JPS60106171A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60106171A
JPS60106171A JP21469683A JP21469683A JPS60106171A JP S60106171 A JPS60106171 A JP S60106171A JP 21469683 A JP21469683 A JP 21469683A JP 21469683 A JP21469683 A JP 21469683A JP S60106171 A JPS60106171 A JP S60106171A
Authority
JP
Japan
Prior art keywords
diffusion layer
type
diffusion
semiconductor substrate
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21469683A
Other languages
Japanese (ja)
Inventor
Katsushige Shomura
庄村 且成
Susumu Nakamura
進 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Components Co Ltd
Original Assignee
Toshiba Corp
Toshiba Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Components Co Ltd filed Critical Toshiba Corp
Priority to JP21469683A priority Critical patent/JPS60106171A/en
Publication of JPS60106171A publication Critical patent/JPS60106171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66363Thyristors
    • H01L29/66393Lateral or planar thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To enable to arbitrarily control the vertical distance of a semiconductor element without complicating the diffusion process in the manufacturing method of the semiconductor element by a method wherein isolation diffusion layers and an anode diffusion layer are respectively formed at the same time as the same diffusion layer and the diffusion distance of the anode diffusion layer is further deepened. CONSTITUTION:An insulating oxide film 21 is selectively formed on the surface of an N type semiconductor substrate 11 by a photo etching process (PEP), for example. P type diffusion layers (insulating isolation layers) 22a and 22b are selectively formed on the surface of the N type semiconductor substrate 11 using impurities such as boron, etc., and at the same time as this, a P type anode diffusion layer 23 is totally formed on the back surface of the substrate 11 using the same impurities as the above-mentioned ones. A P type gate diffusion layer 25 is formed on the N type base region 24 of the semiconductor substrate 11, which is surrounded with the P type isolation diffusion layers 22a and 22b and the P type diffusion layer 23, and moreover, an N<+> type cathode diffusion layer 26 is formed on the surface of the P type diffusion layer 25.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は1例えばプレーナ型サイリスタ(シリコン制
御整流素子)において、特に、電気的特性を半導体菓子
の垂直距離で制御する際に用いられる半導体装置の製造
方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a semiconductor device used, for example, in a planar thyristor (silicon-controlled rectifying element), particularly when electrical characteristics are controlled by the vertical distance of a semiconductor confectionery. Regarding the manufacturing method.

(発明の技術的背景とその問題点〕 一般に、ブレーナ型のサイリスタは、第1図に示すよう
な素子構造で形成されている。すなわち、先ず、N型半
導体基板11に対して、その両面よりP型アイソレーシ
ョン拡散層(絶縁分離層)z2a、z2bを形成し、コ
ノ後、P型アノード拡散層13およびP型ゲート拡散層
14を、それぞれ同時または順次選択的に形成する。そ
して、このP型ゲート拡散層14の表面に、N+型カソ
ード拡散層15を形成して。
(Technical background of the invention and its problems) In general, a Brehner-type thyristor is formed with an element structure as shown in Fig. 1. First, an N-type semiconductor substrate 11 is P-type isolation diffusion layers (insulating separation layers) z2a and z2b are formed, and after this, a P-type anode diffusion layer 13 and a P-type gate diffusion layer 14 are selectively formed simultaneously or sequentially. An N+ type cathode diffusion layer 15 is formed on the surface of the type gate diffusion layer 14.

P型とN型との導電性の異なる4つの領域(P−、N−
PN)を形成し、fイリスタを構成している。
Four regions with different conductivities (P-, N-
PN) and constitutes an f iris register.

