JPS6327865B2 - - Google Patents

Info

Publication number
JPS6327865B2
JPS6327865B2 JP55022937A JP2293780A JPS6327865B2 JP S6327865 B2 JPS6327865 B2 JP S6327865B2 JP 55022937 A JP55022937 A JP 55022937A JP 2293780 A JP2293780 A JP 2293780A JP S6327865 B2 JPS6327865 B2 JP S6327865B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
main electrode
electrode region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55022937A
Other languages
Japanese (ja)
Other versions
JPS56120169A (en
Inventor
Kunihiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2293780A priority Critical patent/JPS56120169A/en
Publication of JPS56120169A publication Critical patent/JPS56120169A/en
Publication of JPS6327865B2 publication Critical patent/JPS6327865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置に係り、特にダイオード
装置の逆方向サージ電圧破壊強度を大きくするた
めの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to an improvement for increasing the reverse surge voltage breakdown strength of a diode device.

以下、バイポーラ形半導体集積回路装置構成用
のダイオード装置を例にとり説明する。
Hereinafter, a diode device for configuring a bipolar semiconductor integrated circuit device will be explained as an example.

第1図はバイポーラ形半導体集積回路装置構成
用の従来のダイオード装置の一例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of a conventional diode device for configuring a bipolar semiconductor integrated circuit device.

図において、1はp形シリコン(Si)基板で、
このp形Si基板1は陽極領域を構成する。2はp
形Si基板1の主面上にエピタキシヤル成長させた
低不純物濃度のn-形エピタキシヤル成長半導体
層(以下「n-形エピタキシヤル層」と呼ぶ)、3
はn-形エピタキシヤル層2の表面部の一部にn
形不純物を高濃度に選択的に拡散することによつ
て形成された高不純物濃度のn+形陰極領域、4
はn+形陰極領域3との間に所定距離をおいてこ
れを取り囲んで、n-形エピタキシヤル層2に、
その表面からp形Si基板1に達するように、p形
不純物を高濃度に選択的に拡散することによつて
形成された1018〜1019/cm3程度の高不純物濃度の
p+形素子間分離層(以下「p+形分離層」と呼
ぶ)、5はn-形エピタキシヤル層2の表面上、p+
形分離層4の表面上、およびn+形陰極領域3の
表面上にわたつて形成された酸化ケイ素(SiO2
膜、6はp+形分離層4上のSiO2膜5に設けられ
たコンタクトホールを通してp+形分離層4に接
続された陽極電極、7はn+形陰極領域3上の
SiO2膜5に設けられたコンタクトホールを通し
てn+形陰極領域3に接続された陰極電極である。
In the figure, 1 is a p-type silicon (Si) substrate,
This p-type Si substrate 1 constitutes an anode region. 2 is p
A low impurity concentration n - type epitaxially grown semiconductor layer (hereinafter referred to as "n - type epitaxial layer") epitaxially grown on the main surface of a Si-type substrate 1;
is a part of the surface of the n -type epitaxial layer 2.
n + type cathode region with a high impurity concentration formed by selectively diffusing type impurities to a high concentration, 4
surrounds the n + type cathode region 3 with a predetermined distance therebetween, and forms the n - type epitaxial layer 2.
A layer with a high impurity concentration of about 10 18 to 10 19 /cm 3 is formed by selectively diffusing p-type impurities at a high concentration so as to reach the p-type Si substrate 1 from the surface.
p + type element isolation layer (hereinafter referred to as "p + type isolation layer"), 5 is a p + type on the surface of n - type epitaxial layer 2;
Silicon oxide (SiO 2 ) formed over the surface of the type separation layer 4 and the surface of the n + type cathode region 3
6 is an anode electrode connected to the p + type separation layer 4 through a contact hole provided in the SiO 2 film 5 on the p + type separation layer 4, and 7 is on the n + type cathode region 3.
This is a cathode electrode connected to the n + type cathode region 3 through a contact hole provided in the SiO 2 film 5.

