JP3221489B2 - Insulated gate field effect transistor - Google Patents

Insulated gate field effect transistor

Info

Publication number
JP3221489B2
JP3221489B2 JP08453799A JP8453799A JP3221489B2 JP 3221489 B2 JP3221489 B2 JP 3221489B2 JP 08453799 A JP08453799 A JP 08453799A JP 8453799 A JP8453799 A JP 8453799A JP 3221489 B2 JP3221489 B2 JP 3221489B2
Authority
JP
Japan
Prior art keywords
region
regions
base
semiconductor substrate
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08453799A
Other languages
Japanese (ja)
Other versions
JP2000277733A (en
Inventor
正行 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP08453799A priority Critical patent/JP3221489B2/en
Publication of JP2000277733A publication Critical patent/JP2000277733A/en
Application granted granted Critical
Publication of JP3221489B2 publication Critical patent/JP3221489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐圧化を達成す
ることができる絶縁ゲート型電界効果トランジスタに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate field effect transistor capable of achieving a high breakdown voltage.

【0002】[0002]

【従来の技術】動作抵抗の低減化と高耐圧化の両方を高
水準に達成することを目的として絶縁ゲート型電界効果
トランジスタ(以下FETと言う)を図1に示すように
構成することは公知である。このFETは、N型ドリフ
ト領域1とN+ 型ドレイン領域2と複数のP型ベース領
域3と複数のソース領域4とから成るシリコン半導体基
体5と、ドレイン電極6と、ソース電極7と、ゲート電
極8と、ゲート絶縁膜9と、周辺保護絶縁膜10と、層
間絶縁膜11とを備えている。このFETのボデイ領域
又はチャネル形成領域と呼ぶことのできるベース領域3
は特異な形状を有し、ドリフト領域1の厚み方向に深く
柱状に形成されており、その底面はドリフト領域1とド
レイン領域2との界面近くまで達している。複数のベー
ス領域3を柱状に形成すると、ベース領域3とドリフト
領域1との間のPN接合に高い逆方向電圧が印加された
時に複数のベース領域3の相互間のドリフト領域1が空
乏層によって埋められ、耐圧が向上する。また、図1の
構造の場合、ドリフト領域1の比抵抗を小さくして動作
抵抗の低減化を図っても比較的高耐圧を得ることができ
る。即ち、ドリフト領域1の比抵抗を、浅いベース領域
を有する従来の標準的な構造のFETのドリフト領域の
比抵抗の1/3〜1/5に設定しても、空乏層の働きで
標準的な構造のFETと同等の耐圧を得ることができ
る。
2. Description of the Related Art It is known that an insulated gate field effect transistor (hereinafter referred to as an FET) is constructed as shown in FIG. 1 for the purpose of achieving both a high operating resistance and a high breakdown voltage at a high level. It is. This FET includes a silicon semiconductor substrate 5 including an N-type drift region 1, an N + -type drain region 2, a plurality of P-type base regions 3, and a plurality of source regions 4, a drain electrode 6, a source electrode 7, and a gate. An electrode 8, a gate insulating film 9, a peripheral protective insulating film 10, and an interlayer insulating film 11 are provided. A base region 3 which can be called a body region or a channel formation region of this FET.
Has a peculiar shape, is formed deeply in a columnar shape in the thickness direction of the drift region 1, and its bottom surface reaches near the interface between the drift region 1 and the drain region 2. When the plurality of base regions 3 are formed in a columnar shape, when a high reverse voltage is applied to the PN junction between the base region 3 and the drift region 1, the drift region 1 between the plurality of base regions 3 is formed by the depletion layer. It is filled and the withstand voltage is improved. Further, in the case of the structure shown in FIG. 1, a relatively high breakdown voltage can be obtained even if the specific resistance of the drift region 1 is reduced to reduce the operating resistance. That is, even if the specific resistance of the drift region 1 is set to be 1/3 to 1/5 of the specific resistance of the drift region of the conventional FET having a standard structure having a shallow base region, the standard depletion layer works. Withstand voltage equivalent to an FET having a simple structure can be obtained.

【0003】[0003]

【発明が解決しょうとする課題】ところで、従来のこの
種のFETでは、素子の外周縁側の耐圧向上に関しての
改善が十分になされていない。このため、期待されるほ
ど高耐圧化が図れないのが実情であった。即ち、上記の
ようにベース領域3をドリフト領域1の厚み方向に深く
拡散して素子中央側(素子活性領域)の耐圧向上を図っ
ても、素子周縁側の耐圧も同様に向上しなければ素子全
体としての向上耐圧は達成されない。そこで、本願発明
者は、主接合即ち素子活性領域の外周側を包囲するよう
に周知のフィールドリミッティングリング(FLR)を
形成して、素子周縁側の耐圧向上を図ることを試みた。
しかしながら、上記構造のFETではドリフト領域1の
比抵抗が通常のFETに比べてかなり小さくなっている
ため、従来のFLR構造では、耐圧向上を図ることがで
きなかった。
However, in this type of conventional FET, improvement in withstand voltage on the outer peripheral side of the element has not been sufficiently improved. For this reason, it was a fact that the withstand voltage could not be increased as expected. That is, even if the base region 3 is deeply diffused in the thickness direction of the drift region 1 to improve the breakdown voltage on the device center side (device active region) as described above, if the breakdown voltage on the device peripheral side is not improved as well, No improved breakdown voltage is achieved as a whole. Therefore, the inventor of the present application has attempted to improve the breakdown voltage on the element peripheral side by forming a well-known field limiting ring (FLR) so as to surround the main junction, that is, the outer peripheral side of the element active region.
However, in the FET having the above-described structure, the resistivity of the drift region 1 is considerably smaller than that of a normal FET. Therefore, the withstand voltage cannot be improved in the conventional FLR structure.

【0004】そこで、本発明の目的は、動作抵抗の低減
と耐圧向上とのいずれか一方又は両方を容易且つ良好に
達成することができる絶縁ゲート型電界効果トランジス
タを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an insulated gate field effect transistor which can easily and satisfactorily achieve one or both of a reduction in operating resistance and an improvement in withstand voltage.

【0005】[0005]