ここで1例えば、このサイリスタの電気的時゛性を制御
するために、P型アノード拡散層13とP型ゲート拡散
層14との垂直距離人を、特に、狭くして形成する場合
には、第1の手段として、予め薄く形成した半導体基板
を用b)る方法がある。しかし、このよう(二薄り)半
導体基板を用いると、製造工程中に半導体基板の反0不
良や割れ不良等が発生する状態となり、製品歩留を低下
させてしまう。
For example, if the vertical distance between the P-type anode diffusion layer 13 and the P-type gate diffusion layer 14 is particularly narrowed in order to control the electrical timing of the thyristor, As a first means, there is a method (b) of using a semiconductor substrate formed thinly in advance. However, when such a (bi-thin) semiconductor substrate is used, defects such as anti-zero defects and cracking defects of the semiconductor substrate occur during the manufacturing process, resulting in a decrease in product yield.

また、第2の手段として、先ず、P型カソード拡散層1
3を予め深く拡散形成し、次1−1..P型ゲート拡散
層14を形成して、その相互距離Aを狭く形成する方法
も考えられている。し力1し、このように、P型カソー
ド拡散N13とP型ゲート拡散層14とを、それぞれ別
々の2回の拡散工程から形成したのでは、製造工程カー
複雑化して加工費が増加するという問題カー化じる。
In addition, as a second means, first, the P-type cathode diffusion layer 1
3 is deeply diffused in advance, and then 1-1. .. A method has also been considered in which the P-type gate diffusion layer 14 is formed and the mutual distance A thereof is narrowed. However, if the P-type cathode diffusion layer N13 and the P-type gate diffusion layer 14 were formed in two separate diffusion steps, the manufacturing process would become complicated and the processing cost would increase. It turns into a problem car.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような問題点に鑑みなされたもので1
例えば厚めの半導体基板を用b)るような場合でも、拡
散工程が複雑化することなく。
This invention was made in view of the above problems.1
For example, even when using a thicker semiconductor substrate, the diffusion process does not become complicated.

半導体素子の垂直距離を任意に制御すること力tできる
半導体装置の製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a semiconductor device that allows the vertical distance of semiconductor elements to be arbitrarily controlled.

〔発明の概要〕[Summary of the invention]

すなわちこの発明に係る半導体装置の製造方法は、アイ
ソレーション拡散層とアノード拡散層とを、それぞれ同
一の拡散層として同時に形成し、上記アノード拡散層の
拡散距離をさらに深めるようにしたものである。
That is, in the method of manufacturing a semiconductor device according to the present invention, an isolation diffusion layer and an anode diffusion layer are simultaneously formed as the same diffusion layer, and the diffusion distance of the anode diffusion layer is further deepened.

〔発明の実施例〕[Embodiments of the invention]

以下図面によりこの発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図(5)乃至(Qはそれぞれその製造工程を示すも
ので、先ず同図(5)に示すように、N型半導体基板1
1の表面には、例えば、フォトエツチング工程(PEP
)により、選択的に絶縁酸化膜2zを形成する、次に、
第2図(aに示すように、N型半導体基板11の表面に
は、ホウ素B縁の不純物を使用してP型のアイソレーシ
ョン拡散層(絶縁分離層)22a、22bを選択的に形
成し、これと同時にその裏面には、P型アノード拡散層
23を上記と同様の不純物(この場合、ホウ累B)によ
り全面的に形成する。この場合、上記アイソレーション
拡散層22 a *22bとアノード拡散層23とは、
それぞれ同一の拡散層として形成されるもので、このそ
れぞれの拡散層22a、22bおよび23の拡散深さY
lおよびY、を調節することにより、この半導体装置の
電気的特性を任意に制御する。
FIG. 2 (5) to (Q indicate the manufacturing process, respectively. First, as shown in FIG. 2 (5), an N-type semiconductor substrate 1
For example, the surface of 1 is subjected to a photo-etching process (PEP
) to selectively form an insulating oxide film 2z.
As shown in FIG. 2(a), P-type isolation diffusion layers (insulating separation layers) 22a and 22b are selectively formed on the surface of the N-type semiconductor substrate 11 using boron B-edge impurities. At the same time, a P-type anode diffusion layer 23 is formed entirely on the back surface using the same impurity as described above (in this case, borosilicate B).In this case, the isolation diffusion layer 22a*22b and the anode What is the diffusion layer 23?
They are formed as the same diffusion layer, and the diffusion depth Y of each of these diffusion layers 22a, 22b, and 23 is
By adjusting l and Y, the electrical characteristics of this semiconductor device can be arbitrarily controlled.