このように構成されたダイオードにおいては、
p+形分離層4が素子間を充分電気的に分離する
ためには、このp+形分離層4とその両側に接す
るn-形エピタキシヤル層2との間で寄生のnpnト
ランジスタ動作を行なわないようにする必要性
と、n-形エピタキシヤル層2の厚さ以上のp形
不純物の拡散を行う必要性とから、p+形分離層
4の不純物濃度を1018〜1019/cm3程度の高不純物
濃度に設定する必要がある。また、例えば200V
以上の逆電圧強度があるようにするためには、
n-形エピタキシヤル層2の不純物濃度を低くし
て、p形Si基板1およびp+形分離層4から延びる
空乏層〔図示イおよびロ〕がn+形陰極領域3側
のn-形エピタキシヤル層2内へ充分拡がるよう
にする必要がある。ところがn-形エピタキシヤ
ル層2の厚さは、そのエピタキシヤル成長時に生
ずる欠陥、p+形分離層4の形成時における不純
物の拡散時間などの点から、薄い方が有利で、厚
くなる程製造が困難になる。一方、n-形エピタ
キシヤル層2の厚さが薄い場合には、次に述べる
ように、逆電圧強度が小さくなる。すなわち、陽
極電極6と陰極電極7との間に高い逆電圧が印加
されると、p形Si基板1からn+形陰極領域3の直
下のn-形エピタキシヤル層2内の部分へ延びる
空乏層イが、p+形分離層4からエピタキシヤル
層2内へその表面部に沿うて延びる空乏層ロよ
り、先にn+形陰極領域3に達するようになつて、
その直下のn-形エピタキシヤル層2内の部分に
パンチスルーが生じる。そうすると、このn+
陰極領域3の直下の部分に、電流が集中して流
れ、この集中電流を制限する高抵抗(低不純物濃
度)層が存在しないので、逆電圧が幅の狭い逆方
向サージ電圧であつても、この逆方向サージ電圧
によつて氷久破壊が生ずる。
In a diode configured in this way,
In order for the p + type isolation layer 4 to sufficiently electrically isolate the elements, a parasitic npn transistor operation must be performed between the p + type isolation layer 4 and the n - type epitaxial layer 2 in contact with both sides thereof. The impurity concentration of the p + type separation layer 4 is set to 10 18 to 10 19 /cm 3 due to the need to prevent the formation of p-type impurities and to diffuse the p - type impurity to a thickness greater than the thickness of the n - type epitaxial layer 2. It is necessary to set the impurity concentration to a certain level. Also, for example 200V
In order to have a reverse voltage strength of
The impurity concentration of the n - type epitaxial layer 2 is lowered so that the depletion layer [A and B shown in the figure] extending from the p type Si substrate 1 and the p + type separation layer 4 forms an n - type epitaxial layer on the n + type cathode region 3 side. It is necessary to ensure that it spreads sufficiently into the layer 2. However, the thinner the n - type epitaxial layer 2 is, the more advantageous it is from the viewpoint of defects that occur during epitaxial growth and the diffusion time of impurities during the formation of the p + type separation layer 4. becomes difficult. On the other hand, when the thickness of the n - type epitaxial layer 2 is thin, the reverse voltage intensity becomes small as described below. That is, when a high reverse voltage is applied between the anode electrode 6 and the cathode electrode 7, a depletion occurs extending from the p-type Si substrate 1 to the portion in the n - type epitaxial layer 2 directly under the n + type cathode region 3. The layer A reaches the n + type cathode region 3 earlier than the depletion layer b extending from the p + type isolation layer 4 into the epitaxial layer 2 along its surface,
Punch-through occurs in the portion within the n - type epitaxial layer 2 immediately below. Then, the current flows in a concentrated manner directly under this n + type cathode region 3, and since there is no high resistance (low impurity concentration) layer to limit this concentrated current, the reverse voltage is caused by a narrow reverse surge. Even if the voltage is low, this reverse surge voltage will cause ice damage.

