JP2643431B2 - Manufacturing method of high breakdown voltage semiconductor device - Google Patents

Manufacturing method of high breakdown voltage semiconductor device

Info

Publication number
JP2643431B2
JP2643431B2 JP9046189A JP9046189A JP2643431B2 JP 2643431 B2 JP2643431 B2 JP 2643431B2 JP 9046189 A JP9046189 A JP 9046189A JP 9046189 A JP9046189 A JP 9046189A JP 2643431 B2 JP2643431 B2 JP 2643431B2
Authority
JP
Japan
Prior art keywords
diffusion
layer
breakdown voltage
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9046189A
Other languages
Japanese (ja)
Other versions
JPH02268452A (en
Inventor
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9046189A priority Critical patent/JP2643431B2/en
Publication of JPH02268452A publication Critical patent/JPH02268452A/en
Application granted granted Critical
Publication of JP2643431B2 publication Critical patent/JP2643431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高耐圧半導体装置の製造方法に関し、さらに
詳しくは、基板電位と高耐圧で分離した領域を有する半
導体装置の製造方法に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a method of manufacturing a high-breakdown-voltage semiconductor device, and more particularly, to a method of manufacturing a semiconductor device having a region separated by a high withstand voltage from a substrate potential.

[従来の技術] 高い電位差を持つ複数の回路領域を一つの半導体素子
に集積する場合、電位の異なる回路領域を分離する必要
がある。この分離法には、通常誘電体分離と接合分離の
2種類の方法がある。
[Prior Art] When a plurality of circuit regions having a high potential difference are integrated in one semiconductor element, it is necessary to separate circuit regions having different potentials. As the separation method, there are usually two kinds of methods: dielectric separation and junction separation.

接合分離はPN接合の逆バイアスを利用するもので、製
造コストが誘電体分離に比較して低いため、一般的に用
いられている。第2図は従来の接合分離構造例における
素子断面図を示したもので、p+基板1及びp+埋込層4、
p+拡散層5とこれらに囲まれたn-エピタキシャル層6及
びn+埋込層2間のPN接合の逆バイアスにより分離され
る。この構造では分離領域7は高濃度のn+埋込層2及び
n+拡散層3によって囲まれているため、内部への空乏層
の侵入がなく、この領域内に基板電位より高い電位の回
路領域を集積できる。
Junction isolation utilizes the reverse bias of a PN junction, and is generally used because its manufacturing cost is lower than that of dielectric isolation. FIG. 2 is a cross-sectional view of an element in a conventional example of a junction separation structure, in which a p + substrate 1 and a p + buried layer 4,
It is separated by the reverse bias of the PN junction between the p + diffusion layer 5 and the n epitaxial layer 6 and the n + buried layer 2 surrounded by the p + diffusion layer 5. In this structure, the isolation region 7 has a high concentration of the n + buried layer 2 and
Since it is surrounded by the n + diffusion layer 3, a depletion layer does not enter the inside, and a circuit region having a higher potential than the substrate potential can be integrated in this region.

本構造の素子ではp+拡散層5・n-エピタキシャル層6
間、p-基板1・n-エピタキシャル層6間、p-基板1・n+
埋込層2間の3種の接合が存在するがこのうちp-基板
1、n-エピタキシャル層6間は低濃度のp-n-間の接合で
あるため最も破壊電圧が高い。また、p+拡散層5・n-
ピタキシャル層6間の破壊電圧特公昭61−32827号公報
に開示されている方法等により高められることが公知で
ある。一方、p-基板1・n+埋込層2間の破壊電圧は、n+
埋込層2の端部の曲率半径rが小さい場合、平面接合
に比較して大幅に低下する。このためこの接合分離の耐
圧はp-基板1・n+埋込層2間の接合の破壊電圧によって
決定され、しかもその値は低い値に制限される。
In the device having this structure, the p + diffusion layer 5 and the n epitaxial layer 6
Between p - substrate 1 and n - epitaxial layer 6, p - substrate 1 and n +
Substrate 1, n - - p Among although three junctions are present between the buried layer 2 between the epitaxial layer 6 is low concentration p - most breakdown voltage is high because it is a junction between - n. It is also known that the breakdown voltage between the p + diffusion layer 5 and the n epitaxial layer 6 can be increased by the method disclosed in Japanese Patent Publication No. 61-32827. On the other hand, the breakdown voltage between the p substrate 1 and the n + buried layer 2 is n +
When the radius of curvature r j at the end of the buried layer 2 is small, it is significantly reduced as compared with the planar bonding. For this reason, the breakdown voltage of this junction separation is determined by the breakdown voltage of the junction between the p - substrate 1 and the n + buried layer 2, and its value is limited to a low value.