ここで、アノード拡散層23を深く拡散すると。Here, if the anode diffusion layer 23 is deeply diffused.

電気的特性が安定し、また、逆に浅く拡散すると、絶縁
耐圧が上昇する。
The electrical characteristics become stable, and conversely, when the material is diffused shallowly, the dielectric strength increases.

そして、第2図(C)に示すように、上記P型アイソレ
ーション拡散層22a、22bおよびP型アノード拡散
層23により包囲される、半導体基板11のN型ベース
領域24に対して、P型ゲート拡散層25を形成し、さ
らにその表面にN+型カソード拡散層26を形成する。
Then, as shown in FIG. 2(C), a P-type A gate diffusion layer 25 is formed, and an N+ type cathode diffusion layer 26 is further formed on the surface thereof.

この後、P型ゲート拡散層25およびN 型カソード拡
散IM26の表面にそれぞれゲートGおよびカソードに
電極導出部27a、2’ibを形成し、また、P型アノ
ード拡散層23の表面にも、P+型アノード高濃度層2
8を介してアノードA電極導出部2’ICを形成する。
Thereafter, electrode lead-out portions 27a and 2'ib are formed on the gate G and cathode, respectively, on the surfaces of the P-type gate diffusion layer 25 and the N-type cathode diffusion layer 26, and also on the surface of the P-type anode diffusion layer 23, P+ Type anode high concentration layer 2
8 to form an anode A electrode lead-out portion 2'IC.

すなわちこのような製造工程においては、P型アイソレ
ーション拡散層22a、22bとP型アノード拡散層2
3とを、それぞn同時:′″−拡散形成するようにした
ので、例えば、このP型アノード拡散層23とP型ゲー
ト拡散層25とを、それぞIt JIID次別々の工程
で形成するような場合でも、実質的にその製造工程が複
雑化することはない。したがって%P型アノード拡散層
23をP型アイソレーション層22a、22bと同時に
、予め任意の拡散深さで形成しておくことにより、この
後の工程で形成されるP型ゲート拡散層25との垂直距
離へを任意よ二調節することが可能となり、電気的特性
を容易C二制御することができる。
That is, in such a manufacturing process, the P-type isolation diffusion layers 22a, 22b and the P-type anode diffusion layer 2
3 and 3 are simultaneously formed by diffusion, for example, the P-type anode diffusion layer 23 and the P-type gate diffusion layer 25 are formed in separate steps. Even in such a case, the manufacturing process is not substantially complicated.Therefore, the P-type anode diffusion layer 23 is formed in advance at an arbitrary diffusion depth at the same time as the P-type isolation layers 22a and 22b. As a result, it becomes possible to arbitrarily adjust the vertical distance to the P-type gate diffusion layer 25 formed in the subsequent step, and the electrical characteristics can be easily controlled.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば1例えば厚めの半導体基
板を用いるような場合でも、拡散工程を複雑化すること
なく、半導体素子の垂直距離を任意に調節することがで
き、電気的特性な簡単ビ制御することが可能となる。
As described above, according to the present invention, 1. Even when using a thick semiconductor substrate, the vertical distance of the semiconductor element can be arbitrarily adjusted without complicating the diffusion process, and the electrical characteristics can be easily adjusted. It becomes possible to control the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプレーナ型サイリスタを示す断面構成図%第2
図(5)乃至(Qはそれぞれこの発明の一実施例に係る
半導体装置の製造方法をその工程順に示す断面構成図で
ある、 11・・・N型半導体基板、21・・・絶縁酸化膜。 22a、22b・・・P型アイソレーション拡散層、2
3・・・P型アノード拡散層、24・・・N型ペース領
域、25・・・P型ゲート拡散層、26・・・N+型カ
ソード拡散層、27a〜27b・・・電極導出部。 28・・・P+型アノード高濃度層。 出願人代理人 弁理士 鈴 江 武 彦第1図 (B)
Figure 1 is a cross-sectional diagram showing a planar thyristor%2
Figures (5) to (Q) are cross-sectional configuration diagrams showing the method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps, 11...N-type semiconductor substrate, 21... Insulating oxide film. 22a, 22b...P type isolation diffusion layer, 2
3...P type anode diffusion layer, 24...N type space region, 25...P type gate diffusion layer, 26...N+ type cathode diffusion layer, 27a-27b...electrode lead-out portion. 28...P+ type anode high concentration layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 (B)