この発明は、上述の欠点に鑑みてなされたもの
で、表面部の一部に高不純物濃度の主電極領域が
形成されこの主電極領域と同一伝導形の半導体層
の上記主電極領域の直下の部分よりも先に、上記
表面部に沿うてパンチスルーが生ずるようにする
とともに、このパンチスルーによつて上記主電極
領域へ流れる電流を制限する電流制限抵抗が上記
表面部に形成されるようにすることによつて、幅
の狭い逆方向サージ電圧によつて氷久破壊が生じ
ないような逆方向サージ電圧破壊強度の大きい半
導体装置を提供することを目的とする。
This invention was made in view of the above-mentioned drawbacks, and a main electrode region with a high impurity concentration is formed in a part of the surface portion, and a semiconductor layer of the same conductivity type as this main electrode region is directly below the main electrode region. A punch-through occurs along the surface portion before the punch-through, and a current limiting resistor is formed on the surface portion to limit the current flowing to the main electrode region due to the punch-through. By doing so, it is an object of the present invention to provide a semiconductor device which has a large reverse surge voltage breakdown strength and does not suffer from ice breakdown due to a narrow reverse surge voltage.

第2図AおよびBはそれぞれこの発明の一実施
例を示す断面図、およびその主要部の一部を断面
にして示す斜視図である。
FIGS. 2A and 2B are a cross-sectional view showing one embodiment of the present invention and a perspective view showing a part of its main part in cross-section, respectively.

図において、第1図の従来例に示した符号と同
一符号は同様のものを示す。8はn+形陰極領域
3とp+形分離層4との間にはさまれたn-形エピ
タキシヤル層2の表面部に、p+形分離層4との
間に第1の距離x1をおくとともにn+形陰極領域
3との間に第2の距離x2をおいてn+形陰極領域
3を取り囲んで設けられ幅wを有する高不純物濃
度のn+形中間層である。なお、上記距離x1が、
n+形陰極領域3の直下のn-形エピタキシヤル層
2の厚さtより小さくなるように設定されてい
る。
In the figure, the same reference numerals as those shown in the conventional example of FIG. 1 indicate the same things. 8 is a first distance x between the surface of the n - type epitaxial layer 2 sandwiched between the n + type cathode region 3 and the p + type separation layer 4 and the p + type separation layer 4. 1 and a second distance x 2 between the n + type cathode region 3 and the n + type cathode region 3, and having a width w and having a high impurity concentration. Note that the above distance x 1 is
It is set to be smaller than the thickness t of the n - type epitaxial layer 2 directly under the n + type cathode region 3 .

次に、この実施例の動作について説明する。 Next, the operation of this embodiment will be explained.