【課題を解決するための手段】上記課題を解決し、上記
目的を達成するための発明は、ドレイン領域とドリフト
領域と複数のベース領域と複数のソース領域と複数の耐
圧向上用領域と補助領域とを有する半導体基体と、ゲー
ト絶縁膜と、ドレイン電極と、ソース電極と、ゲート電
極とを備え、前記ドリフト領域は、前記ドレイン領域の
不純物濃度よりも低い不純物濃度を有し且つ前記半導体
基体の一方の主面に露出する部分を有するように配置さ
且つ前記ドレイン領域の上に前記ドレイン領域と同一
の導電型の複数のエピタキシャル成長層を設けたものか
ら成り、 前記ドレイン領域は前記ドリフト領域と前記
半導体基体の他方の主面との間に配置され、前記複数の
ベース領域のそれぞれは、前記ドリフト領域と反対の
電型を有し且つ前記ドリフト領域の中に島状に分散配置
され且つ前記半導体基体の一方の主面から他方の主面に
向って柱状に延びており且つ前記ドリフト領域を形成す
る前記複数のエピタキシャル成長層に拡散で形成された
領域から成り、前記複数のソース領域のそれぞれは前記
ベース領域と反対の導電型を有し且つ前記複数のベース
領域の中に島状に配置され、前記複数の耐圧向上用領域
のそれぞれは、前記ベース領域と同一の導電型を有して
前記ドリフト領域の中に島状に形成され且つ平面的に見
て前記ベース領域の外側に分散配置され且つ前記半導体
基体の一方の主面から他方の主面に向って柱状に延びて
おり且つ前記ドリフト領域を形成する前記複数のエピタ
キシャル成長層に拡散で形成された領域から成り且つ前
記ベース領域と同じ深さを有し、前記補助領域は前記
リフト領域における空乏層の広がりを補助するためのも
のであって、前記耐圧向上用領域と同一の導電型を有し
且つ前記半導体基体の表面に露出するように前記ドリフ
ト領域の中に形成され且つ前記耐圧向上用領域よりも浅
く形成され且つ平面的に見て前記複数の耐圧向上用領域
の外周側を囲むように環状に形成され且つ前記複数の耐
圧向上用領域に接触している領域から成り、前記ドレイ
ン電極と前記ソース電極との間に電圧が印加された時
に、前記複数のベース領域、前記複数の耐圧向上用領
域、及び前記補助領域に隣接している前記ドリフト領域
のそれぞれの部分に生じる空乏層が互いに連続するよう
に前記複数のベース領域と前記複数の耐圧向上用領域と
前記補助領域とが配置されていることを特徴とする絶縁
ゲート型電界効果トランジスタに係わるものである。
SUMMARY OF THE INVENTION In order to solve the above problems and to achieve the above object, the present invention provides a drain region, a drift region, a plurality of base regions, a plurality of source regions, a plurality of breakdown voltage improving regions, and an auxiliary region. A semiconductor substrate having a gate insulating film, a drain electrode, a source electrode, and a gate electrode, wherein the drift region has an impurity concentration lower than that of the drain region and The drain region is arranged so as to have a portion exposed on one main surface and is the same as the drain region on the drain region.
With multiple epitaxial growth layers of the same conductivity type
Et made, the drain region is disposed between the other main surface of the semiconductor substrate and the drift region, each of said plurality of base regions, the opposite guiding said drift region
Having an electric pattern and distributed in an island shape in the drift region
And from one main surface of the semiconductor substrate to the other main surface.
Extending in a columnar shape and forming the drift region.
Formed in the plurality of epitaxial growth layers by diffusion.
Consists regions, wherein each of said plurality of source regions
The base region has a conductivity type opposite to that of the base region, and is arranged in an island shape in the plurality of base regions. Each of the plurality of breakdown voltage improving regions has the same conductivity type as the base region, and It is distributed on the outside of the base region look and is formed in an island shape in a plan view in the region and the semiconductor
A column extending from one main surface of the base toward the other main surface
The plurality of epilators forming the drift region
And consist region formed by diffusing the Kisharu growth layer has the same depth as the base region, the auxiliary area the de
It is for assisting the expansion of the depletion layer in the lift region , has the same conductivity type as the breakdown voltage improving region, and is formed in the drift region so as to be exposed on the surface of the semiconductor substrate; The plurality of withstand voltage improving regions are formed shallower than the withstand voltage improving regions and viewed in plan.
Is formed in an annular shape so as to surround the outer peripheral side of the
The area in contact with the pressure-improving area,
When a voltage is applied between the source electrode and the source electrode
The plurality of base regions and the plurality of withstand voltage improving regions.
Region and the drift region adjacent to the auxiliary region
So that the depletion layers that occur in each part of
The plurality of base regions and the plurality of breakdown voltage improving regions
The present invention relates to an insulated gate field effect transistor, wherein the auxiliary region is disposed .

【0006】なお、請求項2〜6に示すように構成する
こたもできる。また、請求項に示すように、フィール
ドプレート又は等電位リング(EQR)を形成すること
が望ましい。
It is to be noted that the present invention is configured as described in claims 2 to 6.
I can do it. Further, as shown in claim 6, it is desirable to form a field plate or equipotential ring (EQR).

【0007】[0007]

【発明の効果】各請求項の発明によればFET素子の周
辺耐圧を容易且つ良好に向上させることができる。即
ち、ベース領域の外周側にベース領域と同一の深さの耐
圧向上用領域を設け、更に耐圧向上用領域よりも浅い補
助領域を設けたので, FET素子の外周側に空乏層を良
好に広げることができ、素子周辺耐圧が良好に向上す
る。また、請求項6に示すようにフィールドプレートと
等電位リング(EQR)とのいずれか一方又は両方を設
けると、空乏層の広がりが更に良好になる。
According to the present invention, the peripheral breakdown voltage of the FET element can be easily and satisfactorily improved. That is, a withstand voltage improving region having the same depth as the base region is provided on the outer peripheral side of the base region, and an auxiliary region which is shallower than the withstand voltage improving region is provided. Therefore, the withstand voltage around the element is improved favorably. Also, providing either or both the field plate and the equipotential ring as shown in claim 6 (EQR), spread of the depletion layer is further improved.

【0008】[0008]

【実施形態及び実施例】次に、図2〜図7を参照して本
発明の実施形態及び実施例を説明する。
Embodiments and Examples Next, embodiments and examples of the present invention will be described with reference to FIGS.

【0009】[0009]

【第1の実施例】図2及び図3に示す第1の実施例の絶
縁ゲート型電界効果トランジスタ(FET)は、図1の
従来のFETと同様にN型(第1導電型)ドリフト領域
1とN+型ドレイン領域2とP型(第2導電型)ベース
領域3とN型ソース領域4とドレイン電極6とソース電
極7とゲート電極8とゲート絶縁膜9と周辺保護絶縁膜
10と層間絶縁膜11とを有する他に、シリコン半導体
基体5aの中に設けられた柱状のP型耐圧向上用領域1
2及びP型の補助領域13と、周辺絶縁膜10の中に設
けたフィールドプレート14及び等電位リング即ちEQ
R15とを有し、図2のA−A線及びB−B線を中心に
上下及び左右対称に形成されている。なお、図3は図2
の耐圧向上用領域12及び補助領域13の数を減らして
図2の一部を示すものである。
First Embodiment An insulated gate field effect transistor (FET) of a first embodiment shown in FIGS. 2 and 3 has an N-type (first conductivity type) drift region like the conventional FET of FIG. 1, an N + type drain region 2, a P type (second conductivity type) base region 3, an N type source region 4, a drain electrode 6, a source electrode 7, a gate electrode 8, a gate insulating film 9, a peripheral protective insulating film 10, In addition to having the interlayer insulating film 11, a columnar P-type breakdown voltage improving region 1 provided in the silicon semiconductor substrate 5a
2 and P type auxiliary regions 13, a field plate 14 provided in the peripheral insulating film 10, and an equipotential ring, ie, EQ.
R15 and are formed vertically and horizontally symmetrically with respect to the lines AA and BB in FIG. Note that FIG.
The number of the withstand voltage improving regions 12 and the auxiliary regions 13
3 shows a part of FIG. 2.

【0010】ドリフト領域1はN型半導体領域であって
+ 型ドレイン領域2よりも低い不純物濃度を有する。
なお、ドリフト領域1はドレイン領域2と同一導電型を
有するので、これをドレイン領域と呼ぶこともできる。
ドリフト領域1はドレイン領域2の上にN型半導体を多
層にエピタキシャル成長させたものから成り、その一部
は半導体基体5aの一方の主面に露出している。このド
リフト領域1の不純物濃度は、柱状ベース領域3を形成
しない浅いベース領域の従来のFETのドリフト領域の
不純物濃度よりは高い。従って、ドリフト領域1の抵抗
率は従来のFETのドリフト領域の抵抗率の1/5〜1
/3である。
Drift region 1 is an N-type semiconductor region and has a lower impurity concentration than N + -type drain region 2.
Note that, since the drift region 1 has the same conductivity type as the drain region 2, it can be called a drain region.
Drift region 1 is formed by epitaxially growing an N-type semiconductor in multiple layers on drain region 2, and a part thereof is exposed on one main surface of semiconductor substrate 5a. The impurity concentration of the drift region 1 is higher than the impurity concentration of the drift region of the conventional FET in the shallow base region where the columnar base region 3 is not formed. Therefore, the resistivity of the drift region 1 is 1/5 to 1 of the resistivity of the drift region of the conventional FET.
/ 3.