[発明が解決しようとする課題] ところが、上述のp-基板1・n+埋込層2間の接合の破
壊電圧を高め、平面接合の耐圧に近付けるには曲率半径
を大きくする必要があるが、それにはn+埋込層の不
純物のドーズ量と拡散時間を非常に大きくする必要があ
り、長時間の拡散が必要であることやこの長時間の拡散
による結晶欠陥の発生の問題等現実的には限界がある。
[Problems to be Solved by the Invention] However, in order to increase the breakdown voltage of the junction between the p substrate 1 and the n + buried layer 2 and approach the breakdown voltage of the planar junction, it is necessary to increase the radius of curvature r j. However, this requires that the dose and diffusion time of the impurity in the n + buried layer be extremely large, and that long-time diffusion is necessary and that crystal defects are caused by the long-time diffusion. There is a limit in reality.

従って、本発明は短い時間の拡散でもn+埋込層の端部
の曲率半径を大きくすることを可能とし、接合分離耐圧
の高い半導体装置を提供することを目的とする。
Accordingly, it is an object of the present invention to provide a semiconductor device which can increase the radius of curvature at the end of an n + buried layer even in a short time diffusion and has a high junction separation withstand voltage.

[課題を解決するための手段] 本発明はn+埋込層の拡散領域の周辺部に外周になるほ
ど狭い拡散幅になるような帯状の拡散部を設け、各拡散
窓に対応して形成される拡散層それぞれが隣接する外側
の拡散層と連結するように拡散することにより外周ほど
浅くなる拡散プロフィルを得、これにより短い時間の拡
散で曲率半径の大きな接合を得ることにより高い分離耐
圧の半導体装置を得ようとするものである。
[Means for Solving the Problems] The present invention provides a strip-shaped diffusion portion having a narrower diffusion width toward the outer periphery in the periphery of the diffusion region of the n + buried layer, and is formed corresponding to each diffusion window. A diffusion profile that becomes shallower toward the outer periphery by diffusing so that each diffusion layer is connected to an adjacent outer diffusion layer, thereby obtaining a junction having a large radius of curvature by diffusion in a short time, thereby achieving a high isolation breakdown voltage semiconductor To get the device.

すなわち、本発明によれば、第1導電型の基板上に第
2導電型の埋込層を持つ高耐圧半導体装置の製造方法に
おいて、該第2導電型埋込層の外周部に外周ほど狭い拡
散幅となるような複数の拡散窓を用いて埋込拡散を行う
ことを特徴とした高耐圧半導体装置の製造方法が提供さ
れるものである。
That is, according to the present invention, in a method of manufacturing a high breakdown voltage semiconductor device having a buried layer of the second conductivity type on a substrate of the first conductivity type, the outer circumference of the buried layer of the second conductivity type is narrower toward the outer periphery. It is an object of the present invention to provide a method of manufacturing a high breakdown voltage semiconductor device, characterized in that buried diffusion is performed using a plurality of diffusion windows having a diffusion width.

[作用] 第2導電型埋込層の外周部に外周ほど狭い拡散幅とな
るような複数の拡散窓を用いて各拡散窓に対応して形成
される拡散層それぞれが隣接する外側の拡散層と連結す
るように埋込拡散を行うために、外周ほど不純物のドー
ズ量が低下し、拡散深さが浅くなり、第1導電型の基板
との接合面の外周部の曲率半径の大きな第2導電型埋込
層が得られる。従って、容易に高耐圧の半導体装置を製
造し得ることとなる。
[Operation] A plurality of diffusion windows having a narrower diffusion width toward the outer periphery at the outer periphery of the buried layer of the second conductivity type are used. In order to perform the buried diffusion so as to be connected to the substrate, the dose of the impurity decreases toward the outer periphery, the diffusion depth becomes shallower, and the second portion having the larger radius of curvature at the outer peripheral portion of the junction surface with the substrate of the first conductivity type. A conductive type buried layer is obtained. Therefore, a semiconductor device having a high breakdown voltage can be easily manufactured.

[実施例] 以下、図面を参照して本発明の一実施例を説明する。
なお、これにより本発明が限定されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Note that the present invention is not limited by this.

第1図(a)(b)(c)は、本発明の製造方法によ
って埋込層13を持つ半導体装置を製造する工程を示して
いる。
1 (a), 1 (b) and 1 (c) show steps of manufacturing a semiconductor device having a buried layer 13 by the manufacturing method of the present invention.