陽極電極6と陰極電極7との間に逆方向サージ
電圧が印加されると、まず、p+形分離層4から
n-形エピタキシヤル層2の表面部に沿うてn+
陰極領域3側へ延びる空乏層がn+形中間層8の
一部に達して、このn+形中間層8の部分とp+
分離層4との間のn-形エピタキシヤル層2の表
面部にパンチスルーが生ずる。そうすると、この
パンチスルーによつて上記n-形エピタキシヤル
層2の表面部を流れる電流は、上記n+形中間層
8の部分とn+形陰極領域3との間にはさまれた
n-形エピタキシヤル層2を経てn+形陰極領域3
に流れる。従つて、上記n+形中間層8の部分と
n+形陰極領域3との間にはさまれたn-形エピタ
キシヤル層2の抵抗が、上記パンチスルーによる
電流を制限する電流制限抵抗として動作するとと
もに、幅の狭い逆方向サージ電圧のエネルギーを
吸収するので、逆方向サージ電圧破壊強度を大き
くすることができ。この電流制限抵抗を充分大き
な値にするには、第2図Aに示した距離x2を大き
くするとともに、n+形中間層8の幅wを小さく
して、n+形陰極領域3のn-形エピタキシヤル層
2の表面に露出する露出面の囲りに沿う方向(第
2図Bに示すy方向)のn+形中間層8の抵抗を
大きくし、この抵抗によつてこのy方向へ上記パ
ンチスルーによる電流が拡がるのを制限するよう
にすればよい。
When a reverse surge voltage is applied between the anode electrode 6 and the cathode electrode 7, first, the p + type separation layer 4
A depletion layer extending along the surface of the n - type epitaxial layer 2 toward the n + type cathode region 3 side reaches a part of the n + type intermediate layer 8, and this part of the n + type intermediate layer 8 and the p + Punch-through occurs in the surface portion of the n - type epitaxial layer 2 between the type separation layer 4 and the n - type epitaxial layer 2 . Then, due to this punch-through, the current flowing through the surface of the n - type epitaxial layer 2 is sandwiched between the n + type intermediate layer 8 and the n + type cathode region 3.
n + type cathode region 3 via n - type epitaxial layer 2
flows to Therefore, the part of the n + type intermediate layer 8 and
The resistance of the n - type epitaxial layer 2 sandwiched between the n + type cathode region 3 acts as a current limiting resistance that limits the current due to the punch-through, and also reduces the energy of the narrow reverse surge voltage. , the reverse surge voltage breakdown strength can be increased. In order to make this current limiting resistance a sufficiently large value, increase the distance x 2 shown in FIG . The resistance of the n + type intermediate layer 8 in the direction along the circumference of the exposed surface exposed on the surface of the - type epitaxial layer 2 (the y direction shown in FIG. 2B) is increased, and this resistance increases the resistance in this y direction. What is necessary is to limit the spread of the current due to the punch-through.

一方、陽極電極6と陰極電極7との間に順電圧
を印加した場合には、n-形エピタキシヤル層2
の表面部に沿う抵抗は、上述の電流制限抵抗があ
るので、大きくなるが、n+形陰極領域3からそ
の直下のp形Si基板1へ順電流が主として流れる
ので、順方向の電圧降下は大きくならない。
On the other hand, when a forward voltage is applied between the anode electrode 6 and the cathode electrode 7, the n - type epitaxial layer 2
The resistance along the surface becomes large due to the above-mentioned current limiting resistance, but since the forward current mainly flows from the n + type cathode region 3 to the p-type Si substrate 1 directly below it, the voltage drop in the forward direction is It doesn't get bigger.

この実施例では、n+形陰極領域3のn-形エピ
タキシヤル層2の表面に露出する露出面の囲りに
沿う方向(図示y方向)にn+形中間層8を連続
して形成したが、必ずしもこれを連続して形成す
る必要がなく、第3図AまたはBにそれぞれ主要
部の一部を断面にして示す斜視図の他の実施例の
ように、n+形陰極領域3のn-エピタキシヤル層
2の表面に露出する露出面の囲りに沿う方向(図
示y方向)に互いに所定間隔を順次おいて角形状
の断面を有するn+形中間層8aまたは丸形状の
断面を有するn+形中間層8bを不連続に形成し
てもよい。これらの他の実施例では、上述のパン
チスルーによる電流が上記y方向へ拡がるのを一
層有効に制限することができる。
In this example, the n + type intermediate layer 8 was formed continuously in the direction (y direction in the figure) along the circumference of the exposed surface of the n - type epitaxial layer 2 of the n + type cathode region 3. However, it is not necessarily necessary to form this continuously, and as in other embodiments shown in FIGS. An n + -shaped intermediate layer 8a having a rectangular cross section or a round cross-section is sequentially spaced at a predetermined interval from each other in the direction along the circumference of the exposed surface exposed on the surface of the n - epitaxial layer 2 (the y direction in the figure). The n + -type intermediate layer 8b may be formed discontinuously. In these other embodiments, it is possible to more effectively restrict the spread of the current due to the punch-through in the y direction.

上記実施例において、n形領域をp形領域に
し、p形領域をn形領域にした場合にも、この発
明は適用できる。
In the above embodiments, the present invention can also be applied when the n-type region is replaced with a p-type region and the p-type region is replaced with an n-type region.

