at temperatures exceeding the respective ranges, the catalyst activity decreases rapidly.

さらに第1.第2及び第3被覆層に添加される金属の景
は、その総量がそれぞれの被覆層をな丁A/40. l
二対し5〜30重量%であることが好ましく、10〜2
0重量%であることが更(二好ましい。添加する前記金
属の量が上記の範囲より少ない場合には耐熱性の向上が
認められず、一方多い場合には添加された金属の酸化物
が八403の粒界に多量に析出し、前記被覆層の強度が
低下してしまうためである。
Furthermore, the first. The total amount of metal added to the second and third coating layers is approximately A/40. l
The amount is preferably 5 to 30% by weight, and 10 to 2% by weight.
It is more preferable that the amount is 0% by weight. If the amount of the added metal is less than the above range, no improvement in heat resistance will be observed, while if it is more than 0%, the oxide of the added metal will This is because a large amount of 403 precipitates at the grain boundaries, reducing the strength of the coating layer.

本発明において使用される貴金属は経済的な条件から特
にパラジウムや白金が選択されるが、燃焼が進んでより
高温(二なる下流側の第2.第3段の触媒には貴金属そ
のものの耐熱性を向上した貴金属の合金(Pd−Rh、
Pt−Rh、Pd−8i 、Pt−8t等)を使用する
事が望せしい。また貴金属の担持量は、特に限定されな
いが、触媒活性の観点から触媒全琶に対し0.1〜10
r/l である事が好ましい。
The noble metals used in the present invention are particularly selected from palladium and platinum due to economic conditions. Noble metal alloys (Pd-Rh,
It is desirable to use Pt-Rh, Pd-8i, Pt-8t, etc.). The amount of noble metal supported is not particularly limited, but from the viewpoint of catalytic activity, it is 0.1 to 10% of the total weight of the catalyst.
Preferably, it is r/l.

上記した本発明に係るガスタービン燃焼器に用いる触媒
は、例えば、次のようにして製造することが可能である
The catalyst used in the gas turbine combustor according to the present invention described above can be manufactured, for example, as follows.

先ず、アルミナゾル又はγ−At、O,から成るアルミ
ナコーティング組成物に、貴金属及び各種添加金属を、
例えば、それらの金属の塩化物又は硝酸塩等の金属塩の
形で所定量添加する。
First, noble metals and various additive metals are added to an alumina coating composition consisting of alumina sol or γ-At, O,
For example, a predetermined amount of these metals is added in the form of metal salts such as chlorides or nitrates.

次いで、上記組成物を、例えば、ボールミル等を用いて
混合する。このようにして得たコーティング用液体を、
耐熱性担体に対し流しかけるか、又は耐熱性担体をコー
ティング用液体中に浸漬する等の操作により被値せしめ
、常温で充分乾燥した後、例えば、650℃で3時間程
度焼成する。
Next, the above composition is mixed using, for example, a ball mill. The coating liquid obtained in this way is
The coating liquid is coated by pouring onto a heat-resistant carrier or by immersing the heat-resistant carrier in a coating liquid, and after sufficiently drying at room temperature, it is fired at, for example, 650° C. for about 3 hours.

更に、例えば、水素雰囲気中、550℃で3時間程度焼
成することにより、本発明のガスタービン燃焼器に用い
る触媒を得ることができる。
Furthermore, the catalyst used in the gas turbine combustor of the present invention can be obtained by firing at 550° C. for about 3 hours in a hydrogen atmosphere, for example.

本発明のガスタービン燃焼器C二用いる触媒が優れた耐
熱性を有する理由は明らかではないが、次のように考え
ることができる。
The reason why the catalyst used in gas turbine combustor C2 of the present invention has excellent heat resistance is not clear, but it can be considered as follows.

即ち、第3図に示すように、貴金属のPd 3aやPt
 3bがAt、03中に含有されているために、貴金属
の熱移動が阻止されているものと思われる。
That is, as shown in FIG. 3, precious metals such as Pd 3a and Pt
It is thought that heat transfer of the noble metal is inhibited because 3b is contained in At and 03.

