JPS5928368A - Semiconductor capacitor - Google Patents

Semiconductor capacitor

Info

Publication number
JPS5928368A
JPS5928368A JP13729282A JP13729282A JPS5928368A JP S5928368 A JPS5928368 A JP S5928368A JP 13729282 A JP13729282 A JP 13729282A JP 13729282 A JP13729282 A JP 13729282A JP S5928368 A JPS5928368 A JP S5928368A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
groove
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13729282A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
貴士 山口
Tadashi Nagayama
永山 端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Hitachi Iruma Electronic Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Hitachi Iruma Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd, Hitachi Iruma Electronic Co Ltd filed Critical Hitachi Ltd
Priority to JP13729282A priority Critical patent/JPS5928368A/en
Publication of JPS5928368A publication Critical patent/JPS5928368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive to increase the value of capacity by a method wherein a row of deep grooves or an unevenness is provided on the surface of an N (or P)- type semiconductor substrate, a P (or N)-layer is superposed, and then the P-N junction is determined as a capacitor. CONSTITUTION:The row of deep grooves 11 is formed by selectively etching the surface of the N type Si layer 10, the P-epitaxial layer 12 is superposed, windows are opened through the SiO2 film 13 of the flatted surface, and Al electrodes 14 and 15 are laid. As the angle of inclination theta of a groove is more increased, and widths (a) and (b) of the flat part are more decreased, the surface area more increases, and accordingly the P-N junction capacity more increases. When rows of grooves are provided lengthwise and crosswise, the rate of increase of the surface area becomes the second power of the case of one direction. Or, when an N<+> diffused layer 17 is provided on the surface of the deep etched groove 11, an Al electrode 19 is provided via a thermal oxide film 18, an N<+> layer 20 and an electrode 21 are provided outside the groove row region, the value of capacity can be also increased. This constitution enables to increase the value of capacity with the same area.

Description

【発明の詳細な説明】 本発明は半導体装置、特にモノリシックIC(半導体集
積回路装置)の一部として形成される半導体容量素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor capacitive element formed as part of a monolithic IC (semiconductor integrated circuit device).

半導体容量素子には半導体PN接合を利用した接合形容
量とMOS(金属・酸化膜・半導体)構造を利用したM
O3形容量とが知られている。
Semiconductor capacitor elements include junction capacitors using semiconductor PN junctions and MOS transistors using MOS (metal/oxide film/semiconductor) structures.
O3 type capacitor is known.

接合形容量としては、第1図に示すようにN型エピタキ
シャル層JにP型の不純物を拡散後、高濃度N+を拡散
させ、P型層2.N型層3に各々端子4,5を設けて接
合形容量としている。
As shown in FIG. 1, the junction capacitor is formed by diffusing P-type impurities into the N-type epitaxial layer J and then diffusing high concentration N+ into the P-type layer 2. Terminals 4 and 5 are provided on each N-type layer 3 to form a junction type capacitor.

このような接合型容量の場合には、単位面積尚りの容量
値を大きくするには、不純物の濃度差を大きくすればよ
いが、耐圧が小さくなってしまう。
In the case of such a junction type capacitor, in order to increase the capacitance value per unit area, it is sufficient to increase the difference in concentration of impurities, but the withstand voltage becomes small.

そこで大容量を得るには、容量の面積を大きくする必要
がある。
Therefore, in order to obtain a large capacity, it is necessary to increase the area of the capacitor.

MQS型容量としては、第2図に示すようにN型エピタ
キシャル層lの半導体表面を酸化させて酸化膜(SiQ
、膜)6を形成し、その上をALでおおい、AL電極7
と、N型エピタキシャル層とに電極8を設けてMO8型
容量としている。
As shown in FIG. 2, the MQS type capacitor is made of an oxide film (SiQ
, a film) 6 is formed, the top thereof is covered with AL, and an AL electrode 7 is formed.
An electrode 8 is provided between the capacitor and the N-type epitaxial layer to form an MO8 type capacitor.

このようなMO8型容量の場合は、単位面積当りの容量
を大きくするには、酸化膜厚を薄くする必要がある。
In the case of such an MO8 type capacitor, in order to increase the capacitance per unit area, it is necessary to reduce the thickness of the oxide film.