なお、これまで、バイポーラ形半導体集積回路
装置構成用のダイオード装置を例にとり述べた
が、この発明はこれに限らず、第1伝導形の半導
体基板の主面上に形成された第2伝導形の第1の
半導体層と、この第1の半導体層の表面部の一部
に形成された第2伝導形の主電極領域と、この主
電極領域との間に所定距離をおいてこれを取り囲
むように上記第1の半導体層内に設けられ上記半
導体基板と実質的に同電位にある第1伝導形の第
2の半導体層とを備えたその他の半導体装置にも
適用することができる。
Although a diode device for configuring a bipolar semiconductor integrated circuit device has been described as an example, the present invention is not limited to this. surrounding the first semiconductor layer with a predetermined distance between the main electrode region of the second conductivity type formed on a part of the surface of the first semiconductor layer, and the main electrode region. As such, the present invention can also be applied to other semiconductor devices including a second semiconductor layer of the first conductivity type provided within the first semiconductor layer and at substantially the same potential as the semiconductor substrate.

以上、説明したように、この発明の半導体装置
では、第1の主電極領域を構成する第1伝導形の
半導体基板の主面上に形成された低不純物濃度の
第2伝導形の第1の半導体層と、この第1の半導
体層の表面部の一部に形成された高不純物濃度の
第2伝導形の第2の主電極領域と、この第2の主
電極領域との間に第1の所定距離をおいてこれを
取り囲むように上記第1の半導体層内に設けられ
上記半導体基板と実質的に同電位にある第1伝導
形の第2の半導体層とを備えたものにおいて、上
記第2の主電極領域と上記第2の半導体層との間
にはさまれた上記第1の半導体層の表面部の上記
第2の主電極の周囲に、上記第2の半導体層との
間に第2の所定距離をおくとともに上記第2の主
電極領域との間に第3の所定距離をおいて第2伝
導形の第3の半導体層を設け、上記第2の所定距
離が上記第2の主電極領域と上記半導体基板との
間にはさまれた上記第1の半導体層の厚さより小
さくなるようにしたので、上記半導体基板と上記
第2の主電極領域との間に逆方向サージ電圧が印
加されたときに、上記第2の主電極領域と上記半
導体基板との間にはさまれた上記第1の半導体層
の部分よりも先に、上記第2の半導体層と上記第
3の半導体層との間にはさまれた上記第1の半導
体層の表面部に沿うてパンチスルーが生ずるよう
にすることができるとともに、上記第3の半導体
層と上記第2の主電極領域との間にはさまれた上
記第1の半導体層の抵抗が、上記パンチスルーに
よつて上記第2の主電極領域へ流れる電流を制限
する電流制限抵抗として動作する。従つて、逆方
向サージ電圧破壊強度を大きくすることができ
る。
As described above, in the semiconductor device of the present invention, the first semiconductor substrate of the second conductivity type with a low impurity concentration is formed on the main surface of the semiconductor substrate of the first conductivity type constituting the first main electrode region. A semiconductor layer, a second main electrode region of the second conductivity type with a high impurity concentration formed on a part of the surface of the first semiconductor layer, and a first main electrode region between the second main electrode region and the second main electrode region. a second semiconductor layer of a first conductivity type provided within the first semiconductor layer so as to surround it at a predetermined distance from the semiconductor substrate and having substantially the same potential as the semiconductor substrate; around the second main electrode on the surface portion of the first semiconductor layer sandwiched between the second main electrode region and the second semiconductor layer; A third semiconductor layer of the second conductivity type is provided with a second predetermined distance between the main electrode region and the second main electrode region, and a third semiconductor layer of the second conductivity type is provided with a second predetermined distance between the second main electrode region and the second main electrode region. Since the thickness of the first semiconductor layer sandwiched between the second main electrode region and the semiconductor substrate is smaller than the thickness of the first semiconductor layer sandwiched between the second main electrode region and the second main electrode region, When a surge voltage is applied, the second semiconductor layer and the first semiconductor layer are separated from each other before the portion of the first semiconductor layer sandwiched between the second main electrode region and the semiconductor substrate. Punch-through can be caused along the surface portion of the first semiconductor layer sandwiched between the third semiconductor layer and the second main electrode region. The resistor of the first semiconductor layer sandwiched between operates as a current limiting resistor that limits the current flowing to the second main electrode region due to the punch-through. Therefore, the reverse surge voltage breakdown strength can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバイポーラ形半導体集積回路装置構成
用の従来のダイオード装置の一例を示す断面図、
第2図AおよびBはそれぞれこの発明の一実施例
を示す断面図、およびその主要部の一部を断面に
して示す斜視図、第3図AおよびBはこの発明の
他の実施例を主要部の一部を断面にして示す斜視
図である。 図において、1はp形Si基板(第1伝導形の半
導体基板)、2はn-形エピタキシヤル層(第2伝
導形の第1の半導体層)、3はn+形陰極領域(第
2伝導形の第2の主電極領域)、4はp+形分離層
(第1伝導形の第2の半導体層)、8はn+形中間
層(第2伝導形の第3の半導体層)、x1は(第2
の所定距離)、x2は(第3の所定距離)である。
なお、図中同一符号はそれぞれ同一もしくは相当
部分を示す。
