JPH09260501A - Semiconductor integrated circuit with built-in photodiode - Google Patents
Semiconductor integrated circuit with built-in photodiodeInfo
- Publication number
- JPH09260501A JPH09260501A JP8068388A JP6838896A JPH09260501A JP H09260501 A JPH09260501 A JP H09260501A JP 8068388 A JP8068388 A JP 8068388A JP 6838896 A JP6838896 A JP 6838896A JP H09260501 A JPH09260501 A JP H09260501A
- Authority
- JP
- Japan
- Prior art keywords
- region
- photodiode
- type
- isolation region
- epitaxial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Light Receiving Elements (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ホトダイオードを
内蔵する半導体集積回路の、ホトダイオードの応答速度
改善に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the response speed of a photodiode in a semiconductor integrated circuit incorporating the photodiode.
【0002】[0002]
【従来の技術】受光素子であるフオトダイオードとその
周辺回路とを一体化したモノリシック光半導体集積回路
装置はそれぞれを別個に作りハイブリッド化した集積回
路装置に比べて、大幅なコストダウンが実現でき、外部
から電磁界による雑音にも強い利点を有している。2. Description of the Related Art A monolithic optical semiconductor integrated circuit device in which a photodiode, which is a light receiving element, and its peripheral circuit are integrated is manufactured separately, and a significant cost reduction can be realized as compared with a hybridized integrated circuit device. It also has a strong advantage against external noise caused by electromagnetic fields.
【0003】従来の光半導体集積回路装置は例えば特開
平1−205564号に記載されているものが知られて
いる。図2を用いて従来の光半導体集積回路装置につい
て説明する。図2において、1はP型の半導体基板、2
はN‐型のエピタキシヤル層、3はP+型の分離領域、
4はN+型カソード取り出し拡散領域、5はカソード電
極、6はシリコン酸化膜、7はNPNトランジスタのP
型ベース領域、8はNPNトランジスタのN+型エミッ
タ領域、9はN+型の埋め込み層である。As a conventional optical semiconductor integrated circuit device, for example, one described in Japanese Patent Application Laid-Open No. 1-205564 is known. A conventional optical semiconductor integrated circuit device will be described with reference to FIG. In FIG. 2, 1 is a P-type semiconductor substrate, 2
Is an N-type epitaxial layer, 3 is a P + type isolation region,
4 is an N + type cathode extraction diffusion region, 5 is a cathode electrode, 6 is a silicon oxide film, and 7 is P of an NPN transistor.
A type base region, 8 is an N + type emitter region of an NPN transistor, and 9 is an N + type buried layer.
【0004】かかる構造では、半導体基板1と分離領域
3で囲まれたエピタキシヤル層2との間で形成されるP
N接合をホトダイオードとして利用される。このホトダ
イオードではエピタキシヤル層2に入射される光により
発生されるキャリアを電流としてカソード取り出し拡散
領域4にオーミック接触したカソード電極5から検出し
て用いる。In such a structure, the P formed between the semiconductor substrate 1 and the epitaxial layer 2 surrounded by the isolation region 3 is formed.
The N junction is used as a photodiode. In this photodiode, carriers generated by light incident on the epitaxial layer 2 are detected as a current from the cathode electrode 5 in ohmic contact with the cathode extraction diffusion region 4 and used.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、かかる
構造の光半導体集積回路装置では空乏層10による寄生
容量が必然的に形成されるので、寄生容量が大きいほど
フオトダイオードPDの周波数特性が悪くなり、高速動
作を阻害する問題点を有している。特にP+分離領域3
にあっては、素子間分離を行うという目的から比較的高
い不純物濃度で形成するため、空乏層が広がらず、これ
が寄生容量を増大させる原因になっている。However, in the optical semiconductor integrated circuit device having such a structure, the parasitic capacitance is inevitably formed by the depletion layer 10. Therefore, the larger the parasitic capacitance is, the worse the frequency characteristic of the photodiode PD becomes. There is a problem that impedes high-speed operation. Especially P + isolation region 3
In this case, since the element is formed with a relatively high impurity concentration for the purpose of separating elements, the depletion layer does not spread, which causes the parasitic capacitance to increase.