又、被覆層にγ−At!03を用いた場合にγ−AZ、
O=被覆層中に添加される金属(Ce、Zr、Sr、B
a、La、Nd)が、γ−Atコ03のα−At203
化を遅延せしめ、且つ、γ−At、0.被覆層の結晶粒
界全微細化する効果を有するため、燃焼触媒の高熱≦二
よるり2ツクの発生及びその伝播が阻止されていると考
えられる。
In addition, γ-At! When using 03, γ-AZ,
O = metal added to the coating layer (Ce, Zr, Sr, B
a, La, Nd) are α-At203 of γ-Atko03
γ-At, 0. Since it has the effect of completely refining the grain boundaries of the coating layer, it is thought that the generation and propagation of high heat of the combustion catalyst is prevented.

〔発明の実施例〕[Embodiments of the invention]

実施例1 次に示す組成のアルミナコーティング組成物を調製した
Example 1 An alumina coating composition having the composition shown below was prepared.

アルミナゾル(固形分80%) 125r硝酸セリウム
 25f 塩化パラジウム 10f 上記組成物を、ボールミルを用いて常温で2時間混合し
、アルミナコーティング組成物を得た。
Alumina sol (solid content 80%) 125r Cerium nitrate 25f Palladium chloride 10f The above composition was mixed at room temperature for 2 hours using a ball mill to obtain an alumina coating composition.

次いで、コージライト製ハニカム状担体(1平記アルミ
ナコ一テイング組成物を水に分散した液体を流しかけな
がらアルミナ組成物をすべて塗布した後、常温で約1日
乾燥した。このハニカム状担体を650℃で3時間焼成
した後、水素雰囲気中において、550℃で3時間焼成
し、本発明に係るガスタービン燃焼器の触媒(4)′f
!:得た。
Next, the alumina composition was completely applied to a cordierite honeycomb carrier (1) by pouring a liquid obtained by dispersing the alumina coating composition in water, and then dried at room temperature for about one day. ℃ for 3 hours, and then fired at 550℃ for 3 hours in a hydrogen atmosphere to obtain a catalyst (4)'f for a gas turbine combustor according to the present invention.
! :Obtained.