イスレの場合も半導体(エピタキシャル層)の平坦の表
面を利用するものであり、同一面積での容量の増大化に
は限りがあった。
In the case of distortion, the flat surface of the semiconductor (epitaxial layer) is also used, and there is a limit to how much capacitance can be increased in the same area.

本発明は何らかの方法により、半導体表面に部分的に溝
列又は凹凸を形成し、表面積を大きくすることで同一面
積で大きな容量を得ることを目的とする。
The present invention aims to obtain large capacitance in the same area by partially forming groove arrays or unevenness on the semiconductor surface to increase the surface area by some method.

第3図に提案した接合形容量素子の断面構造図を示す。FIG. 3 shows a cross-sectional structural diagram of the proposed junction capacitive element.

この半導体容量素子はN(又はP)型S+基体(エピタ
キシャル層であってもよい)loの表面に選択エツチン
グにより深い溝列11を形成し、その上に基体と反対の
導電型すなわちP(又はN)型の半導体S1層12をエ
ピタキシャル成長させ、平坦化した表面の酸化膜(Si
n、 ) 13の一部を窓開し、N(P)基体側とP(
N)層側にそれぞれA4よりなる電極14 、’ 15
を設けたものである。第5図に溝列の形態が斜面図によ
り示される。
This semiconductor capacitive element has a deep groove array 11 formed by selective etching on the surface of an N (or P) type S+ substrate lo (which may be an epitaxial layer), and on which a deep groove array 11 is formed by selective etching, that is, a P (or N) type semiconductor S1 layer 12 is epitaxially grown, and an oxide film (Si
n, ) 13 is opened, and the N(P) base side and P(
N) Electrodes 14 and ' 15 each made of A4 on the layer side.
It has been established. FIG. 5 shows the form of the groove array in a slanted view.

上記のような溝列を形成することにより表面積が平坦な
場合に比べて大きくなる。すなわち溝の傾斜角θを太き
く (<90°)するほど、又、平坦部の幅a、bを小
さくするほど表面積を大きくすることができる。したが
って本発明によれば溝列による表面積の増大によりそれ
に比例して容量値を太き(することができる。
By forming the groove array as described above, the surface area becomes larger than that in the case where the surface area is flat. That is, the larger the inclination angle θ of the groove (<90°) or the smaller the widths a and b of the flat portions, the larger the surface area can be. Therefore, according to the present invention, since the surface area is increased by the groove array, the capacitance value can be increased in proportion to the increase in surface area.

なお、溝列は一方向に限らず、第6図に示すよに縦横方
向に溝列な設けることにより多数の凹凸部16として形
成してもよい。この場合、溝列による表面積の増加率は
一方向の場合の2乗になる。
Note that the groove rows are not limited to one direction, and may be formed as a large number of uneven portions 16 by providing groove rows in the vertical and horizontal directions as shown in FIG. In this case, the rate of increase in surface area due to the groove array is the square of that in the case of one direction.

第4図に本発明によるMO8型容量素子の断面構造を示
す。この半導体容量素子はN(又はP)型Si基体10
の表面に深いエツチングによる溝列11を形成し、その
表面に高濃度のN+・(・又はp+  >型拡散層17
を形成し、熱酸化によって酸化膜(stow膜)18を
形成した上にApを蒸着して電極19を形成し、一方、
溝列の形成されない基体表面にもN+型型数散層2o形
成し、その表面に他方の電極21を設けたものである。
FIG. 4 shows a cross-sectional structure of an MO8 type capacitive element according to the present invention. This semiconductor capacitive element has an N (or P) type Si substrate 10
A groove array 11 is formed by deep etching on the surface, and a highly concentrated N+ (or p+ > type diffusion layer 17) is formed on the surface.
was formed, an oxide film (stow film) 18 was formed by thermal oxidation, and then Ap was evaporated to form an electrode 19.
An N+ type scattered layer 2o is also formed on the surface of the substrate where the groove array is not formed, and the other electrode 21 is provided on that surface.