【0006】[0006]
【課題を解決するための手段】本発明はかかる従来の課
題に鑑みなされたもので、ホトダイオードを形成するエ
ピタキシャル層と分離領域との間に、P−型の第2の分
離領域を形成することにより、寄生容量を減らし、応答
速度を改善したホトダイオード内蔵半導体集積回路を提
供するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is to form a P-type second isolation region between an epitaxial layer forming a photodiode and the isolation region. Thus, a semiconductor integrated circuit with a built-in photodiode in which the parasitic capacitance is reduced and the response speed is improved is provided.
【0007】また、第2の分離領域を形成するに当た
り、IILのP−ベース領域、またはNチャンネル型M
OSFETのP−ウェル領域を用いることにより、工程
を簡素にして組み込むものである。本発明に依れば、元
々エピタキシャル層が低不純物濃度であることに加え、
P+分離領域とN型エピタキシャル層との間にP−型の
第2の分離領域を形成したので、ホトダイオードを形成
するPN接合がP−/N−型接合になり、空乏層による
寄生容量を減じてホトダイオードの周波数特性の悪化を
排除でき、高速動作を実現できる。In forming the second separation region, the P-base region of the IIL or the N-channel type M is formed.
By using the P-well region of the OSFET, the process is simplified and incorporated. According to the present invention, in addition to originally having a low impurity concentration in the epitaxial layer,
Since the P-type second isolation region is formed between the P + isolation region and the N-type epitaxial layer, the PN junction forming the photodiode becomes a P- / N-type junction, reducing the parasitic capacitance due to the depletion layer. As a result, deterioration of the frequency characteristics of the photodiode can be eliminated, and high speed operation can be realized.
【0008】[0008]
【発明の実施の形態】以下に本発明を図面を参照しなが
ら詳細に説明する。図1は本発明によるホトダイオード
内蔵半導体集積回路を示す断面図である。図1におい
て、11はP型の半導体基板、12はN‐型のエピタキ
シャル層を分離するP+型分離領域、13はP+分離領
域12によって分離されたエピタキシャル層から成る島
領域である。各島領域13にホトダイオード14、II
L15、およびNPNトランジスタ16が各々組み込ま
れている。17は島領域13の表面に形成したホトダイ
オード14のN+型カソード取り出し拡散領域、18は
IILのP−型ベース領域、19はIILのN+コレク
タ領域、20はIILのP型インジェクタ領域、21は
IILのP型ベースコンタクト領域、22はNPNトラ
ンジスタのP型ベース領域、23はN+型エミッタ領
域、24はN+型コレクタコンタクト領域、25はシリ
コン酸化膜、26はアルミ電極である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing a semiconductor integrated circuit incorporating a photodiode according to the present invention. In FIG. 1, 11 is a P-type semiconductor substrate, 12 is a P + -type isolation region for separating an N-type epitaxial layer, and 13 is an island region made of an epitaxial layer separated by the P + isolation region 12. Photodiodes 14, II in each island region 13
The L15 and the NPN transistor 16 are incorporated respectively. Reference numeral 17 is an N + type cathode extraction diffusion region of the photodiode 14 formed on the surface of the island region 13, 18 is an IIL P− type base region, 19 is an IIL N + collector region, 20 is an IIL P type injector region, and 21 is an IIL. Is a P-type base contact region, 22 is a P-type base region of an NPN transistor, 23 is an N + type emitter region, 24 is an N + type collector contact region, 25 is a silicon oxide film, and 26 is an aluminum electrode.