同様の手法を用いて、貴金属及び添加金属の種類を変え
たアルミナコーティング組成物を調製して、第1表に示
したような触媒(B)へ触媒(I)の8 filt類の
触媒を得た。同時に比較例として、第1表(=示すよう
な貴金属および添加金属の種類と添加量全前記範囲外に
設足した触媒(a)へ触媒(f)の6種類の触媒を同様
の手法によりそれぞれ調製した。上記触媒囚〜触媒(I
)及び触媒(a)〜触媒(f) ’(rそれぞれ、エー
ジング温度全800℃、1000℃、 1200℃とし
て電気炉でエージングを行なった後で、流通系試験装置
を用いて、その触媒特性を評価した。尚、試験条件は、
ガス流量: 544r+in、燃焼ガス濃度;メタン(
CH4) i % v触媒−)i:1Qcc及び空間速
度;3×10 ’ hr=であり、触媒温度300℃に
おける触媒活性を測定した。第1表に示したその結果か
ら800℃までの温度範囲ではPd−Ce 、IQQQ
℃まではPd−(Sr、Ba、Zr のうちの1種類以
上) 、 1200℃まではPt−(La、Ndの少く
とも1独)が望筐しい触媒であることがわかる。以下侮
白 第 1 表 次いで、上記それぞれの触媒全第2表の様に適宜組み合
わせて燃焼用触媒を構成し、ガスタービン燃焼器に充填
して、前記ガスタービン燃焼器を運転した。そして、燃
焼効率99.9%以上、及び燃焼がス9中のNNOx3
pp以下という2つの基準で判定した。その結果、第2
表に示す様に本発明に係る触媒を適切に組み合わせた実
施例のみ判定は合格し、その他の本発明(二係る範囲以
外の比較例はたとえば貴金属Pd及びptだけによる比
較例(1)や過剰の添加量J6’に含んだ触媒を用いた
比較例(2)等すべて前記基準を満足せず不合格であっ
た。また燃焼器運転中の触媒温度は第1段700 ℃t
 紀2段り00℃、第3段1100℃でbった。
Using the same method, alumina coating compositions with different noble metals and additive metals were prepared to obtain 8 filts of catalyst (B) and catalyst (I) as shown in Table 1. Ta. At the same time, as a comparative example, six types of catalysts (catalyst (f)) were added to catalyst (a), which was installed outside the above range, in Table 1 (=all types and amounts of precious metals and additive metals as shown) using the same method. The above catalyst prisoner to catalyst (I
) and catalysts (a) to (f) '(r) were aged in an electric furnace at a total aging temperature of 800°C, 1000°C, and 1200°C, respectively, and then their catalytic properties were evaluated using a flow test device. The test conditions were as follows:
Gas flow rate: 544r+in, combustion gas concentration: methane (
CH4)i%vcatalyst-)i:1Qcc and space velocity; 3 x 10' hr=, and the catalyst activity was measured at a catalyst temperature of 300°C. From the results shown in Table 1, in the temperature range up to 800℃, Pd-Ce, IQQQ
It can be seen that Pd- (at least one of Sr, Ba, and Zr) is a desirable catalyst up to 1200°C, and Pt- (at least one of La and Nd) is a desirable catalyst. Table 1: All of the above catalysts were combined as shown in Table 2 to form a combustion catalyst, filled into a gas turbine combustor, and the gas turbine combustor was operated. And the combustion efficiency is 99.9% or more, and the combustion is NNOx3 in the gas.
Judgment was made based on two criteria: pp or less. As a result, the second
As shown in the table, only the examples in which catalysts according to the present invention were appropriately combined passed the judgment, and other comparative examples outside the scope of the present invention (2) were, for example, comparative example (1) with only precious metals Pd and pt, and Comparative example (2) using the catalyst included in the addition amount J6' all failed as they did not satisfy the above criteria.Also, the catalyst temperature during combustor operation was 700 °Ct in the first stage.
The second stage was 00℃, and the third stage was 1100℃.

第2表から明らかな様に、本発明によるガスタービン燃
焼器は使用される温度域で特異な活性を示す3種の触媒
を適切に組み合わす(1(により、ガスタービン燃焼器
として高い燃焼効率と低NOx化11i成したものでら
ジ、比較例のものと比べて格段に優れていることが確認
された。以千lE7第 2 表 また、本発明に係る触媒は、貴金属を用いているために
その特性である低温着火性を有しつつ、高耐熱性を備え
るという広い温度領域での使用が可能であり、それぞれ
の触媒をその高活性を保つ温度範囲で使用するために、
劣化が大巾に少なくなり、長寿命をも有している。
As is clear from Table 2, the gas turbine combustor according to the present invention has a high combustion efficiency as a gas turbine combustor by appropriately combining three types of catalysts that exhibit unique activities in the temperature range in which it is used (1). It was confirmed that the catalyst of the present invention is significantly superior to that of the comparative example. Therefore, it can be used in a wide temperature range with high heat resistance while maintaining its characteristic low-temperature ignitability.In order to use each catalyst in a temperature range that maintains its high activity,
Deterioration is greatly reduced and it has a long life.

尚、上記実施例においては、3種の触媒により構成され
ているが、これはガスタービンの様な1200Cを超え
る燃焼ガスを生成する場合であり、1000℃以下の燃
焼ガス全生成する場合は本発明の触媒のうち低温側で使
用する2段の触媒で構成してもよい。
In the above example, three types of catalysts are used, but this is used when generating combustion gas exceeding 1200C, such as in a gas turbine, and when generating all combustion gas below 1000℃, this catalyst is used. Of the catalysts of the invention, a two-stage catalyst used on the low temperature side may be used.

また触媒の温度は燃焼条件等で少し変化するため第1段
は800℃、第2段1000℃、第3段1200℃以下
に制御する事が原則的(二必要であるが、これは、通常
の燃焼の場合、触媒の長さにより調整可能でらる。
In addition, since the temperature of the catalyst changes slightly depending on combustion conditions, it is generally necessary to control the temperature to 800°C in the first stage, 1000°C in the second stage, and 1200°C in the third stage. In the case of combustion, the length of the catalyst can be adjusted.