【0011】N+ 型ドレイン領域2はドリフト領域1と
半導体基体5aの他方の主面との間に配置されている。
なお、ドレイン領域2とドリフト領域1との境界面は平
板状半導体基体5aの他方の主面に平行である。ドレイ
ン電極6は例えばアルミニウム蒸着層から成り、半導体
基体5aの他方の主面においてドレイン領域2に接続さ
れている。
N + type drain region 2 is arranged between drift region 1 and the other main surface of semiconductor substrate 5a.
Note that the boundary surface between the drain region 2 and the drift region 1 is parallel to the other main surface of the planar semiconductor substrate 5a. The drain electrode 6 is made of, for example, an aluminum deposition layer, and is connected to the drain region 2 on the other main surface of the semiconductor substrate 5a.

【0012】ベース領域3は、ボデイ領域又はチャネル
形成領域とも呼ぶことができるものであって、ドリフト
領域1内にその上面から下面に向って柱状に形成されて
いる。ベース領域3の上面は半導体基体5aの上面に露
出しており、ベース領域3の下面はドレイン領域2から
若干離間するように配置されている。このように若干離
間するように配置することによってベ−ス領域3の下側
での電界集中を緩和できると考えられる。図2に示すよ
うに、ベース領域3は平面的に見て半導体基体5a内に
島状に形成され且つ均一に分散配置されており、各々の
ベース領域3は四角形状の平面形状を有する。なお、ベ
ース領域3の平面形状は四角形に限られず、円形にして
もよい。このベース領域3は、周知のエピタキシャル成
長技術と拡散技術とを繰り返して形成する。即ち、ドレ
イン領域2の上に肉薄のN型半導体領域をエピタキシャ
ル成長によって形成し、このN型半導体領域に拡散技術
によってP型半導体領域を形成する。このP型半導体領
域はベース領域の一部を構成し、P型半導体領域の形成
されていない部分のN型半導体領域はドリフト領域1の
一部を構成する。P型半導体領域を形成したらこのP型
半導体領域とN型半導体領域の上面に再び肉薄のN型半
導体領域をエピタキシャル成長によって形成し、先に形
成したP型半導体領域と連続するようにP型半導体領域
を拡散によって形成する。この工程を複数回(例えば6
回)繰り返すことで、柱状のベース領域3とドリフト領
域1が形成される。
The base region 3 can be called a body region or a channel forming region, and is formed in the drift region 1 in a columnar shape from the upper surface to the lower surface. The upper surface of the base region 3 is exposed on the upper surface of the semiconductor substrate 5a, and the lower surface of the base region 3 is arranged so as to be slightly separated from the drain region 2. It is considered that the electric field concentration on the lower side of the base region 3 can be reduced by arranging the base region 3 slightly apart in this way. As shown in FIG. 2, the base regions 3 are formed in the form of islands in the semiconductor substrate 5a and are uniformly dispersed in a plan view, and each base region 3 has a square planar shape. Note that the planar shape of the base region 3 is not limited to a square, but may be a circle. The base region 3 is formed by repeating a well-known epitaxial growth technique and diffusion technique. That is, a thin N-type semiconductor region is formed on the drain region 2 by epitaxial growth, and a P-type semiconductor region is formed in this N-type semiconductor region by a diffusion technique. The P-type semiconductor region forms a part of the base region, and the N-type semiconductor region where the P-type semiconductor region is not formed forms a part of the drift region 1. After the formation of the P-type semiconductor region, a thin N-type semiconductor region is again formed on the upper surfaces of the P-type semiconductor region and the N-type semiconductor region by epitaxial growth, and the P-type semiconductor region is connected to the previously formed P-type semiconductor region. Is formed by diffusion. This step is repeated several times (for example, 6
By repeating the above, a columnar base region 3 and a drift region 1 are formed.

【0013】N型ソース領域4は各ベース領域3の中に
島状に形成され、半導体基体5aの一方の主面に露出し
ている。多数のベース領域3の中で内側に配置された1
6個のベース領域3の中には四角形即ち環状のソース領
域4が形成され、外側の辺上の8個のベース領域3の中
にはコ字状のソース領域4が形成され、角の8個のベ−
ス領域3の中にはL字状のソ−ス領域4が形成されてい
る。ベース領域3におけるソース領域4とドリフト領域
1との間の表面側部分がチャネル形成部分となる。
The N-type source region 4 is formed in an island shape in each base region 3, and is exposed on one main surface of the semiconductor substrate 5a. 1 arranged inside in a number of base regions 3
A square or annular source region 4 is formed in the six base regions 3, a U-shaped source region 4 is formed in the eight base regions 3 on the outer side, and a corner 8 is formed. Individual bases
An L-shaped source region 4 is formed in the source region 3. The surface side portion between the source region 4 and the drift region 1 in the base region 3 becomes a channel forming portion.

【0014】ソース電極7は、例えばアルミニウムの蒸
着層であって、各ソース領域4と各ベース領域3との両
方に接続され、複数のソース領域4を共通接続するよう
に層間絶縁膜11の上にも設けられている。
The source electrode 7 is, for example, a vapor deposited layer of aluminum, is connected to both the source regions 4 and the base regions 3, and is formed on the interlayer insulating film 11 so as to connect the plurality of source regions 4 in common. Is also provided.

【0015】ゲート絶縁膜9は少なくともベース領域3
における前述したチャネル形成部分を覆うように形成さ
れたシリコン酸化膜から成る。
The gate insulating film 9 includes at least the base region 3
Of a silicon oxide film formed so as to cover the above-mentioned channel forming portion.

【0016】ゲート電極8は、例えば周知の化学的気相
成長法で形成された多結晶シリコンから成り、ゲート絶
縁膜9の上に形成されている。このゲート電極8は平面
的に見て格子状に形成され、図示されていない金属製ゲ
ート端子に接続されている。
The gate electrode 8 is made of, for example, polycrystalline silicon formed by a known chemical vapor deposition method, and is formed on the gate insulating film 9. The gate electrode 8 is formed in a lattice shape when viewed in plan, and is connected to a metal gate terminal (not shown).

【0017】本発明に従って設けられた多数(この実施
例では64個)の耐圧向上用領域12は、図2から明ら
かなように平面的に見てベース領域3を囲むように分散
配置されている。この耐圧向上用領域12はベース領域
3と同時に形成されたものであって、ベース領域3と同
一の不純物濃度を有するP型拡散領域から成り且つベー
ス領域3と同一平面形状及び同一断面形状を有し、且つ
ベース領域3と同様に均一に分散配置されている。即
ち、耐圧向上用領域12はドリフト領域1の中に島状に
形成され、半導体基体5aの一方の主面から他方の主面
に向って柱状に延びている。この耐圧向上用領域12の
先端はN+ 型ドレイン領域2の近くに位置している。な
お、複数の耐圧向上用領域12の相互間隔はベース領域
3の相互間隔と同一である。
A large number (64 in this embodiment) of withstand voltage improving regions 12 provided according to the present invention are dispersedly arranged so as to surround the base region 3 in a plan view as is apparent from FIG. . This withstand voltage improving region 12 is formed simultaneously with the base region 3, is formed of a P-type diffusion region having the same impurity concentration as the base region 3, and has the same planar shape and the same sectional shape as the base region 3. And are uniformly distributed like the base region 3. That is, the breakdown voltage improving region 12 is formed in the drift region 1 in an island shape, and extends in a columnar shape from one main surface of the semiconductor base 5a toward the other main surface. The tip of the breakdown voltage improving region 12 is located near the N + type drain region 2. The mutual interval between the plurality of withstand voltage improving regions 12 is the same as the mutual interval between the base regions 3.