【0009】P型の半導体基板11はシリコン単結晶基
板を用い、半導体集積回路装置を完成したときに数Ω・
cm以上の比抵抗を有しており、また半導体集積回路装
置を機械的に支持しているので300ミクロン以上と厚
く形成されている。N一型のエピタキシャル層は半導体
基板11上に気相成長法によりリン(P)ドープで成長
され、比抵抗が数・cm以上、厚さ数μに積層される。
この厚みは入射される光により最適の厚みに選定され
る。なお、エピタキシャル層の不純物濃度をホトダイオ
ード14にとっての最適値とし、NPNトランジスタ1
6側にはコレクタとなる部分にN型の不純物を拡散して
不純物濃度の不足分を補うような形態でも構わない分離
領域12は、基板11表面から上方向に拡散形成した下
拡散層12aと、エピタキシャル層表面から下方向に拡
散形成した上拡散層12bとを連結することで構成して
いる。A silicon single crystal substrate is used as the P-type semiconductor substrate 11, and when the semiconductor integrated circuit device is completed, several Ω ·
Since it has a specific resistance of cm or more and mechanically supports the semiconductor integrated circuit device, it is formed as thick as 300 μm or more. The N 1 -type epitaxial layer is grown on the semiconductor substrate 11 by phosphorus (P) doping by vapor phase epitaxy, and is laminated to have a specific resistance of several cm or more and a thickness of several μ.
This thickness is selected to be optimum depending on the incident light. The impurity concentration of the epitaxial layer is set to the optimum value for the photodiode 14, and the NPN transistor 1
On the 6 side, the isolation region 12 which may have a form in which N-type impurities are diffused in a portion serving as a collector to make up for the shortage of the impurity concentration, and , The upper diffusion layer 12b formed by diffusing downward from the surface of the epitaxial layer is connected.
【0010】N+型のカソード取り出し拡散領域17は
選択拡散法によりたとえばNPNトランジスタ16のエ
ミツタ領域23拡散時に同時にエピタキシヤル層の上面
に形成される。そのカソード取り出し拡散領域17には
オーミック接触するアルミニウムのカソード電極16a
を設ける。カソード取りだし拡散領域17周囲のP+型
分離領域12の表面にはアノード電極26bを設ける。The N + type cathode extraction diffusion region 17 is formed on the upper surface of the epitaxial layer at the same time as the diffusion of the emitter region 23 of the NPN transistor 16 by the selective diffusion method. An aluminum cathode electrode 16a in ohmic contact with the cathode extraction diffusion region 17
Is provided. An anode electrode 26b is provided on the surface of the P + type separation region 12 around the cathode extraction diffusion region 17.
【0011】ホトダイオード14部分を区画するP+分
離領域12に重ねて、分離領域12よりは低不純物濃度
のP−型の第2の分離領域27を形成する。第2の分離
領域27は、分離領域の下拡散層12aと共に基板11
表面から上方向に拡散形成した下部分27aと、IIL
のベース領域18拡散時に同時にエピタキシャル層表面
から拡散形成した上部分27bとが連結して構成してい
る。第2の分離領域27の下部分27aは工程を1つ付
加するので必ずしも必要ではないが、形成した方が本発
明の効果は大きくなる。 また、第2の分離領域27は
カソード取り出し拡散領域17を囲むように分離領域1
2の内側にのみ存在していれば良い。A P- type second isolation region 27 having a lower impurity concentration than that of the isolation region 12 is formed so as to overlap the P + isolation region 12 partitioning the photodiode 14. The second isolation region 27 is formed on the substrate 11 together with the lower diffusion layer 12a of the isolation region.
A lower portion 27a formed by diffusing upward from the surface, and IIL
At the same time when the base region 18 is diffused, it is connected to the upper portion 27b formed by diffusion from the surface of the epitaxial layer. The lower portion 27a of the second separation region 27 does not necessarily need to be formed because one step is added, but the effect of the present invention is greater when it is formed. In addition, the second separation region 27 surrounds the cathode extraction diffusion region 17 and the separation region 1
It only needs to exist inside 2.