〔発明の効果〕〔Effect of the invention〕

本発明のガスタービン燃焼器は、従来の貴金属系、燃焼
用触媒を用いた燃焼器に比べて、低温着火性を保持しな
がら、その耐熱性が大幅に向上し長寿命を備えたもので
ある。従って、エネルギーの節約及び効率的利用が可能
であり、又、NoX等をほとんど発生させることなく燃
焼が可能であるため、環境汚染等の問題を惹き起こ丁こ
とがないものである。
The gas turbine combustor of the present invention has significantly improved heat resistance and long life while maintaining low-temperature ignition performance compared to conventional combustors using noble metal combustion catalysts. . Therefore, it is possible to save and use energy efficiently, and since it is possible to burn it with almost no generation of NoX etc., it does not cause problems such as environmental pollution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の貴金属系燃焼触媒の構造を示す模式図で
あり、第2図は本発明に係るガスタービン燃焼器の構造
を示す断面模式図、第3図は燃焼用触媒を構成する三種
類の触媒の構造を示す模式%式% 6・・・第3段触媒 7・・・燃料ノズル8・・・空気
 9・・・燃焼ガス 代理人 弁理士 則 近 憲 佑 (ほか1名)第 1
 図 第2図 第 3 図 f 2y / a+ / Zc
Fig. 1 is a schematic diagram showing the structure of a conventional noble metal combustion catalyst, Fig. 2 is a cross-sectional schematic diagram showing the structure of a gas turbine combustor according to the present invention, and Fig. 3 is a schematic diagram showing the structure of a combustion catalyst. Schematic percentage formula showing the structure of different types of catalysts% 6...Third stage catalyst 7...Fuel nozzle 8...Air 9...Combustion gas agent Patent attorney Noriyuki Chika (and 1 other person) No. 1
Figure 2 Figure 3 Figure f 2y / a+ / Zc

Claims (3)

【特許請求の範囲】[Claims] (1)燃料及び空気からなる混合物を触媒燃焼方式によ
り燃焼させるガスタービン燃焼器において、前記ガスタ
ービン燃焼器の燃焼用触媒が第1段触媒、第2段触媒及
び第3段触媒の三種類の異なった触媒を具備し、 前記混合物の流れの上流側に位置する第1段触媒が、耐
熱性担体上に貴金属とセリウムとを含むアルミナよりな
る第1被覆層を設けた触媒からなり、ついで第2段触媒
が、耐熱性担体上に貴金属とジルコニウム、ストロンチ
ウム及びバリウムの少くとも1種以上の金属とを含むア
ルミナよりなる第2被覆層を設けた触媒からなり、さら
に下流側に位置する第3段触媒が耐熱性担体上に、貴金
属とランタン、ネオジウムの少なくとも1種々の金属と
を含むアルミナよりなる第3被覆層を設けた触媒からな
ることを特徴とするガスタービン燃焼器。
(1) In a gas turbine combustor that burns a mixture of fuel and air using a catalytic combustion method, the combustion catalyst of the gas turbine combustor has three types of catalysts: a first stage catalyst, a second stage catalyst, and a third stage catalyst. A first stage catalyst comprising different catalysts and located upstream of the flow of the mixture comprises a catalyst having a first coating layer made of alumina containing a noble metal and cerium on a heat-resistant carrier; The two-stage catalyst includes a second coating layer made of alumina containing a noble metal and at least one metal of zirconium, strontium, and barium on a heat-resistant carrier, and a third coating layer located further downstream. A gas turbine combustor characterized in that the stage catalyst comprises a heat-resistant carrier provided with a third coating layer made of alumina containing a noble metal and at least one of various metals such as lanthanum and neodymium.
(2)前記第1段触媒の使用上限温度が800℃であり
、前記第2段触媒の使用上限温度が1000℃でちジ、
前記第3段触媒の使用上限温度が1200℃であること
を特徴とする特許請求の範囲第1項記載のガスタービン
燃焼器。
(2) The upper limit temperature for use of the first stage catalyst is 800°C, and the upper limit temperature for use of the second stage catalyst is 1000°C;
The gas turbine combustor according to claim 1, wherein the upper limit temperature for use of the third stage catalyst is 1200°C.
(3)前記第1段触媒及び第2段触媒に用いられた貴金
属がパラジウムであり、前記第3段触媒に用いられた貴
金属が白金であること全特徴とする特許請求の範囲第1
項記載のガスタービン燃焼器。
(3) Claim 1 characterized in that the noble metal used in the first stage catalyst and the second stage catalyst is palladium, and the noble metal used in the third stage catalyst is platinum.
The gas turbine combustor described in Section 1.
JP59056339A 1984-03-26 1984-03-26 Combustor of gas turbine Pending JPS60200021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056339A JPS60200021A (en) 1984-03-26 1984-03-26 Combustor of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056339A JPS60200021A (en) 1984-03-26 1984-03-26 Combustor of gas turbine

