JPH09260715A - Photodiode built-in semiconductor integrated circuit - Google Patents

Photodiode built-in semiconductor integrated circuit

Info

Publication number
JPH09260715A
JPH09260715A JP8068387A JP6838796A JPH09260715A JP H09260715 A JPH09260715 A JP H09260715A JP 8068387 A JP8068387 A JP 8068387A JP 6838796 A JP6838796 A JP 6838796A JP H09260715 A JPH09260715 A JP H09260715A
Authority
JP
Japan
Prior art keywords
region
photodiode
isolation region
epitaxial layer
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8068387A
Other languages
Japanese (ja)
Inventor
Seiji Otake
誠治 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8068387A priority Critical patent/JPH09260715A/en
Publication of JPH09260715A publication Critical patent/JPH09260715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen a parasitic capacity due to a depletion layer and thereby increase a response speed by forming a p-type well region between an epitaxial layer and an isolation region, which constitute a photodiode. SOLUTION: A p-type well region 24 which has a lower impurity concentration than an isolation region 13 is formed over the p+ isolation region 13 which partitions a photodiode section. It is preferred that the well region 24 passes through an epitaxial layer 12. Then, by applying a reverse bias voltage between an anode electrode 23 and a cathode electrode 16, a depletion layer 25 is formed in a PN junction which constitutes a photodiode. By this method, the depletion layer 25 can be expanded to the epitaxial layer 12 side which has a low impurity concentration and even into the p-type well region 25, formed adjacently to the isolation region 13. Therefore, a parasitic capacity which depends on the width of the depletion layer 25 can be remarkably lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ホトダイオードを
内蔵する半導体集積回路の、ホトダイオードの応答速度
改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the response speed of a photodiode in a semiconductor integrated circuit incorporating the photodiode.

【0002】[0002]

【従来の技術】受光素子であるフオトダイオードとその
周辺回路とを一体化したモノリシック光半導体集積回路
装置はそれぞれを別個に作りハイブリッド化した集積回
路装置に比べて、大幅なコストダウンが実現でき、外部
から電磁界による雑音にも強い利点を有している。
2. Description of the Related Art A monolithic optical semiconductor integrated circuit device in which a photodiode, which is a light receiving element, and its peripheral circuit are integrated is manufactured separately, and a significant cost reduction can be realized as compared with a hybridized integrated circuit device. It also has a strong advantage against external noise caused by electromagnetic fields.

【0003】従来の光半導体集積回路装置は例えば特開
平1−205564号に記載されているものが知られて
いる。図2を用いて従来の光半導体集積回路装置につい
て説明する。図2において、1はP型の半導体基板、2
はN‐型のエピタキシヤル層、3はP+型の分離領域、
4はN+型カソード取り出し拡散領域、5はカソード電
極、6はシリコン酸化膜、7はNPNトランジスタのP
型ベース領域、8はNPNトランジスタのN+型エミッ
タ領域、9はN+型の埋め込み層である。
As a conventional optical semiconductor integrated circuit device, for example, one described in Japanese Patent Application Laid-Open No. 1-205564 is known. A conventional optical semiconductor integrated circuit device will be described with reference to FIG. In FIG. 2, 1 is a P-type semiconductor substrate, 2
Is an N-type epitaxial layer, 3 is a P + type isolation region,
4 is an N + type cathode extraction diffusion region, 5 is a cathode electrode, 6 is a silicon oxide film, and 7 is P of an NPN transistor.
A type base region, 8 is an N + type emitter region of an NPN transistor, and 9 is an N + type buried layer.