【0012】そして、アノード電極26bとカソード電
極26aとの間に+5Vのごとき逆バイアスを印加する
ことにより、ホトダイオード14を形成するPN接合に
空乏層を形成する。この空乏層に外部から光が入射する
ことで光電流が発生し、アノード・カソード電極26
a、26bに信号電流が流れるようになっている。尚、
島領域13と基板11とのPN接合、および島領域13
と第2の分離領域27とのPN接合がホトダイオードと
なる。Then, a depletion layer is formed in the PN junction forming the photodiode 14 by applying a reverse bias such as +5 V between the anode electrode 26b and the cathode electrode 26a. Photocurrent is generated when light is incident on the depletion layer from the outside, and the anode / cathode electrode 26
A signal current flows through a and 26b. still,
PN junction between island region 13 and substrate 11, and island region 13
The PN junction between the first isolation region 27 and the second isolation region 27 serves as a photodiode.
【0013】図2にホトダイオード14の部分拡大図を
示した。本発明によれば、分離領域12に沿って低不純
物濃度の第2の分離領域27を形成したので、島領域1
3のN−型層と第2の分離領域27のP−型層とでホト
ダイオード14のPN接合の一部を構成する。従って、
空乏層28を本来低不純物濃度の島領域13側に広げる
ことができると共に、分離領域12に隣接して形成した
第2の分離領域27側にも拡大することができる。よっ
て従来と同じ逆バイアスを印加したときでも、空乏層2
8の幅できまるホトダイオードの寄生容量を大幅に減少
できる。FIG. 2 shows a partially enlarged view of the photodiode 14. According to the present invention, since the second isolation region 27 having a low impurity concentration is formed along the isolation region 12, the island region 1
The N-type layer 3 and the P-type layer of the second isolation region 27 form a part of the PN junction of the photodiode 14. Therefore,
The depletion layer 28 can be expanded to the side of the island region 13 which originally has a low impurity concentration, and can also be expanded to the side of the second isolation region 27 formed adjacent to the isolation region 12. Therefore, even when the same reverse bias as before is applied, the depletion layer 2
The parasitic capacitance of the photodiode having a width of 8 can be greatly reduced.
【0014】図3は本発明の第2の実施の形態を示す断
面図である。先の実施の形態と同じ箇所には同じ符号を
付して説明を省略する。図3を参照して、図面中央の島
領域13にIILに代えてNチャンネル型MOSFET
30を形成したBiCMOS型集積回路である。31は
P+型の埋め込み層、32はP−型のウェル領域であ
る。Nチャンネル型MOSFET30は、ウェル領域3
2の表面にN+型のソース・ドレイン領域33を形成
し、ウェル領域32上を被覆するゲート絶縁膜(シリコ
ン酸化膜)上にゲート電極34を配置したものである。
先の実施の形態と同様に、第2の分離領域の上部分27
bが選択拡散によりNチャンネル型MOSFET30の
P−型ウェル領域32の形成と同時的に形成されてお
り、空乏層28が第2の分離領域27内部にも拡大する
ので、ホトダイオードの寄生容量を減じることができ
る。FIG. 3 is a sectional view showing a second embodiment of the present invention. The same parts as those in the previous embodiment are designated by the same reference numerals and the description thereof will be omitted. Referring to FIG. 3, an N-channel MOSFET instead of IIL is formed in an island region 13 at the center of the drawing.
30 is a BiCMOS type integrated circuit in which 30 is formed. Reference numeral 31 is a P + type buried layer, and 32 is a P− type well region. The N-channel MOSFET 30 has a well region 3
The N + type source / drain regions 33 are formed on the surface of the gate electrode 2, and the gate electrode 34 is arranged on the gate insulating film (silicon oxide film) covering the well region 32.
Similar to the previous embodiment, the upper portion 27 of the second isolation region
b is formed simultaneously with the formation of the P-type well region 32 of the N-channel MOSFET 30 by selective diffusion, and the depletion layer 28 expands inside the second isolation region 27 as well, thereby reducing the parasitic capacitance of the photodiode. be able to.
【0015】[0015]
【発明の効果】以上に説明したとおり、本発明に依れば
分離領域12に隣接して形成したP−型の第2の分離領
域27の内部にも空乏層28を広げることができるの
で、従来より分離領域12側へ広がる空乏層28の幅を
広げることができる。従ってホトダイオードの寄生容量
を減じることができ、ホトダイオードの高速応答性を改
善できる。As described above, according to the present invention, the depletion layer 28 can be expanded inside the P-type second isolation region 27 formed adjacent to the isolation region 12. It is possible to widen the width of the depletion layer 28 that spreads toward the isolation region 12 side as compared with the related art. Therefore, the parasitic capacitance of the photodiode can be reduced, and the high speed response of the photodiode can be improved.