【0018】図2において点々を付して示すP型補助領
域13は耐圧向上用領域12と同一導電型及び同一不純
物濃度を有し、図2から明らかなように耐圧向上用領域
12及びベース領域3を囲むように環状に形成されてい
る。補助領域13は複数回のエピタキシャル成長の最後
のエピタキシャル層にP型不純物を拡散したものであっ
て、耐圧向上用領域12及びベース領域3の最上層と同
時に形成されている。このため、補助領域13の深さは
耐圧向上用領域12の深さの例えば1/6(好ましくは
1/10〜1/2)のように大幅に浅く設定される。こ
の実施例では補助領域13の1つは耐圧向上用領域12
の外周側に接触し、別の1つは最外周側のベース領域2
の外周側に接触している。
The P-type auxiliary region 13 indicated by dots in FIG. 2 has the same conductivity type and the same impurity concentration as the breakdown voltage improving region 12, and as apparent from FIG. 3 is formed in a ring shape. The auxiliary region 13 is formed by diffusing a P-type impurity into the last epitaxial layer of the plurality of epitaxial growths, and is formed simultaneously with the breakdown voltage improving region 12 and the uppermost layer of the base region 3. For this reason, the depth of the auxiliary region 13 is set to be significantly shallow, for example, 1/6 (preferably 1/10 to 1/2) of the depth of the breakdown voltage improving region 12. In this embodiment, one of the auxiliary regions 13 is a region 12 for improving the breakdown voltage.
And another one is the outermost base region 2
Is in contact with the outer peripheral side.

【0019】フィールドプレート14は例えばアルミニ
ウムの蒸着層であって、補助領域13に絶縁膜10を介
して対向するように環状に形成されている。即ち、フィ
ールドプレート14の平面形状は図2に示す補助領域1
3とほぼ同一である。図3の実施例ではフィールドプレ
ート14はP型の補助領域13、耐圧向上用領域12及
びベース領域3に対して電気的に接続されていない。ま
た、2つの環状フィールドプレート14は互いに分離し
ている。
The field plate 14 is, for example, a vapor-deposited layer of aluminum, and is formed in a ring shape so as to face the auxiliary region 13 with the insulating film 10 interposed therebetween. That is, the planar shape of the field plate 14 is the auxiliary area 1 shown in FIG.
It is almost the same as 3. In the embodiment of FIG. 3, the field plate 14 is not electrically connected to the P-type auxiliary region 13, the withstand voltage improving region 12, and the base region 3. Also, the two annular field plates 14 are separated from each other.

【0020】EQR15は例えばアルミニウムの蒸着層
から成る導体層であって、補助領域13よりも外周側に
環状に配置されている。このEQR15は絶縁膜10の
下層を介して半導体基体5aの上面に対向しており、半
導体基体5aには電気的に接続されていない。なお、E
QR15は、絶縁膜10の表面の電荷の安定化を図る機
能を有する他に空乏層の外周への広がりを防止するチャ
ンネルストッパの機能も有する。
The EQR 15 is a conductor layer made of, for example, an aluminum vapor-deposited layer, and is arranged annularly on the outer peripheral side of the auxiliary region 13. This EQR 15 faces the upper surface of the semiconductor substrate 5a via the lower layer of the insulating film 10, and is not electrically connected to the semiconductor substrate 5a. Note that E
The QR 15 has a function of stabilizing charges on the surface of the insulating film 10 and also has a function of a channel stopper for preventing the depletion layer from spreading to the outer periphery.

【0021】本実施例によれば、FET素子周辺側の耐
圧(周辺耐圧)の向上が図られ、高耐圧化が高水準に達
成される。また、高耐圧化したにも拘らず動作抵抗(オ
ン抵抗)を小さく保つことができる。即ち、ベース領域
3がドリフト領域1内に柱状に形成され、ドリフト領域
1の比抵抗が相対的に小さく設定されているため、ドリ
フト領域1の電流経路の抵抗を小さくでき動作抵抗の低
減化が高水準に達成される。また、素子形成領域(活性
領域)の耐圧については、ベース領域3の相互間が図3
において点線で模式的に示すように空乏層16によって
埋められるため、十分高い耐圧を得ることができる。ま
た、素子周辺側の耐圧については、耐圧向上用領域12
及び補助領域13によって図示のように素子外周側に電
界集中を良好に緩和するように滑らかに空乏層16を広
げることができるため、素子中央側と同様に十分に高い
耐圧を得ることができる。
According to this embodiment, the withstand voltage (peripheral withstand voltage) on the peripheral side of the FET element is improved, and a high withstand voltage is achieved at a high level. In addition, the operating resistance (ON resistance) can be kept low despite the high withstand voltage. That is, since the base region 3 is formed in a columnar shape in the drift region 1 and the specific resistance of the drift region 1 is set relatively small, the resistance of the current path in the drift region 1 can be reduced, and the operating resistance can be reduced. Achieved to a high standard. As for the breakdown voltage of the element formation region (active region), the distance between the base regions 3 is shown in FIG.
Is filled with the depletion layer 16 as schematically shown by the dotted line, and a sufficiently high breakdown voltage can be obtained. As for the breakdown voltage on the element peripheral side, the breakdown voltage improving region 12 is used.
In addition, the depletion layer 16 can be smoothly expanded by the auxiliary region 13 so as to satisfactorily reduce the electric field concentration on the outer peripheral side of the element as shown in the figure, so that a sufficiently high withstand voltage can be obtained similarly to the central side of the element.

【0022】空乏層16の広がりについて更に詳しく説
明すると、ゲート電極8とソース電極7との間にチャネ
ルを形成する電圧が印加されていない状態において、ド
リフト領域1とベース領域3との間のPN接合を逆バイ
アスする向きの高い電圧をドレイン電極6とソース電極
7との間に印加すると、ベース領域3よりも不純物濃度
の低いドリフト領域1に空乏層が広がる。ベース領域3
は柱状に多数個配置されているのでベース領域3の相互
間のドリフト領域1は空乏層16で埋まる。空乏層16
はベース領域3の相互間のみでなく、ベース領域3と同
様に形成された耐圧向上用領域12の相互間及びこれと
ベース領域3との間にも広がる。ベース領域3の外周側
において耐圧向上用領域12のみによって空乏層16を
十分に広げることができないが、補助領域13を設ける
と、この補助によって空乏層16が耐圧向上用領域12
の相互間及びベース領域3との間及び耐圧向上用領域1
2の外側に良好に広がる。また、補助領域13は耐圧向
上用領域12よりも浅く形成され且つ外周側に配置され
ているので、外周側での空乏層16の変化が緩慢にな
り、耐圧向上が良好に達成される。
The spread of the depletion layer 16 will be described in more detail. In a state where a voltage for forming a channel between the gate electrode 8 and the source electrode 7 is not applied, the PN between the drift region 1 and the base region 3 is not applied. When a high voltage that reverses the junction is applied between the drain electrode 6 and the source electrode 7, the depletion layer spreads in the drift region 1 having a lower impurity concentration than the base region 3. Base area 3
Are arranged in a columnar shape, the drift region 1 between the base regions 3 is filled with the depletion layer 16. Depletion layer 16
Extends not only between the base regions 3 but also between the breakdown voltage improving regions 12 formed similarly to the base region 3 and between the regions 12 and the base region 3. Although the depletion layer 16 cannot be sufficiently widened only by the breakdown voltage improving region 12 on the outer peripheral side of the base region 3, if the auxiliary region 13 is provided, the depletion layer 16 is reduced by the auxiliary region 13.
Between each other and between the base region 3 and the breakdown voltage improving region 1
2 spreads well outside. In addition, since the auxiliary region 13 is formed shallower than the breakdown voltage improving region 12 and is arranged on the outer peripheral side, the change of the depletion layer 16 on the outer peripheral side becomes slow, and the improvement of the withstand voltage is achieved satisfactorily.