Claims (1)

【特許請求の範囲】[Claims] 第l導電型半導体基板の表面に選択的に第2尋電型アイ
シユレーシヨン拡散層を形成する手段と、この第2導電
型アイシユレーシヨン拡散層の形成時と同時に上記第1
導電型半導体基板の裏面に全面的に第2導電型アノード
拡散層を形成する手段と、この第2導電型アノード拡散
層と上記第2導電型アイシユレーシヨン拡散層とによっ
て包囲されてなる第1導電型ベース領域の表面に第2導
電型ゲート拡散層を形成する手段とを具備し、上記第2
導電型アイシユレーシヨン拡散層と第2導電型アノード
拡散層とをそ牡ぞれ同一の拡散層として形成することを
特徴とする半導体装置の製造方法。
means for selectively forming a second conductivity type islation diffusion layer on the surface of the first conductivity type semiconductor substrate;
means for forming a second conductivity type anode diffusion layer on the entire back surface of the conductivity type semiconductor substrate; means for forming a second conductivity type gate diffusion layer on the surface of the first conductivity type base region;
1. A method of manufacturing a semiconductor device, comprising forming a conductive type isolation diffusion layer and a second conductive type anode diffusion layer as the same diffusion layer.
JP21469683A 1983-11-15 1983-11-15 Manufacture of semiconductor device Pending JPS60106171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21469683A JPS60106171A (en) 1983-11-15 1983-11-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21469683A JPS60106171A (en) 1983-11-15 1983-11-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60106171A true JPS60106171A (en) 1985-06-11

Family

ID=16660084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21469683A Pending JPS60106171A (en) 1983-11-15 1983-11-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60106171A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838080A (en) * 1971-09-16 1973-06-05
JPS5224475A (en) * 1975-08-20 1977-02-23 Nec Corp Planar thyristor process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838080A (en) * 1971-09-16 1973-06-05
JPS5224475A (en) * 1975-08-20 1977-02-23 Nec Corp Planar thyristor process

Similar Documents

Publication Publication Date Title
US4072975A (en) Insulated gate field effect transistor
JPS60106171A (en) Manufacture of semiconductor device
JPS6347972A (en) Semiconductor device
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPS5928368A (en) Semiconductor capacitor
US3585465A (en) Microwave power transistor with a base region having low-and-high-conductivity portions
JPS5834943A (en) Semiconductor device and manufacture thereof
JPS63199454A (en) Semiconductor device
JPH02184026A (en) Method of forming semiconductor device
US3435305A (en) Method and article for making switchable semiconductor elements
JPS6140140B2 (en)
JPH02189963A (en) Semiconductor device
US3365629A (en) Chopper amplifier having high breakdown voltage
GB1224802A (en) Semiconductor device and a method of manufacturing the same
JPS6455853A (en) Semiconductor device and manufacture thereof
JPS61284961A (en) Semiconductor device
JPH02207534A (en) Semiconductor device
JPS60126864A (en) Semiconductor device
JPS6185863A (en) Semiconductor integrated circuit device
JPS5812337A (en) Manufacture of semiconductor device
JPS62141768A (en) Semiconductor device and manufacture thereof
JPH0855999A (en) Semiconductor device
JPH0469938A (en) Semiconductor device and manufacture thereof
JPH04290469A (en) Manufacture of semiconductor device
JPS5852867A (en) Resistor device