【0016】さらに、IILのベース領域18又はNチ
ャンネル型MOSFET30のウェル領域32を利用す
ることで、工程の簡素化を図ることができるものであ
る。Further, the process can be simplified by utilizing the base region 18 of the IIL or the well region 32 of the N-channel MOSFET 30.
【図1】本発明のホトダイオード内蔵半導体集積回路を
説明するための断面図である。FIG. 1 is a cross-sectional view for explaining a photodiode integrated semiconductor integrated circuit of the present invention.
【図2】本発明のホトダイオード内蔵半導体集積回路を
説明するための拡大断面図である。FIG. 2 is an enlarged cross-sectional view for explaining a photodiode integrated semiconductor integrated circuit of the present invention.
【図3】本発明の第2の実施の形態を説明するための断
面図である。FIG. 3 is a cross-sectional view for explaining a second embodiment of the present invention.
【図4】従来ホトダイオード内蔵半導体集積回路を説明
するための断面図である。FIG. 4 is a cross-sectional view for explaining a conventional semiconductor integrated circuit with a built-in photodiode.
Claims (3)
ル層と、 前記エピタキシヤル層を貫通して前記エピタキシャル層
を複数の島領域に分離する一導電型の分離領域と、 前記島領域の一つの表面に形成した、一導電型のIIL
の低濃度ベース領域と、 前記低濃度ベース領域の表面に形成した、逆導電型のI
ILのコレクタ領域と、 前記島領域の他の一つをカソードとするホトダイオード
とを具備するホトダイオード内蔵半導体装置において、 前記分離領域と前記カソードとなる島領域との間に、前
記IILの低濃度ベース領域と同時的に前記分離領域よ
り低不純物濃度の第2の分離領域を形成したことを特徴
とするホトダイオード内蔵半導体集積回路。1. A semiconductor substrate of one conductivity type, an epitaxial layer of an opposite conductivity type formed on the semiconductor substrate, and one conductivity which penetrates the epitaxial layer and separates the epitaxial layer into a plurality of island regions. Type isolation region and one conductivity type IIL formed on one surface of the island region.
Of the low-concentration base region, and a reverse conductivity type I formed on the surface of the low-concentration base region.
A semiconductor device with a built-in photodiode, comprising: a collector region of IL; and a photodiode having another one of the island regions as a cathode, wherein a low concentration base of the IIL is provided between the isolation region and the island region serving as the cathode. A semiconductor integrated circuit with a built-in photodiode, wherein a second isolation region having a lower impurity concentration than the isolation region is formed simultaneously with the region.
ル層と、 前記エピタキシヤル層を貫通して前記エピタキシャル層
を複数の島領域に分離する一導電型の分離領域と、 前記島領域の一つの表面に形成した、一導電型の低濃度
ウェル領域と、 前記低濃度ウェル領域の表面に形成した、逆導電型のソ
ース・ドレイン領域と、 前記低濃度ウェル領域の上にゲート絶縁膜を介して設け
たゲート電極と、 前記島領域の他の一つをカソードとするホトダイオード
とを具備するホトダイオード内蔵半導体装置において、 前記分離領域と前記カソードとなる島領域との間に、前
記一導電型の低濃度ウェル領域と同時的に前記分離領域
より低不純物濃度の第2の分離領域を形成したことを特
徴とするホトダイオード内蔵半導体集積回路。2. A semiconductor substrate of one conductivity type, an epitaxial layer of an opposite conductivity type formed on the semiconductor substrate, and one conductivity which penetrates the epitaxial layer and separates the epitaxial layer into a plurality of island regions. Type isolation region, one conductivity type low concentration well region formed on one surface of the island region, an opposite conductivity type source / drain region formed on the surface of the low concentration well region, A semiconductor device with a built-in photodiode, comprising a gate electrode provided on a concentration well region via a gate insulating film, and a photodiode having another one of the island regions as a cathode, wherein the isolation region and the island serving as the cathode are provided. A second isolation region having an impurity concentration lower than that of the isolation region is formed at the same time as the one-conductivity-type low-concentration well region with the region. De built-in semiconductor integrated circuit.