【0023】本実施例では、耐圧向上用領域12及びこ
の補助領域13の他にフィールドプレート14及びEQ
R15が設けられているので、空乏層16が更に安定的
且つ良好に広がる。また、EQR15の働きによって空
乏層16が半導体基体5aの側面まで広がることが阻止
され、高耐圧化を安定的に達成することができる。ま
た、本実施例では耐圧向上用領域12がベース領域3と
同時に形成されるので、生産性の点で有利である。
In this embodiment, in addition to the breakdown voltage improving region 12 and the auxiliary region 13, the field plate 14 and the EQ
Since R15 is provided, the depletion layer 16 spreads more stably and favorably. Further, the function of the EQR 15 prevents the depletion layer 16 from spreading to the side surface of the semiconductor substrate 5a, so that a high breakdown voltage can be stably achieved. Further, in this embodiment, the withstand voltage improving region 12 is formed simultaneously with the base region 3, which is advantageous in terms of productivity.

【0024】[0024]

【第2の実施例】次に、図4に示す第2の実施例の絶縁
ゲート型電界効果トランジスタを説明する。但し、図4
及び後述する図5〜図7において図2及び図3と実質的
に同一の部分には同一の符号を付してその説明を省略す
る。
Second Embodiment Next, an insulated gate field effect transistor according to a second embodiment shown in FIG. 4 will be described. However, FIG.
In FIGS. 5 to 7 to be described later, substantially the same parts as those in FIGS. 2 and 3 are denoted by the same reference numerals, and description thereof will be omitted.

【0025】図4のFETはP型補助領域13aの配置
を除いて第1の実施例と同一に構成されている。図4の
補助領域13aは図3の補助領域13に対応するもので
あって、耐圧向上用領域12及びベース領域3から外周
側に離間している。なお、図4の補助領域13aの平面
形状は図2と同様に環状であり、また深さは図3の補助
領域13と同一である。この第2の実施例によっても第
1の実施例と同一の効果を得ることができる。
The FET of FIG. 4 has the same configuration as that of the first embodiment except for the arrangement of the P-type auxiliary region 13a. The auxiliary region 13a in FIG. 4 corresponds to the auxiliary region 13 in FIG. 3, and is separated from the breakdown voltage improving region 12 and the base region 3 on the outer peripheral side. The planar shape of the auxiliary region 13a in FIG. 4 is annular as in FIG. 2, and the depth is the same as the auxiliary region 13 in FIG. According to the second embodiment, the same effect as that of the first embodiment can be obtained.

【0026】[0026]

【第3の実施例】図5は第3の実施例のFETの半導体
基体5aの表面の一部を示す。図5の第3の実施例のF
ETは、点々を付して説明的に示すP型補助領域13b
を除いて第1の実施例と同一に構成されている。第1の
実施例の補助領域13と同一の目的で設けられた図5の
P型補助領域13bは多数の島状領域から成る。補助領
域13bは第1の実施例の補助領域13と同一の深さ、
同一の不純物濃度を有し、耐圧向上用領域12及び最外
周側のベース領域3の相互間に分散配置されている。図
6は耐圧向上用領域12と補助領域13bとの位置関係
を示すものである。これから明らかなように4個の耐圧
向上用領域12の中心を結ぶ点線の四角形の中心に補助
領域13bの中心が一致するように補助領域13bが配
置されている。また、四角形の補助領域13bと4つの
耐圧向上用領域12との最短距離Lがそれぞれほぼ同一
になるように補助領域13bが配置されている。なお、
ベース領域3と補助領域13bとの関係も図6と同様で
ある。
Third Embodiment FIG. 5 shows a part of the surface of a semiconductor substrate 5a of an FET according to a third embodiment. F of the third embodiment in FIG.
ET is a P-type auxiliary region 13b which is illustrated with dots.
Except for this, the configuration is the same as that of the first embodiment. The P-type auxiliary region 13b of FIG. 5 provided for the same purpose as the auxiliary region 13 of the first embodiment is composed of a large number of island regions. The auxiliary region 13b has the same depth as the auxiliary region 13 of the first embodiment,
They have the same impurity concentration and are distributed between the breakdown voltage improving region 12 and the outermost base region 3. FIG. 6 shows the positional relationship between the breakdown voltage improving region 12 and the auxiliary region 13b. As is clear from this, the auxiliary region 13b is arranged so that the center of the auxiliary region 13b coincides with the center of the dotted rectangle connecting the centers of the four breakdown voltage improving regions 12. The auxiliary regions 13b are arranged such that the shortest distances L between the rectangular auxiliary regions 13b and the four withstand voltage improving regions 12 are substantially the same. In addition,
The relationship between the base region 3 and the auxiliary region 13b is the same as in FIG.

【0027】図6に示すように補助領域13bを配置す
ることによって、耐圧向上用領域12の相互間及び最外
周側のベース領域3と耐圧向上用領域12との間に空乏
層を良好に広げることができ、耐圧向上が第1の実施例
と同様に達成される。
By arranging the auxiliary region 13b as shown in FIG. 6, the depletion layer is favorably spread between the breakdown voltage improving regions 12 and between the outermost base region 3 and the breakdown voltage improving region 12. Thus, an improvement in the breakdown voltage is achieved in the same manner as in the first embodiment.

【0028】[0028]

【変形例】本発明は上述の実施例に限定されるものでは
なく、例えば次の変形が可能なものである。 (1) フィールドプレート14を図7に示すように補
助領域13又は耐圧向上用領域12に電気的に接続する
ことができる。この様に接続すると、補助領域13又は
耐圧向上用領域12の等電位性が向上する。 (2) フィールドプレート14部分の絶縁膜10に図
7に示すように段差を設け、外周側を厚くすることがで
きる。これにより、外周側ほどフィールドプレートの効
果が低下し、空乏層の外周側での変化が滑らかになる。
また、図7に示すようにフィールドプレート14を補助
領域13又は耐圧向上用領域12よりも外周側に延在さ
せることができる。 (3) 図7に示すように半導体基体5aの外周縁にN
+ 型半導体領域1aを形成し、ここにEQR15を電気
的に接続することができる。これにより、空乏層の広が
りをN+ 型半導体領域1aで確実に防ぐことができる。 (4) N+ 型ドレイン領域2の中にP型領域を配置し
てユニバーサルコンタクト構造にすることができる。 (5) 実施例では、ベ−ス領域3及び耐圧向上用領域
12がこれらの中心を結ぶ仮想四角形の頂点にその中心
を位置させて配置された例を示したが、ベ−ス領域3及
び耐圧向上用領域12がこれらの中心を結ぶ仮想三角形
やひし形の頂点にその中心を位置させて配置してもよ
い。 (6) ベ−ス領域3、耐圧向上用領域12及び補助領
域13の表面露出部分の不純物濃度を選択的に高く設定
してもよい。 (7) 補助領域13の耐圧向上領域12から外側に延
び出す長さは、要求される耐圧のレベルに応じて任意に
設定することができる。 (8) 実施例では、耐圧向上用領域12をベ−ス領域
3と同一の配置としたが、電界緩和効果を高める為に耐
圧向上用領域12をベ−ス領域2に比べて緻密に配置す
ることもできる。また、耐圧向上用領域12の配置を全
てで同じにせず、例えばベ−ス領域2を包囲する最内周
の耐圧向上用領域12のみ他の耐圧向上用領域12に比
べて緻密に配置することもできる。 (9)最外周の耐圧向上用領域12の外側には、補助領
域13を設けない構造とすることもできる。又、耐圧向
上用領域12の外側に複数本の補助領域13を設けるこ
ともできる。 (10) ベ−ス領域3及び耐圧向上用領域12を、そ
の側面にこぶを有しない実質的なストレ−トな形状とす
ることもできる。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) The field plate 14 can be electrically connected to the auxiliary region 13 or the withstand voltage improving region 12 as shown in FIG. With such connection, the equipotential of the auxiliary region 13 or the withstand voltage improving region 12 is improved. (2) As shown in FIG. 7, steps may be provided in the insulating film 10 in the field plate 14 to increase the thickness on the outer peripheral side. As a result, the effect of the field plate decreases toward the outer peripheral side, and the change on the outer peripheral side of the depletion layer becomes smooth.
Further, as shown in FIG. 7, the field plate 14 can be extended to the outer peripheral side of the auxiliary region 13 or the withstand voltage improving region 12. (3) As shown in FIG. 7, N
The + type semiconductor region 1a is formed, and the EQR 15 can be electrically connected to the + type semiconductor region 1a. Thus, the expansion of the depletion layer can be reliably prevented in the N + type semiconductor region 1a. (4) A universal contact structure can be provided by disposing a P-type region in the N + -type drain region 2. (5) In the embodiment, an example is shown in which the base region 3 and the withstand voltage improving region 12 are arranged with their centers located at the vertices of a virtual rectangle connecting these centers. The withstand voltage improving region 12 may be arranged such that the center is located at the vertex of a virtual triangle or diamond connecting these centers. (6) The impurity concentration of the surface exposed portions of the base region 3, the breakdown voltage improving region 12, and the auxiliary region 13 may be selectively set high. (7) The length of the auxiliary region 13 extending outward from the breakdown voltage improving region 12 can be arbitrarily set according to the required breakdown voltage level. (8) In the embodiment, the breakdown voltage improving region 12 is arranged in the same manner as the base region 3. However, the breakdown voltage improving region 12 is more densely arranged than the base region 2 in order to enhance the electric field relaxation effect. You can also. In addition, the arrangement of the breakdown voltage improving regions 12 is not the same in all cases, and for example, only the innermost peripheral breakdown voltage improving region 12 surrounding the base region 2 is densely arranged as compared with the other breakdown voltage improving regions 12. Can also. (9) A structure in which the auxiliary region 13 is not provided outside the breakdown voltage improving region 12 on the outermost periphery may be adopted. Further, a plurality of auxiliary regions 13 can be provided outside the withstand voltage improving region 12. (10) The base region 3 and the breakdown voltage improving region 12 may be formed in a substantially straight shape having no bump on the side surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のFETを示す断面図である。FIG. 1 is a sectional view showing a conventional FET.