まず、第1図(a)に示すように、p-型Si基板の表面
をSiO2膜10で覆った後、フォトエッチングにより拡散窓
14a,14b,14c,14dを開ける。そして、n型不純物の拡散
を行う。
First, as shown in FIG. 1A, the surface of a p - type Si substrate is covered with an SiO 2 film 10, and then a diffusion window is formed by photoetching.
Open 14a, 14b, 14c, 14d. Then, diffusion of the n-type impurity is performed.

拡散窓14a,14b,14c,14dは所定領域の外周に近いほど
窓幅が狭くなっているが、窓幅が狭くなるほどその拡散
窓を通して拡散されるドーズ量が低下し、各拡散窓に対
応して形成される拡散層が隣接する外側の拡散層と連結
するように拡散するため、図に破線で示すように、外周
に近いほど拡散深さが浅くなっている。
The diffusion window 14a, 14b, 14c, 14d has a narrower window width as it is closer to the outer periphery of the predetermined area.However, as the window width becomes narrower, the dose diffused through the diffusion window decreases, and the diffusion window corresponds to each diffusion window. Since the diffusion layer formed by diffusion is connected to the adjacent outer diffusion layer, the diffusion depth becomes shallower toward the outer periphery as shown by a broken line in the figure.

これら各拡散窓からの拡散を重ね合わせると、実線の
ような拡散プロフィルが得られ、端部の曲率半径の大き
なn+埋込拡散層11が得られる。この後、第1図(b)に
示すようにSiO2膜10を除去し、図示されていないp+埋込
拡散層を形成後、nエピタキシャル層12を成長させる
と第1図(c)に示すようにn+不純物はさらに上下に拡
散し、p-基板1との接合面の曲率半径の大きなn+埋込層
13が得られる。
When the diffusion from each of these diffusion windows is superimposed, a diffusion profile as shown by a solid line is obtained, and an n + buried diffusion layer 11 having a large radius of curvature at the end is obtained. Thereafter, the SiO 2 film 10 is removed as shown in Fig. 1 (b), after forming the p + buried diffusion layer not shown, n - Figure 1 is grown an epitaxial layer 12 (c) As shown in the figure, the n + impurity further diffuses up and down, and the n + buried layer having a large radius of curvature at the junction surface with the p substrate 1.
13 is obtained.

なお、本発明の実施例ではPNを任意に記述したが、も
ちろんこれと反対の導電型でも本発明の効果は同様であ
る。また、本発明の実施例では拡散窓間隔が外周へ向か
うほど広くなるものであるが、もちろん拡散窓間隔が外
周へ向かうほど狭くなるものであっても、各拡散窓に対
応して形成される拡散層それぞれが隣接する外側の拡散
層と連結するように拡散を行えば、実施例と同様に、隣
接する内側の拡散層に外側の拡散層が含まれないため、
各拡散層が階段のような形状に形成されるので、端部の
曲率半径が大きい埋込層を形成することができ、本発明
の効果は同様に得られる。
Although PN is arbitrarily described in the embodiment of the present invention, the effect of the present invention is also the same when the conductivity type is the opposite. Further, in the embodiment of the present invention, the diffusion window interval becomes wider toward the outer periphery. However, even if the diffusion window interval becomes narrower toward the outer periphery, the diffusion window interval is formed corresponding to each diffusion window. If the diffusion is performed such that each diffusion layer is connected to the adjacent outer diffusion layer, similar to the embodiment, the adjacent inner diffusion layer does not include the outer diffusion layer.
Since each diffusion layer is formed in a step-like shape, a buried layer having a large radius of curvature at the end can be formed, and the effect of the present invention can be similarly obtained.