この場合も前記(第3図)の実施例の場合と同様に溝列
を形成することにより表面積が増加し、したがって容量
値を大きくすることができる。なお溝列も第6図に示す
ような凹凸状に形成してよい。
In this case as well, as in the embodiment described above (FIG. 3), the surface area is increased by forming the groove array, and therefore the capacitance value can be increased. Note that the groove array may also be formed in an uneven shape as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図には現在使用されている接合型容量の断面構造図
を示す。 第2図には現在使用されているMO8型容量の断面構造
図を示す。 第3図には今回発明した接合型容量の断面構造図を示す
。 第4図には今回発明したMO8型容量の断面構造図を示
す。 第5図、vK6図は溝列(凹凸)の形状を斜面図により
示す。 1・・・Nエピタキシャル層、2・・・P+拡散層、3
・・・N+型型数散層4.5・・・A!β電極6・・・
酸化膜、7 、8 ・A At極、10・N (P )
型基体、11・・・溝列、12・・・P (N)型Si
層、13・・・酸化膜、14.15・・・Aβ電極、1
6・・・凹凸部、17・・・N+型型数散層18・・・
酸化膜、19・・・Aβ電極、2゜・・・N+ 型拡散
層、2工・・・Apβ電極代理人 弁理士 薄 1)利
 幸、3、・   7・。 【ノ −゛、“:;・′ 、、  、、!
FIG. 1 shows a cross-sectional structural diagram of a junction type capacitor currently in use. FIG. 2 shows a cross-sectional structural diagram of an MO8 type capacitor currently in use. FIG. 3 shows a cross-sectional structural diagram of the junction type capacitor newly invented. FIG. 4 shows a cross-sectional structural diagram of the MO8 type capacitor invented this time. FIG. 5 and vK6 show the shapes of the groove rows (irregularities) using oblique views. 1...N epitaxial layer, 2...P+ diffusion layer, 3
...N+ type scattering layer 4.5...A! β electrode 6...
Oxide film, 7, 8 ・A At electrode, 10 ・N (P)
Type base, 11...Groove array, 12...P (N) type Si
Layer, 13... Oxide film, 14.15... Aβ electrode, 1
6... Uneven portion, 17... N+ type scattering layer 18...
Oxide film, 19...Aβ electrode, 2°...N+ type diffusion layer, 2nd grade...Apβ electrode agent Patent attorney Susuki 1) Toshiyuki, 3, 7. [ノ−゛、“:;・′ 、、 、、!

Claims (1)

【特許請求の範囲】 1、N(又はP)型半導体基体の表面に深い溝列又は凹
凸を形成し、この溝列又は凹凸の形成された面の上に上
記基体と反対の導電型のP(又はN)型半導体層を形成
し、上記N(P)型基体とP(N)型層とのPN接合を
容量としたことを特徴とする半導体容量素子。 2、上記溝列又は凹凸の上に形成されたP(又はN)型
半導体層はエピタキシャル成長による半導体層からなる
特許請求の範囲第1項に記載の半導体容量素子。 3、半導体基体の表面に深い溝列又は凹凸を形成し、こ
の溝列又は凹凸の形成された表面に絶縁膜を介して導電
体膜を形成し、上記半導体基体と絶縁膜及び導電体膜と
のMO8容量を容量としたことを特徴とする半導体容量
素子。 4、上記絶縁膜は溝列又は日間の形成された半導体表面
を酸化した半導体酸化膜である特許請求の範囲第3項に
記載の半導体容量素子。
[Claims] 1. A deep groove array or unevenness is formed on the surface of an N (or P) type semiconductor substrate, and a P layer of conductivity type opposite to that of the substrate is formed on the surface on which the groove array or unevenness is formed. 1. A semiconductor capacitive element, characterized in that a (or N) type semiconductor layer is formed, and a PN junction between the N(P) type substrate and the P(N) type layer serves as a capacitor. 2. The semiconductor capacitive element according to claim 1, wherein the P (or N) type semiconductor layer formed on the groove array or the unevenness is a semiconductor layer formed by epitaxial growth. 3. Forming deep groove rows or unevenness on the surface of the semiconductor substrate, forming a conductive film on the surface where the groove rows or the unevenness are formed with an insulating film interposed therebetween, and combining the semiconductor substrate with the insulating film and the conductive film. A semiconductor capacitive element characterized in that its capacitance is MO8 capacitance. 4. The semiconductor capacitive element according to claim 3, wherein the insulating film is a semiconductor oxide film obtained by oxidizing the semiconductor surface on which groove rows or grooves are formed.
JP13729282A 1982-08-09 1982-08-09 Semiconductor capacitor Pending JPS5928368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13729282A JPS5928368A (en) 1982-08-09 1982-08-09 Semiconductor capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13729282A JPS5928368A (en) 1982-08-09 1982-08-09 Semiconductor capacitor