ル層表面から前記基板表面まで達していることを特徴と
する請求項1又は請求項2に記載のホトダイオード内蔵
半導体集積回路。3. The semiconductor integrated circuit with a built-in photodiode according to claim 1, wherein the second isolation region extends from the surface of the epitaxial layer to the surface of the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8068388A JPH09260501A (en) | 1996-03-25 | 1996-03-25 | Semiconductor integrated circuit with built-in photodiode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8068388A JPH09260501A (en) | 1996-03-25 | 1996-03-25 | Semiconductor integrated circuit with built-in photodiode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09260501A true JPH09260501A (en) | 1997-10-03 |
Family
ID=13372294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8068388A Pending JPH09260501A (en) | 1996-03-25 | 1996-03-25 | Semiconductor integrated circuit with built-in photodiode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09260501A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1032049A3 (en) * | 1999-02-25 | 2005-10-12 | Canon Kabushiki Kaisha | Light-receiving element and photoelectric conversion device |
KR101026245B1 (en) * | 2007-09-04 | 2011-03-31 | 르네사스 일렉트로닉스 가부시키가이샤 | Segmented photodiode |
KR20110084876A (en) * | 2008-08-29 | 2011-07-26 | 타우-메트릭스 인코포레이티드 | Intergrated photodiode for semiconductor substrates |
-
1996
- 1996-03-25 JP JP8068388A patent/JPH09260501A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1032049A3 (en) * | 1999-02-25 | 2005-10-12 | Canon Kabushiki Kaisha | Light-receiving element and photoelectric conversion device |
US7235831B2 (en) | 1999-02-25 | 2007-06-26 | Canon Kabushiki Kaisha | Light-receiving element and photoelectric conversion device |
KR101026245B1 (en) * | 2007-09-04 | 2011-03-31 | 르네사스 일렉트로닉스 가부시키가이샤 | Segmented photodiode |
KR20110084876A (en) * | 2008-08-29 | 2011-07-26 | 타우-메트릭스 인코포레이티드 | Intergrated photodiode for semiconductor substrates |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100208646B1 (en) | Optical semiconductor device | |
KR0182270B1 (en) | Optical semiconductor device | |
JP2800827B2 (en) | Optical semiconductor device and method for manufacturing the same | |
JP3122118B2 (en) | Semiconductor device | |
JPH09260715A (en) | Photodiode built-in semiconductor integrated circuit | |
JPH09260501A (en) | Semiconductor integrated circuit with built-in photodiode | |
JP2940818B2 (en) | Optical semiconductor device and its manufacturing method | |
JP2680455B2 (en) | Semiconductor device | |
JP2568074B2 (en) | Optical sensor integrated circuit | |
JPH09283646A (en) | Semiconductor integrated circuit | |
JP2620655B2 (en) | Optical semiconductor device | |
JPH0779154B2 (en) | Light receiving element with built-in circuit | |
KR100194991B1 (en) | Optical semiconductor devices | |
JPH0513800A (en) | Semiconductor device | |
JPS62131570A (en) | Semiconductor light receiving device | |
JP2501556B2 (en) | Optical sensor and manufacturing method thereof | |
JP3311037B2 (en) | Semiconductor device | |
JPH04151874A (en) | Semiconductor device | |
JP3553715B2 (en) | Optical semiconductor device | |
JP2000200894A (en) | Light receiving element incorporating circuit | |
JPH04242980A (en) | Light-receiving element | |
US7061031B1 (en) | High-sensitivity image sensor and fabrication method thereof | |
JP3439149B2 (en) | Semiconductor device | |
JPH07142501A (en) | Semiconductor integrated circuit | |
JP2643431B2 (en) | Manufacturing method of high breakdown voltage semiconductor device |