【0004】かかる構造では、半導体基板1と分離領域
3で囲まれたエピタキシヤル層2との間で形成されるP
N接合をホトダイオードとして利用される。このホトダ
イオードではエピタキシヤル層2に入射される光により
発生されるキャリアを電流としてカソード取り出し拡散
領域5にオーミック接触したカソード電極6から検出し
て用いる。
In such a structure, the P formed between the semiconductor substrate 1 and the epitaxial layer 2 surrounded by the isolation region 3 is formed.
The N junction is used as a photodiode. In this photodiode, carriers generated by light incident on the epitaxial layer 2 are detected as a current from the cathode electrode 6 in ohmic contact with the cathode extraction diffusion region 5 and used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
構造の光半導体集積回路装置では空乏層10による寄生
容量が必然的に形成されるので、寄生容量が大きいほど
フオトダイオードPDの周波数特性が悪くなり、高速動
作を阻害する問題点を有している。特にP+分離領域3
にあっては、素子間分離を行うという目的から比較的高
い不純物濃度で形成するため、空乏層10が広がらず、
これが寄生容量を増大させる原因になっている。
However, in the optical semiconductor integrated circuit device having such a structure, the parasitic capacitance is inevitably formed by the depletion layer 10. Therefore, the larger the parasitic capacitance is, the worse the frequency characteristic of the photodiode PD becomes. There is a problem that impedes high-speed operation. Especially P + isolation region 3
In this case, the depletion layer 10 does not spread because it is formed with a relatively high impurity concentration for the purpose of separating elements.
This is a cause of increasing the parasitic capacitance.

【0006】[0006]

【課題を解決するための手段】本発明はかかる従来の課
題に鑑みなされたもので、ホトダイオードを形成するエ
ピタキシャル層と分離領域との間に、P−型のウェル領
域を形成することにより、寄生容量を減らし、応答速度
を改善したホトダイオード内蔵半導体集積回路を提供す
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above conventional problems, and a parasitic region is formed by forming a P-type well region between an epitaxial layer forming a photodiode and an isolation region. Provided is a semiconductor integrated circuit with a built-in photodiode, which has a reduced capacity and an improved response speed.

【0007】本発明に依れば、元々エピタキシャル層が
低不純物濃度であることに加え、P+分離領域とN型エ
ピタキシャル層との間にP−型ウェル領域を形成したの
で、ホトダイオードを形成するPN接合がP−/N型接
合になり、空乏層による寄生容量を減じてホトダイオー
ドの周波数特性の悪化を排除でき、高速動作を実現でき
る。
According to the present invention, since the epitaxial layer originally has a low impurity concentration and the P− type well region is formed between the P + isolation region and the N type epitaxial layer, the PN forming the photodiode is formed. The junction becomes a P- / N type junction, the parasitic capacitance due to the depletion layer is reduced, deterioration of the frequency characteristics of the photodiode can be eliminated, and high-speed operation can be realized.

【0008】[0008]

【発明の実施の形態】以下に本発明を図面を参照しなが
ら詳細に説明する。図1は本発明によるホトダイオード
内蔵半導体集積回路を示す断面図である。図1におい
て、11はP型の半導体基板、12はN‐型のエピタキ
シャル層、13はP+型分離領域、14はP+分離領域
13によって分離されたエピタキシャル層12から成る
島領域、15は島領域14の表面に形成したN+型カソ
ード取り出し拡散領域、16はカソード取り出し拡散領
域の表面にオーミックコンタクトするカソード電極、1
7はシリコン酸化膜である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing a semiconductor integrated circuit incorporating a photodiode according to the present invention. In FIG. 1, 11 is a P-type semiconductor substrate, 12 is an N-type epitaxial layer, 13 is a P + type isolation region, 14 is an island region composed of the epitaxial layer 12 separated by the P + isolation region 13, and 15 is an island region. N + type cathode extraction diffusion region formed on the surface of 14; 16 a cathode electrode which makes ohmic contact with the surface of the cathode extraction diffusion region;
7 is a silicon oxide film.