Publications (1)

Publication Number Publication Date
JPS5928368A true JPS5928368A (en) 1984-02-15

Family

ID=15195271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13729282A Pending JPS5928368A (en) 1982-08-09 1982-08-09 Semiconductor capacitor

Country Status (1)

Country Link
JP (1) JPS5928368A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192151U (en) * 1987-12-08 1989-06-16
EP0528281A2 (en) * 1991-08-14 1993-02-24 Siemens Aktiengesellschaft Structure of circuit having at least a capacitor and process of fabrication
JPH06350111A (en) * 1993-06-10 1994-12-22 Nec Corp Varactor diode
US6316326B1 (en) 1998-09-03 2001-11-13 Micron Technology, Inc. Gapped-plate capacitor
EP1670064A1 (en) * 2004-12-13 2006-06-14 Infineon Technologies AG Monolithically intergrated capacitor and method for manufacturing thereof
WO2020189421A1 (en) * 2019-03-20 2020-09-24 株式会社 東芝 Semiconductor wafer and method of manufacturing semiconductor device
US11616120B2 (en) 2020-09-15 2023-03-28 Kioxia Corporation Semiconductor substrate, method of manufacturing semiconductor device, and method of manufacturing semiconductor substrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192151U (en) * 1987-12-08 1989-06-16
EP0528281A2 (en) * 1991-08-14 1993-02-24 Siemens Aktiengesellschaft Structure of circuit having at least a capacitor and process of fabrication
EP0528281A3 (en) * 1991-08-14 1994-04-06 Siemens Ag
JPH06350111A (en) * 1993-06-10 1994-12-22 Nec Corp Varactor diode
US6774421B2 (en) 1998-09-03 2004-08-10 Micron Technology, Inc. Gapped-plate capacitor
US6498363B1 (en) 1998-09-03 2002-12-24 Micron Technology, Inc. Gapped-plate capacitor
US6316326B1 (en) 1998-09-03 2001-11-13 Micron Technology, Inc. Gapped-plate capacitor
US7151659B2 (en) 1998-09-03 2006-12-19 Micron Technology, Inc. Gapped-plate capacitor
EP1670064A1 (en) * 2004-12-13 2006-06-14 Infineon Technologies AG Monolithically intergrated capacitor and method for manufacturing thereof
WO2020189421A1 (en) * 2019-03-20 2020-09-24 株式会社 東芝 Semiconductor wafer and method of manufacturing semiconductor device
JPWO2020189421A1 (en) * 2019-03-20 2020-09-24
EP3944288A4 (en) * 2019-03-20 2022-11-16 Kabushiki Kaisha Toshiba Semiconductor wafer and method of manufacturing semiconductor device
US11616120B2 (en) 2020-09-15 2023-03-28 Kioxia Corporation Semiconductor substrate, method of manufacturing semiconductor device, and method of manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
JP3221489B2 (en) Insulated gate field effect transistor
JPS5928368A (en) Semiconductor capacitor
JP2605030B2 (en) Quadrature bipolar transistor
US4626880A (en) Vertical MOS-FET devices having a planar multicell structure
US5406113A (en) Bipolar transistor having a buried collector layer
US4529994A (en) Variable capacitor with single depletion layer
JPH02208952A (en) Semiconductor device and its manufacture
JPH0279475A (en) Semiconductor device
JP2002190593A (en) Insulated gate fet and method of manufacturing the same
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPS6244430B2 (en)
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
JPS63199454A (en) Semiconductor device
JPS6226837A (en) Manufacture of semiconductor device
JP3152290B2 (en) Method for manufacturing semiconductor device including capacitive element
JP2757872B2 (en) Semiconductor device and manufacturing method thereof
JPS6118344B2 (en)
JPS60144951A (en) Semiconductor device
JP2643431B2 (en) Manufacturing method of high breakdown voltage semiconductor device
JPS59217368A (en) Integrate circuit and manufacture thereof
JPH0677237A (en) Manufacture of planar type diode
JP2774220B2 (en) Semiconductor device
JPH04348563A (en) Semiconductor ic
JPS6124825B2 (en)
JPS63281468A (en) Vertical dmos-fet