FIG. 1 is a cross-sectional view showing an example of a conventional diode device for configuring a bipolar semiconductor integrated circuit device;
Figures 2A and B are a sectional view and a perspective view, respectively, showing an embodiment of the present invention, and a perspective view of a part of the main part thereof, and Figures 3A and B are main views of another embodiment of the invention. It is a perspective view showing a part of the section in cross section. In the figure, 1 is a p-type Si substrate (first conductivity type semiconductor substrate), 2 is an n - type epitaxial layer (second conductivity type first semiconductor layer), and 3 is an n + type cathode region (second conductivity type). 4 is a p + type separation layer (second conduction type second semiconductor layer), 8 is an n + type intermediate layer (second conduction type third semiconductor layer) , x 1 is (second
(the third predetermined distance), x2 is (the third predetermined distance).
Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 第1伝導形の半導体基板で構成された第1の
主電極領域と、上記半導体基板の主面上に形成さ
れた低不純物濃度の第2伝導形の第1の半導体層
と、この第1の半導体層の表面部の一部に形成さ
れた高不純物濃度の第2伝導形の第2の主電極領
域と、この第2の主電極領域と離隔してこれを取
り囲むと共に上記第1の半導体層の表面から上記
半導体基板に達するように上記第1の半導体層内
に設けられ上記半導体基板と実質的に同電位にあ
る第1伝導形の第2の半導体層とを備えたものに
おいて、上記第2の主電極領域と上記第2の半導
体層との間にはさまれた上記第1の半導体層の表
面部の上記第2の主電極領域の周囲に上記第2の
半導体層との間に第1の距離をおくとともに上記
第2の主電極領域との間に第2の距離をおいて第
2伝導形の第3の半導体層を設け、上記第1の距
離が上記第2の主電極領域と上記半導体基板との
間にはさまれた上記第1の半導体層の厚さより小
さくなるようになし、上記第2の半導体層と第3
の半導体層との間に生じたパンチスルーおよび上
記第2の主電極領域と上記第3の半導体層との間
の抵抗により上記第2の主電極領域へ流れる電流
を制限するようにしたことを特徴とする半導体装
置。 2 第3の半導体層が第2の主電極領域の第1の
半導体層の表面に露出する露出面の周りに沿う方
向に連続して設けられたことを特徴とする特許請
求の範囲第1項記載の半導体装置。 3 第3の半導体層が第2の主電極領域の第1の
半導体層の表面に露出する露出面の周りに沿う方
向に互いに所定間隔を順次おいて不連続に設けら
れたことを特徴とする特許請求の範囲第1項記載
の半導体装置。
[Claims] 1. A first main electrode region formed of a semiconductor substrate of a first conductivity type, and a first semiconductor of a second conductivity type with a low impurity concentration formed on the main surface of the semiconductor substrate. a second main electrode region of a second conductivity type with a high impurity concentration formed on a part of the surface of the first semiconductor layer; and a second semiconductor layer of a first conductivity type provided within the first semiconductor layer so as to reach the semiconductor substrate from the surface of the first semiconductor layer and having substantially the same potential as the semiconductor substrate. In the device, the second main electrode region is provided around the second main electrode region on the surface portion of the first semiconductor layer sandwiched between the second main electrode region and the second semiconductor layer. A third semiconductor layer of a second conductivity type is provided with a first distance between the semiconductor layer and the second main electrode region, and a third semiconductor layer of the second conductivity type with a second distance between the third semiconductor layer and the second main electrode region; is smaller than the thickness of the first semiconductor layer sandwiched between the second main electrode region and the semiconductor substrate, and the thickness of the second semiconductor layer and the third semiconductor layer are
The current flowing to the second main electrode region is limited by the punch-through generated between the second main electrode region and the third semiconductor layer and the resistance between the second main electrode region and the third semiconductor layer. Characteristic semiconductor devices. 2. Claim 1, characterized in that the third semiconductor layer is provided continuously in the direction along the circumference of the exposed surface exposed on the surface of the first semiconductor layer in the second main electrode region. The semiconductor device described. 3. The third semiconductor layer is discontinuously provided at predetermined intervals in the direction along the circumference of the exposed surface of the first semiconductor layer in the second main electrode region. A semiconductor device according to claim 1.
JP2293780A 1980-02-25 1980-02-25 Semiconductor device Granted JPS56120169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293780A JPS56120169A (en) 1980-02-25 1980-02-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293780A JPS56120169A (en) 1980-02-25 1980-02-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS56120169A JPS56120169A (en) 1981-09-21
JPS6327865B2 true JPS6327865B2 (en) 1988-06-06