【0009】ホトダイオードと同じ基板上に、NPNト
ランジスタを代表とする信号処理部分を形成する。18
はコレクタとなる島領域12の表面に形成したP型のベ
ース領域、19はベース領域18の表面に形成したN+
型エミッタ領域、20はベース電極、21はエミッタ電
極、22はN+型埋め込み層である。P型の半導体基板
11はシリコン単結晶基板を用い、半導体集積回路装置
を完成したときに数Ω・cmの比抵抗を有しており、ま
た半導体集積回路装置を機械的に支持しているので30
0ミクロン以上と厚く形成されている。
A signal processing section represented by an NPN transistor is formed on the same substrate as the photodiode. 18
Is a P-type base region formed on the surface of the island region 12 serving as a collector, and 19 is N + formed on the surface of the base region 18.
A type emitter region, 20 is a base electrode, 21 is an emitter electrode, and 22 is an N + type buried layer. The P-type semiconductor substrate 11 is a silicon single crystal substrate, has a specific resistance of several Ω · cm when the semiconductor integrated circuit device is completed, and mechanically supports the semiconductor integrated circuit device. Thirty
It is formed as thick as 0 micron or more.

【0010】N一型のエピタキシャル層12は半導体基
板11上に気相成長法によりリン(P)ドープで成長さ
れ、比抵抗が数Ω・cm以上、厚さ数μに積層される。
この厚みは入射される光により最適の厚みに選定され
る。また、エピタキシャル層12の不純物濃度をホトダ
イオードにとっての最適値とし、NPNトランジスタ側
にはコレクタとなる部分にN型の不純物を拡散して不純
物濃度の不足分を補うような形態でも構わない。
The N 1 -type epitaxial layer 12 is grown on the semiconductor substrate 11 by phosphorus (P) doping by vapor phase epitaxy, and is laminated to have a specific resistance of several Ω · cm or more and a thickness of several μ.
This thickness is selected to be optimum depending on the incident light. Further, the impurity concentration of the epitaxial layer 12 may be set to the optimum value for the photodiode, and the NPN transistor may be diffused with N-type impurities in a portion serving as a collector to compensate for the insufficient impurity concentration.

【0011】N+型のカソード取り出し拡散領域15は
選択拡散法によりたとえばNPNトランジスタのエミツ
タ領域19拡散時に同時にエピタキシヤル層12の上面
に形成される。そのカソード取り出し拡散領域15には
オーミック接触したアルミニウムのカソード電極16を
設ける。カソード取りだし拡散領域15周囲のP+型分
離領域13の表面にはアノード電極23がコンタクトす
る。
The N + type cathode extraction diffusion region 15 is formed on the upper surface of the epitaxial layer 12 at the same time as the diffusion of the emitter region 19 of the NPN transistor by the selective diffusion method. An aluminum cathode electrode 16 in ohmic contact is provided in the cathode extraction diffusion region 15. The anode electrode 23 contacts the surface of the P + type isolation region 13 around the cathode extraction diffusion region 15.

【0012】ホトダイオード部分を区画するP+分離領
域13に重ねて、分離領域13よりは低不純物濃度のP
−型のウェル領域24を形成する。このウェル領域24
はエピタキシャル層12を貫通することが望ましいが、
その途中まで、例えば分離領域13として基板11表面
から上方向への拡散層とエピタキシャル層12表面から
下方向への拡散領域とを連結する上下分離手法で、前記
下方向への拡散領域と同じ程度の深さで終了しても構わ
ない。また、P−型ウェル領域24はカソード取り出し
拡散領域15を囲むように分離領域13の内側にのみ存
在すれば良い。
The P + isolation region 13 for partitioning the photodiode portion is overlapped, and P having a lower impurity concentration than the isolation region 13 is formed.
A negative well region 24 is formed. This well area 24
Preferably penetrates the epitaxial layer 12,
To the middle of the process, for example, as a separation region 13, a vertical separation method is used to connect a diffusion layer upward from the surface of the substrate 11 and a diffusion region downward from the surface of the epitaxial layer 12 to the same extent as the downward diffusion region. You may end at the depth of. Further, the P− type well region 24 may be present only inside the separation region 13 so as to surround the cathode extraction diffusion region 15.