[効果] 本発明によれば、素子の分離耐圧を決定する第1導電
型の基板と第2導電型の埋込層の接合における第2導電
型の埋込層端部の曲率半径を大きくすることができるた
め、素子の分離耐圧の高い接合分離半導体装置を作るこ
とができる。
[Effect] According to the present invention, the radius of curvature of the end of the buried layer of the second conductivity type at the junction between the substrate of the first conductivity type and the buried layer of the second conductivity type, which determines the isolation breakdown voltage of the element, is increased. Therefore, a junction-isolated semiconductor device having a high element separation withstand voltage can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)(c)は本発明の一実施例の各工程
における素子断面図、第2図(a)は従来の接合分離構
造例における素子断面図、第2図(b)は第2図(a)
の素子の平面図である。 1……p-基板、2……n+埋込層、 3……n拡散層、4……p+埋込層、 5……p拡散層、6……nエピタキシャル層、 7……分離領域、10……SiO2、 11……n+埋込拡散層、 12……n-エピタキシャル層、13……n+埋込層、 14a,14b,14c,14d……拡散窓。
1 (a), 1 (b) and 1 (c) are cross-sectional views of an element in each step of an embodiment of the present invention, FIG. 2 (a) is a cross-sectional view of an element in a conventional example of a junction separation structure, and FIG. ) Is FIG. 2 (a)
It is a top view of the element of FIG. 1 ... p - substrate, 2 ... n + buried layer, 3 ... n + diffusion layer, 4 ... p + buried layer, 5 ... p + diffusion layer, 6 ... n - epitaxial layer, 7 …… isolation region, 10… SiO 2 , 11 …… n + buried diffusion layer, 12 …… n epitaxial layer, 13 …… n + buried layer, 14a, 14b, 14c, 14d …… diffusion window.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の基板上に第2導電型の埋込層
を持つ高耐圧半導体装置の製造方法において、該第2導
電型埋込層形成領域内の外周部に外周へ向かうほど狭い
拡散幅となるような複数の拡散窓を用いて各拡散窓に対
応して形成される拡散層それぞれが隣接する外側の拡散
層と連結するように埋込層の拡散を行うことを特徴とし
た高耐圧半導体装置の製造方法。
In a method of manufacturing a high breakdown voltage semiconductor device having a buried layer of a second conductivity type on a substrate of a first conductivity type, an outer peripheral portion of the buried layer forming region of the second conductivity type is directed to an outer periphery. The diffusion of the buried layer is performed by using a plurality of diffusion windows having a narrower diffusion width so that each diffusion layer formed corresponding to each diffusion window is connected to an adjacent outer diffusion layer. Of manufacturing a high breakdown voltage semiconductor device.
JP9046189A 1989-04-10 1989-04-10 Manufacturing method of high breakdown voltage semiconductor device Expired - Lifetime JP2643431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9046189A JP2643431B2 (en) 1989-04-10 1989-04-10 Manufacturing method of high breakdown voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9046189A JP2643431B2 (en) 1989-04-10 1989-04-10 Manufacturing method of high breakdown voltage semiconductor device

Publications (2)

Publication Number Publication Date
JPH02268452A JPH02268452A (en) 1990-11-02
JP2643431B2 true JP2643431B2 (en) 1997-08-20

Family

ID=13999249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9046189A Expired - Lifetime JP2643431B2 (en) 1989-04-10 1989-04-10 Manufacturing method of high breakdown voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP2643431B2 (en)

Also Published As

Publication number Publication date
JPH02268452A (en) 1990-11-02

Similar Documents

Publication Publication Date Title
US4052229A (en) Process for preparing a substrate for mos devices of different thresholds
US4013489A (en) Process for forming a low resistance interconnect in MOS N-channel silicon gate integrated circuit
US4047217A (en) High-gain, high-voltage transistor for linear integrated circuits
KR20000076026A (en) Method of providing a gettering scheme in the manufacture of silicon-on-insulator(soi) integrated circuits
JPH1079503A (en) Mos transistor and manufacture thereof
JPH11312805A (en) Semiconductor device
US5055905A (en) Semiconductor device
US4049476A (en) Method of manufacturing a semiconductor integrated circuit device which includes at least one V-groove jfet and one bipolar transistor
US5406113A (en) Bipolar transistor having a buried collector layer
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
JP2643431B2 (en) Manufacturing method of high breakdown voltage semiconductor device
US3975818A (en) Method of forming closely spaced electrodes onto semiconductor device
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPH07226509A (en) Semiconductor integrated circuit and manufacture thereof
JPH09283646A (en) Semiconductor integrated circuit
KR19990029186A (en) Semiconductor device
KR0163924B1 (en) A lateral transistor and method of fabricating thereof
JPH07120788B2 (en) Planar semiconductor device
JPS6036104B2 (en) Semiconductor integrated circuit device
JPH09260501A (en) Semiconductor integrated circuit with built-in photodiode
JPS6248039A (en) Dielectric isolated integrated circuit
JPH04112564A (en) Semiconductor device
JP2724707B2 (en) Semiconductor wafer having die having bridge metal structure and method of manufacturing the same
JPS6022358A (en) Semiconductor integrated circuit device
JPH0334571A (en) Semiconductor device