【図2】第1の実施例のFETの半導体基体の表面を示
す平面図である。
FIG. 2 is a plan view showing a surface of a semiconductor substrate of the FET according to the first embodiment.

【図3】第1の実施例のFETの一部を図2のA−A線
で示す断面図である。
FIG. 3 is a cross-sectional view of a part of the FET according to the first embodiment, taken along line AA of FIG. 2;

【図4】第2の実施例のFETの一部を図3と同様に示
す断面図である。
FIG. 4 is a cross-sectional view showing a part of the FET of the second embodiment, similarly to FIG.

【図5】第3の実施例のFETの半導体基体の表面の一
部を示す平面図である。
FIG. 5 is a plan view showing a part of the surface of a semiconductor substrate of an FET according to a third embodiment.

【図6】図5の一部を拡大して示す平面図である。FIG. 6 is an enlarged plan view showing a part of FIG. 5;

【図7】変形例のFETの一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of a FET according to a modified example.

【符号の説明】[Explanation of symbols]

1 ドリフト領域 2 ドレイン領域 3 ベース領域 4 ソース領域 5a 半導体基体 12 耐圧向上用領域 13 補助領域 14 フィールドプレート 15 EQR Reference Signs List 1 drift region 2 drain region 3 base region 4 source region 5a semiconductor base 12 breakdown voltage improving region 13 auxiliary region 14 field plate 15 EQR