【0013】そして、アノード電極23とカソード電極
16に+5Vのごとき逆バイアスを印加することによ
り、ホトダイオードを形成するPN接合に空乏層25を
形成する。この空乏層25に外部から光が入射すること
で光電流が発生し、アノード・カソード電極16、23
間に信号電流が流れるようになっている、本発明に依れ
ば、空乏層25を本来低不純物濃度のエピタキシャル層
12側に広げることができると共に、分離領域13に隣
接して形成したP−ウェル領域25内部にも広げること
ができる。従って、従来と同じ逆バイアスを印加したと
きでも、空乏層25の幅できまるホトダイオードの寄生
容量を大幅に減少できる。
Then, by applying a reverse bias such as +5 V to the anode electrode 23 and the cathode electrode 16, the depletion layer 25 is formed in the PN junction forming the photodiode. When light is incident on the depletion layer 25 from the outside, photocurrent is generated, and the anode / cathode electrodes 16 and 23 are generated.
According to the present invention in which a signal current flows between them, the depletion layer 25 can be expanded to the side of the epitaxial layer 12 originally having a low impurity concentration, and the P− formed adjacent to the isolation region 13 is formed. The well region 25 can be expanded inside. Therefore, even when the same reverse bias as in the conventional case is applied, the parasitic capacitance of the photodiode, which can be formed in the width of the depletion layer 25, can be significantly reduced.

【0014】[0014]

【発明の効果】以上に説明したとおり、本発明に依れば
分離領域13に隣接して形成したP−型ウェル領域24
の内部にも空乏層25を広げることができるので、従来
より分離領域13側へ広がる空乏層25の幅を広げるこ
とが出きる。従ってホトダイオードの寄生容量を減じる
ことができ、ホトダイオードの高速応答性を改善でき
る。
As described above, according to the present invention, the P-type well region 24 formed adjacent to the isolation region 13 is formed.
Since the depletion layer 25 can be expanded to the inside of the, the width of the depletion layer 25 that expands toward the isolation region 13 side can be increased compared to the conventional case. Therefore, the parasitic capacitance of the photodiode can be reduced, and the high speed response of the photodiode can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のホトダイオード内蔵半導体集積回路を
説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a photodiode integrated semiconductor integrated circuit of the present invention.

【図2】従来ホトダイオード内蔵半導体集積回路を説明
するための断面図である。
FIG. 2 is a cross-sectional view for explaining a conventional semiconductor integrated circuit with a built-in photodiode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板と、 前記半導体基板上に形成された逆導電型のエピタキシャ
ル層と、 前記エピタキシヤル層を貫通して前記エピタキシャル層
を複数の島領域に分離する一導電型の分離領域と、 前記島領域と前記分離領域との、および前記分離領域と
前記基板とのPN接合をホトダイオードとして、このホ
トダイオードを逆バイアスするように前記島領域と前記
分離領域に各々電位を印加する電極とを具備するホトダ
イオード内蔵半導体集積回路において、 前記分離領域と前記島領域との間に、前記分離領域より
低不純物濃度の一導電型のウェル領域を形成したことを
特徴とするホトダイオード内蔵半導体集積回路。
1. A semiconductor substrate of one conductivity type, an epitaxial layer of an opposite conductivity type formed on the semiconductor substrate, and one conductivity which penetrates the epitaxial layer and separates the epitaxial layer into a plurality of island regions. Type isolation region, the island region and the isolation region, and the PN junction between the isolation region and the substrate as a photodiode, the potential is applied to the island region and the isolation region to reverse bias the photodiode, respectively. In a semiconductor integrated circuit with a built-in photodiode including an electrode to be applied, a well region of one conductivity type having an impurity concentration lower than that of the isolation region is formed between the isolation region and the island region. Semiconductor integrated circuit.
【請求項2】 前記一導電型のウェル領域が前記エピタ
キシャル層表面から前記基板表面まで達していることを
特徴とする請求項1記載のホトダイオード内蔵半導体集
積回路。
2. The semiconductor integrated circuit with a built-in photodiode according to claim 1, wherein the well region of one conductivity type extends from the surface of the epitaxial layer to the surface of the substrate.
JP8068387A 1996-03-25 1996-03-25 Photodiode built-in semiconductor integrated circuit Pending JPH09260715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8068387A JPH09260715A (en) 1996-03-25 1996-03-25 Photodiode built-in semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068387A JPH09260715A (en) 1996-03-25 1996-03-25 Photodiode built-in semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH09260715A true JPH09260715A (en) 1997-10-03