Family

ID=12096540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293780A Granted JPS56120169A (en) 1980-02-25 1980-02-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS56120169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191754A (en) * 1987-01-21 1988-08-09 日本テクトロン株式会社 Reagent container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673649A (en) * 1991-12-26 1994-03-15 Goosen:Kk Braid like yarn
JP4860146B2 (en) * 2004-12-24 2012-01-25 パナソニック株式会社 Surge protection semiconductor device
JP2014165317A (en) * 2013-02-25 2014-09-08 Toshiba Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108885A (en) * 1974-01-31 1975-08-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108885A (en) * 1974-01-31 1975-08-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191754A (en) * 1987-01-21 1988-08-09 日本テクトロン株式会社 Reagent container

Also Published As

Publication number Publication date
JPS56120169A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US5468654A (en) Method of manufacturing an insulated gate bipolar transistor
JPH04146674A (en) Semiconductor device and manufacture thereof
JPH04283968A (en) Insulating gate type bipolar transistor
JP3165480B2 (en) Turn-off thyristor
JP2001257366A (en) Semiconductor device
JPH0465552B2 (en)
JPH049378B2 (en)
EP0064614B1 (en) Improved emitter structure for semiconductor devices
JPS6327865B2 (en)
US3936856A (en) Space-charge-limited integrated circuit structure
JPH0888290A (en) Semiconductor device and using method therefor
JP2526960B2 (en) Conduction modulation type MOSFET
JPS584829B2 (en) semiconductor integrated circuit
JPS5916414B2 (en) semiconductor equipment
JPH0818075A (en) Schottky barrier diode and semiconductor integrated circuit
JP3128958B2 (en) Semiconductor integrated circuit
JP2000216381A (en) Field effect transistor
JP2916158B2 (en) Conduction modulation type MOSFET
JP3121537B2 (en) Semiconductor device
JPS621261B2 (en)
JPH06342903A (en) Lateral conductivity modulation mosfet
KR890004974B1 (en) Transistor
JPH0621344A (en) Semiconductor device
JPH02220445A (en) Semiconductor device
JPH0558256B2 (en)