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 29/06 301 H01L 29/06 301G (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 29/06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI H01L 29/06 301 H01L 29/06 301G (58) Fields investigated (Int.Cl. 7 , DB name) H01L 29/78 H01L 29 / 06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ドレイン領域とドリフト領域と複数のベ
ース領域と複数のソース領域と複数の耐圧向上用領域と
補助領域とを有する半導体基体と、ゲート絶縁膜と、ド
レイン電極と、ソース電極と、ゲート電極とを備え、 前記ドリフト領域は、前記ドレイン領域の不純物濃度よ
りも低い不純物濃度を有し且つ前記半導体基体の一方の
主面に露出する部分を有するように配置され且つ前記ド
レイン領域の上に前記ドレイン領域と同一の導電型の複
数のエピタキシャル成長層を設けたものから成り、 前記ドレイン領域は前記ドリフト領域と前記半導体基体
の他方の主面との間に配置され、 前記複数のベース領域のそれぞれは、前記ドリフト領域
と反対の導電型を有し且つ前記ドリフト領域の中に島状
に分散配置され且つ前記半導体基体の一方の主面から他
方の主面に向って柱状に延びており且つ前記ドリフト領
域を形成する前記複数のエピタキシャル成長層に拡散で
形成された領域から成り、 前記複数のソース領域のそれぞれは前記ベース領域と反
対の導電型を有し且つ前記複数のベース領域の中に島状
に配置され、 前記複数の耐圧向上用領域のそれぞれは、前記ベース領
域と同一の導電型を有して前記ドリフト領域の中に島状
に形成され且つ平面的に見て前記ベース領域の外側に分
散配置され且つ前記半導体基体の一方の主面から他方の
主面に向って柱状に延びており且つ前記ドリフト領域を
形成する前記複数のエピタキシャル成長層に拡散で形成
された領域から成り且つ前記ベース領域と同じ深さを有
し、 前記補助領域は前記ドリフト領域における空乏層の広が
りを補助するためのものであって、前記耐圧向上用領域
と同一の導電型を有し且つ前記半導体基体の表面に露出
するように前記ドリフト領域の中に形成され且つ前記耐
圧向上用領域よりも浅く形成され且つ平面的に見て前記
複数の耐圧向上用領域の外周側を囲むように環状に形成
され且つ前記複数の耐圧向上用領域に接触している領域
からなり、前記ドレイン電極と前記ソース電極との間に
電圧が印加された時に、前記複数のベース領域、前記複
数の耐圧向上用領域、及び前記補助領域に隣接している
前記ドリフト領域のそれぞれの部分に生じる空乏層が互
いに連続するように前記複数 のベース領域と前記複数の
耐圧向上用領域と前記補助領域とが配置されていること
を特徴とする絶縁ゲート型電界効果トランジスタ。
A semiconductor substrate having a drain region, a drift region, a plurality of base regions, a plurality of source regions, a plurality of breakdown voltage improving regions, and an auxiliary region; a gate insulating film; a drain electrode; and a gate electrode, the drift region is arranged to have a portion exposed to one main surface of and the semiconductor body has an impurity concentration lower than the impurity concentration of the drain region and the de
The same conductivity type as the drain region is formed on the rain region.
A plurality of epitaxially grown layers, wherein the drain region is disposed between the drift region and the other main surface of the semiconductor substrate, and each of the plurality of base regions has a conductive property opposite to the drift region. The semiconductor substrate is arranged in an island-like manner in the drift region, and
And extends in a columnar manner toward the main surface of the
Diffusion into the plurality of epitaxially grown layers forming a region.
A plurality of source regions, each of the plurality of source regions being opposite to the base region.
It is arranged like islands in and said plurality of base regions have a conductivity type pair, each of the plurality of improvement in withstand voltage area, in said drift region having the same conductivity type as the base region Are formed in the shape of an island, are dispersedly arranged outside the base region when viewed in plan, and are separated from one main surface of the semiconductor substrate to the other.
Extending in a columnar shape toward the main surface and forming the drift region
Formed by diffusion in the plurality of epitaxial growth layers to be formed
The auxiliary region is for supporting the expansion of a depletion layer in the drift region , and has the same conductivity type as the breakdown voltage improving region. And formed in the drift region so as to be exposed on the surface of the semiconductor substrate, formed shallower than the breakdown voltage improving region , and viewed in plan.
Formed annularly so as to surround the outer peripheral side of multiple withstand voltage improvement areas
Region that is formed and is in contact with the plurality of withstand voltage improving regions.
Comprising between the drain electrode and the source electrode
When a voltage is applied, the plurality of base regions, the plurality of
Adjacent to a number of withstand voltage improving regions and the auxiliary region
The depletion layer generated in each part of the drift region is
The plurality of base regions and the plurality of
An insulated gate field effect transistor , wherein a withstand voltage improving region and the auxiliary region are arranged .
【請求項2】 前記補助領域は、更に、前記ベース領域
と同一の導電型を有し且つ前記半導体基体の表面に露出
するように前記ドリフト領域の中に形成され且つ前記ベ
ース領域よりも浅く形成され且つ平面的に見て前記複数
のベース領域の内の最外周側の複数のベース領域を囲む
ように環状に形成され且つ前記最外周側の複数のベース
領域に接触している領域を有していることを特徴とする
請求項1記載の絶縁ゲート型電界効果トランジスタ。
2. The auxiliary area further includes a base area.
Has the same conductivity type as that of the semiconductor substrate and is exposed on the surface of the semiconductor substrate.
Formed in the drift region and
The plurality of regions are formed shallower than the source region and viewed in plan.
Surrounds the outermost base region of the base regions
A plurality of bases formed in an annular shape and on the outermost peripheral side
The insulated gate field effect transistor according to claim 1 , further comprising a region in contact with the region .
【請求項3】 ドレイン領域とドリフト領域と複数のベ
ース領域と複数のソース領域と複数の耐圧向上用領域と
補助領域とを有する半導体基体と、ゲート絶縁膜と、ド
レイン電極と、ソース電極と、ゲート電極とを備え、 前記ドリフト領域は、前記ドレイン領域の不純物濃度よ
りも低い不純物濃度を有し且つ前記半 導体基体の一方の
主面に露出する部分を有するように配置され且つ前記ド
レイン領域の上に前記ドレイン領域と同一の導電型の複
数のエピタキシャル成長層を設けたものから成り、前記ドレイン領域は前記ドリフト領域と前記半導体基体
の他方の主面との間に配置され、 前記複数のベース領域のそれぞれは、前記ドリフト領域
と反対の導電型を有し且つ前記ドリフト領域の中に島状
に分散配置され且つ前記半導体基体の一方の主面から他
方の主面に向って柱状に延びており且つ前記ドリフト領
域を形成する前記複数のエピタキシャル成長層に拡散で
形成された領域から成り、 前記複数のソース領域のそれぞれは前記ベース領域と反
対の導電型を有し且つ前記複数のベース領域の中に島状
に配置され、前記複数の耐圧向上用領域のそれぞれは、前記ベース領
域と同一の導電型を有して前記ドリフト領域の中に島状
に形成され且つ平面的に見て前記ベース領域の外側に分
散配置され且つ前記半導体基体の一方の主面から他方の
主面に向って柱状に延びており且つ前記ドリフト領域を
形成する前記複数のエピタキシャル成長層に拡散で形成
された領域から成り且つ前記ベース領域と同じ深さを有
し、 前記補助領域は前記ドリフト領域における空乏層の広が
りを補助するためのもの であって、前記耐圧向上用領域
と同一の導電型を有し且つ前記半導体基体の表面に露出
するように前記ドリフト領域の中に形成され且つ前記耐
圧向上用領域よりも浅く形成され且つ平面的に見て前記
複数の耐圧向上用領域の外周側を囲むように環状に形成
され且つ前記複数の耐圧向上用領域から離間している領
域から成り、 前記ドレイン電極と前記ソース電極との間に電圧が印加
された時に、前記複数のベース領域、前記複数の耐圧向
上用領域、及び前記補助領域に隣接している前記ドリフ
ト領域のそれぞれの部分に生じる空乏層が互いに連続す
るように前記複数のベース領域と前記複数の耐圧向上用
領域と前記補助領域とが配置されている ことを特徴とす
る絶縁ゲート型電界効果トランジスタ。
3. A drain region, a drift region and a plurality of layers.
Source region, a plurality of source regions, and a plurality of withstand voltage improving regions.
A semiconductor substrate having an auxiliary region; a gate insulating film;
A drain electrode; a source electrode; and a gate electrode, wherein the drift region has an impurity concentration of the drain region.
Remote a plurality of epitaxially grown layers of the drain region same conductivity type as on the lower has an impurity concentration and the are arranged to have a portion exposed to one main surface of the semi-conductor substrate and the drain region Wherein the drain region comprises the drift region and the semiconductor substrate.
Each of the plurality of base regions is disposed between the drift region and the other main surface of the drift region.
Islands in the drift region
And distributed from one main surface of the semiconductor substrate to the other.
And extends in a columnar manner toward the main surface of the
Diffusion into the plurality of epitaxially grown layers forming a region.
A plurality of source regions, each of the plurality of source regions being opposite to the base region.
Each of the plurality of regions has a pair of conductivity types and is arranged in an island shape in the plurality of base regions.
Islands in the drift region with the same conductivity type as the region
Formed outside the base region in plan view.
Dispersed from one main surface of the semiconductor substrate to the other.
Extending in a columnar shape toward the main surface and forming the drift region
Formed by diffusion in the plurality of epitaxial growth layers to be formed
Region having the same depth as the base region.
The auxiliary region has a depletion layer in the drift region.
To improve the breakdown voltage.
Has the same conductivity type as that of the semiconductor substrate and is exposed on the surface of the semiconductor substrate.
Formed in the drift region and
It is formed shallower than the pressure improving region, and
Formed annularly so as to surround the outer peripheral side of multiple withstand voltage improvement areas
That are separated from the plurality of withstand voltage improving regions.
Consists range, a voltage applied between the drain electrode and the source electrode
The plurality of base regions and the plurality of withstand voltage directions.
An upper area and the drift adjacent to the auxiliary area
The depletion layers that occur in each part of the
So that the plurality of base regions and the plurality of
An insulated gate field effect transistor , wherein a region and the auxiliary region are arranged .
【請求項4】 前記補助領域は、更に、前記ベース領域
と同一の導電型を有し且つ前記半導体基体の表面に露出
するように前記ドリフト領域の中に形成され且つ前記ベ
ース領域よりも浅く形成され且つ平面的に見て前記複数
のベース領域の内の最外周側の複数のベース領域を囲む
ように環状に形成され且つ前記最外周側の複数のベース
領域から離間している領域を有していることを特徴とす
る請求項3記載の絶縁ゲート型電界効果トランジスタ。
4. The auxiliary area further includes a base area.
Has the same conductivity type as that of the semiconductor substrate and is exposed on the surface of the semiconductor substrate.
Formed in the drift region and
The plurality of regions are formed shallower than the source region and viewed in plan.
Surrounds the outermost base region of the base regions
A plurality of bases formed in an annular shape and on the outermost peripheral side
4. The insulated gate field effect transistor according to claim 3 , further comprising a region separated from the region .
【請求項5】 ドレイン領域とドリフト領域と複数のベ
ース領域と複数のソース領域と複数の耐圧向上用領域と
複数の補助領域とを有する半導体基体と、ゲート絶縁膜
と、ドレイン電極と、ソース電極と、ゲート電極とを備
え、前記ドリフト領域は、前記ドレイン領域の不純物濃度よ
りも低い不純物濃度を有し且つ前記半導体基体の一方の
主面に露出する部分を有するように配置され且つ前記ド
レイン領域の上に前記ドレイン領域と同一の導電型の複
数のエピタキシャル成長層を設けたものから成り、 前記ドレイン領域は前記ドリフト領域と前記半導体基体
の他方の主面との間に配置され、 前記複数のベース領域のそれぞれは、前記ドリフト領域
と反対の導電型を有し且つ前記ドリフト領域の中に島状
に分散配置され且つ前記半導体基体の一方の主面から他
方の主面に向って柱状に延びており且つ前記ドリフト領
域を形成する前記複数のエピタキシャル成長層に拡散で
形成された領域から成り、 前記複数のソース領域のそれぞれは前記ベース領域と反
対の導電型を有し且つ前記複数のベース領域の中に島状
に配置され、前記複数の耐圧向上用領域のそれぞれは、前記ベース領
域と同一の導電型を有して前記ドリフト領域の中に島状
に形成され且つ平面的に見て前記ベース領域の外側に分
散配置され且つ前記半導体基体の一方の主面から他方の
主面に向って柱状に延びており且つ前記ドリフト領域を
形成する前記複数のエピタキシャル成長層に拡散で形成
された領域から成り且つ前記ベース領域と同じ深さを有
し、 前記複数の補助領域のそれぞれは、前記耐圧向上用領域
の近傍の空乏層の広がりを補助するためのものであっ
て、前記耐圧向上用領域と同一の導電型を有し且つ前記
半導体基体の表面に露出するように前記ドリフト領域の
中に分散配置され且つ前記耐圧向上用領域よりも浅く形
成され且つ平面的に見て前記補助領域とこの補助領域の
近傍の4個の前記耐圧向上用領域との間の最短距離がそ
れぞれ同一になるよに前記4個の耐圧向上用領域の中心
に配置され、 前記ドレイン電極と前記ソース電極との間に電圧が印加
された時に、前記複数のベース領域、前記複数の耐圧向
上用領域、及び前記補助領域に隣接している前記ドリフ
ト領域のそれぞれの部分に生じる空乏層が互いに連続す
るように前記複数のベース領域と前記複数の耐圧向上用
領域と前記補助領域とが配置されている ことを特徴とす
る絶縁ゲート型電界効果トランジスタ。
5. A drain region, a drift region and a plurality of layers.
Includes a semiconductor substrate having a over source region and a plurality of source regions and a plurality of breakdown voltage for enhancing region and a plurality of auxiliary areas, a gate insulating film, a drain electrode, a source electrode, a gate electrode, the drift region The impurity concentration of the drain region.
Having a lower impurity concentration and one of the semiconductor substrates.
The door is arranged so as to have a portion exposed to the main surface, and
The same conductivity type as the drain region is formed on the rain region.
The drain region and the semiconductor substrate.
Each of the plurality of base regions is disposed between the drift region and the other main surface of the drift region.
Islands in the drift region
And distributed from one main surface of the semiconductor substrate to the other.
And extends in a columnar manner toward the main surface of the
Diffusion into the plurality of epitaxially grown layers forming a region.
A plurality of source regions, each of the plurality of source regions being opposite to the base region.
Each of the plurality of regions has a pair of conductivity types and is arranged in an island shape in the plurality of base regions.
Islands in the drift region with the same conductivity type as the region
Formed outside the base region in plan view.
Dispersed from one main surface of the semiconductor substrate to the other.
Extending in a columnar shape toward the main surface and forming the drift region
Formed by diffusion in the plurality of epitaxial growth layers to be formed
Region having the same depth as the base region.
And, respectively, the breakdown voltage for enhancing region of the plurality of auxiliary areas
To help spread the depletion layer near the
Having the same conductivity type as the withstand voltage improving region and
The drift region is exposed so as to be exposed on the surface of the semiconductor substrate.
Dispersed inside and shallower than the withstand voltage improvement region
The auxiliary region and the auxiliary region
The shortest distance between the four adjacent withstand voltage improving regions is
The centers of the four withstand voltage improving regions so as to be the same.
Disposed, a voltage applied between the drain electrode and the source electrode
The plurality of base regions and the plurality of withstand voltage directions.
An upper area and the drift adjacent to the auxiliary area
The depletion layers that occur in each part of the
So that the plurality of base regions and the plurality of
An insulated gate field effect transistor , wherein a region and the auxiliary region are arranged .
【請求項6】 更に、平面的に見て前記複数のベース領
域を囲むようにフィールドプレートと等電位リングとの
いずれか一方又は両方を有することを特徴とする請求項
1又は2又は3又は4又5は記載の絶縁ゲート型電界効
果トランジスタ。
6. The semiconductor device according to claim 1, further comprising one or both of a field plate and an equipotential ring so as to surround the plurality of base regions in a plan view. 5 is the insulated gate field effect transistor described.
JP08453799A 1999-03-26 1999-03-26 Insulated gate field effect transistor Expired - Fee Related JP3221489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08453799A JP3221489B2 (en) 1999-03-26 1999-03-26 Insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08453799A JP3221489B2 (en) 1999-03-26 1999-03-26 Insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JP2000277733A JP2000277733A (en) 2000-10-06
JP3221489B2 true JP3221489B2 (en) 2001-10-22