Family

ID=13372268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068387A Pending JPH09260715A (en) 1996-03-25 1996-03-25 Photodiode built-in semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH09260715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090867A (en) * 2002-05-22 2003-12-01 동부전자 주식회사 Cmos image sensor
KR100444490B1 (en) * 2002-01-08 2004-08-16 주식회사 하이닉스반도체 Image sensor for protecting the Reference broading effect
EP1032049A3 (en) * 1999-02-25 2005-10-12 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
EP1608019A1 (en) * 2004-06-15 2005-12-21 STMicroelectronics Limited Imaging sensor
JP2008066446A (en) * 2006-09-06 2008-03-21 Sony Corp Semiconductor laminated structure and semiconductor element
KR20110084876A (en) * 2008-08-29 2011-07-26 타우-메트릭스 인코포레이티드 Intergrated photodiode for semiconductor substrates
JP2014130920A (en) * 2012-12-28 2014-07-10 Lapis Semiconductor Co Ltd Double-well structure soi radiation sensor and method of manufacturing the same
JP2020161739A (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Photodetector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032049A3 (en) * 1999-02-25 2005-10-12 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
US7235831B2 (en) 1999-02-25 2007-06-26 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
KR100444490B1 (en) * 2002-01-08 2004-08-16 주식회사 하이닉스반도체 Image sensor for protecting the Reference broading effect
KR20030090867A (en) * 2002-05-22 2003-12-01 동부전자 주식회사 Cmos image sensor
EP1608019A1 (en) * 2004-06-15 2005-12-21 STMicroelectronics Limited Imaging sensor
US7358584B2 (en) 2004-06-15 2008-04-15 Stmicroelectronics Ltd. Imaging sensor
JP2008066446A (en) * 2006-09-06 2008-03-21 Sony Corp Semiconductor laminated structure and semiconductor element
KR20110084876A (en) * 2008-08-29 2011-07-26 타우-메트릭스 인코포레이티드 Intergrated photodiode for semiconductor substrates
JP2014130920A (en) * 2012-12-28 2014-07-10 Lapis Semiconductor Co Ltd Double-well structure soi radiation sensor and method of manufacturing the same
JP2020161739A (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Photodetector

Similar Documents

Publication Publication Date Title
US4038680A (en) Semiconductor integrated circuit device
KR100208646B1 (en) Optical semiconductor device
JP2800827B2 (en) Optical semiconductor device and method for manufacturing the same
JPH09260715A (en) Photodiode built-in semiconductor integrated circuit
JPH05235014A (en) Semiconductor device
JPH09213917A (en) Optical semiconductor integrated circuit device
JPH06104459A (en) Semiconductor device
JPH09260501A (en) Semiconductor integrated circuit with built-in photodiode
JP2680455B2 (en) Semiconductor device
JP2568074B2 (en) Optical sensor integrated circuit
JP2940818B2 (en) Optical semiconductor device and its manufacturing method
JP2620655B2 (en) Optical semiconductor device
KR100194991B1 (en) Optical semiconductor devices
JP2657119B2 (en) Optical semiconductor device
JPH04242980A (en) Light-receiving element
JPH0513800A (en) Semiconductor device
JPH03203273A (en) Pin photodiode
JPH04151874A (en) Semiconductor device
JPS6327865B2 (en)
JP2000200894A (en) Light receiving element incorporating circuit
JP2521745Y2 (en) Photo thyristor
JPH04146671A (en) Photodetective element incorporating circuit
JPH0428144B2 (en)
JPH07142501A (en) Semiconductor integrated circuit
JPS6016465A (en) Transistor