Publications (1)

Publication Number Publication Date
JPS60200021A true JPS60200021A (en) 1985-10-09

Family

ID=13024456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056339A Pending JPS60200021A (en) 1984-03-26 1984-03-26 Combustor of gas turbine

Country Status (1)

Country Link
JP (1) JPS60200021A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128453A (en) * 1984-07-19 1986-02-08 Babcock Hitachi Kk Combustion catalyst
JPS62218728A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
US5075275A (en) * 1989-07-06 1991-12-24 Mazda Motor Corporation Catalyst for purification of exhaust gases
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
WO1994019647A1 (en) * 1993-02-25 1994-09-01 Engelhard Corporation Improved catalyst configuration for catalytic combustion systems
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
EP0664147A2 (en) * 1994-01-20 1995-07-26 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128453A (en) * 1984-07-19 1986-02-08 Babcock Hitachi Kk Combustion catalyst
JPS62218728A (en) * 1986-03-19 1987-09-26 Tokyo Electric Power Co Inc:The Gas turbine combustor
US5075275A (en) * 1989-07-06 1991-12-24 Mazda Motor Corporation Catalyst for purification of exhaust gases
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
WO1994019647A1 (en) * 1993-02-25 1994-09-01 Engelhard Corporation Improved catalyst configuration for catalytic combustion systems
EP0664147A2 (en) * 1994-01-20 1995-07-26 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
EP0664147A3 (en) * 1994-01-20 1996-10-02 Toyota Motor Co Ltd Catalyst for purifying exhaust gases.
US5849254A (en) * 1994-01-20 1998-12-15 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gases with two layer catalyst in oxygen-rich atmosphere
US6217831B1 (en) 1994-01-20 2001-04-17 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases

Similar Documents

Publication Publication Date Title
KR940000867B1 (en) Exhaust gas cleaning catalyst and its preparation
US8242045B2 (en) Ceramic wash-coat for catalyst support
JPS60200021A (en) Combustor of gas turbine
JPS6014938A (en) Combustion catalyst for gas turbine
JP2004298813A (en) Layered catalyst
JPS6366258B2 (en)
JPS60202235A (en) Combustor of gas turbine
JPS62216642A (en) Catalytic material for gas turbine combustor
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JPS5952529A (en) High temperature combustion catalyst
JPH0512021B2 (en)
JPS60147243A (en) Gas turbine combustor
JPS59169536A (en) High temperature combustion catalyst
JPH0215254B2 (en)
JPS63104651A (en) Catalyst for purifying exhaust gas
JPS60205129A (en) Combustor for gas-turbine
JPS62282640A (en) Catalyst for purifying exhaust gas
JP2585212B2 (en) Gas turbine combustor
JPH08206500A (en) Palladium-based catalyst, combustion catalyst, and combustion device
JP2523484B2 (en) Gas turbine combustor
JPS6388041A (en) Oxidizing catalyst
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JP2585253B2 (en) Catalyst for gas turbine combustor
JP2823251B2 (en) Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst
JP2732646B2 (en) Method for producing exhaust gas purifying catalyst