Family

ID=13833407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08453799A Expired - Fee Related JP3221489B2 (en) 1999-03-26 1999-03-26 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JP3221489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839519B2 (en) * 2001-03-15 2011-12-21 富士電機株式会社 Semiconductor device
JP4813762B2 (en) * 2003-12-25 2011-11-09 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP4699692B2 (en) * 2003-12-26 2011-06-15 ローム株式会社 Semiconductor device manufacturing method and semiconductor device
JP2005197287A (en) * 2003-12-26 2005-07-21 Rohm Co Ltd Semiconductor device and its fabrication process
JP4865194B2 (en) * 2004-03-29 2012-02-01 ルネサスエレクトロニクス株式会社 Super junction semiconductor device
US7598586B2 (en) 2004-12-24 2009-10-06 Rohm Co., Ltd. Semiconductor device and production method therefor
JP5015488B2 (en) * 2005-09-07 2012-08-29 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2008177328A (en) * 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
JP4621708B2 (en) * 2007-05-24 2011-01-26 株式会社東芝 Semiconductor device and manufacturing method thereof
JP5718627B2 (en) * 2010-03-15 2015-05-13 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5863574B2 (en) 2012-06-20 2016-02-16 株式会社東芝 Semiconductor device
JP6237064B2 (en) 2013-09-30 2017-11-29 サンケン電気株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
US7226841B2 (en) 2001-05-25 2007-06-05 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2000277733A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US4399449A (en) Composite metal and polysilicon field plate structure for high voltage semiconductor devices
CA1175953A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
US7777292B2 (en) Semiconductor device
US6534823B2 (en) Semiconductor device
US10121887B2 (en) Insulated gate semiconductor device and method
JPS59141267A (en) Semiconductor device
JP3221489B2 (en) Insulated gate field effect transistor
JP2002246596A (en) Insulated gate semiconductor device and its manufacturing method
US10340147B2 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
WO2004032244A1 (en) Semiconductor device and process for fabricating the same
JPH02154469A (en) Vertical field effect transistor
JP3551251B2 (en) Insulated gate field effect transistor and method of manufacturing the same
JP2018133493A (en) Semiconductor device
JP3221673B2 (en) High voltage semiconductor device
JP3099917B2 (en) Field effect transistor
KR100275093B1 (en) Semiconductor device
JPH01238174A (en) Vertical mosfet
JP2002141505A (en) Field-effect transistor
GB2205682A (en) A semiconductor device
JPH0282580A (en) Vertical mos fet
JP4125864B2 (en) Field effect transistor
JP3869581B2 (en) Semiconductor device and manufacturing method thereof
JP2001144096A (en) Semiconductor device
JP3275964B2 (en) Semiconductor device including field effect transistor
JP2676958B2 (en) Vertical field effect transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees