JPS584829B2 - semiconductor integrated circuit - Google Patents
semiconductor integrated circuitInfo
- Publication number
- JPS584829B2 JPS584829B2 JP53036597A JP3659778A JPS584829B2 JP S584829 B2 JPS584829 B2 JP S584829B2 JP 53036597 A JP53036597 A JP 53036597A JP 3659778 A JP3659778 A JP 3659778A JP S584829 B2 JPS584829 B2 JP S584829B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- junction
- electrode
- integrated circuit
- semiconductor integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 22
- 230000015556 catabolic process Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
- H01L29/7436—Lateral thyristors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
- Thyristors (AREA)
- Element Separation (AREA)
Description
【発明の詳細な説明】
本発明は半導体集積回路、特に素子耐圧を高めたラテラ
ル型のサイリスタあるいはトランジスタなどの電極構造
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit, and particularly to an electrode structure of a lateral type thyristor or transistor with increased device breakdown voltage.
ラテラル型半導体素子とは、半導体素子を構成するpn
接合の全てが半導体基板の一主表面に終端し、各電極が
この主表面上にオーミツク接触され、主電流が横方向に
流れる半導体素子を云う。A lateral type semiconductor device is a pn that constitutes a semiconductor device.
A semiconductor device in which all of the junctions terminate on one main surface of a semiconductor substrate, each electrode is in ohmic contact with this main surface, and the main current flows laterally.
サイリスタは絶縁分離基板のうちの1個のn型導電性箪
結晶島領域中に構成される。The thyristor is constructed in an n-type conductive trench crystal island region of one of the insulating isolation substrates.
先ず、p型不純物を2個の領域に拡散し、PE領域、P
B領域を形成する。First, p-type impurities are diffused into two regions, PE region, P
Form B area.
更に、PB領域にn型不純物を拡散して、NE領域を形
成する。Furthermore, an n-type impurity is diffused into the PB region to form an NE region.
不純物が拡散されなかった領域をNB領域とすると、P
E−NB−PB−NEの4層でラテラル型サイリスタが
構成されることになる。If the region where impurities are not diffused is defined as the NB region, then P
A lateral type thyristor is composed of four layers: E-NB-PB-NE.
PE領域にはアノード電極、P領域にはゲート電極、N
E領域にはカソード電極が各々オーミツク接触される。The PE region has an anode electrode, the P region has a gate electrode, and the N
Each cathode electrode is in ohmic contact with the E region.
アノード電極を正、カソード電極を負とする順方向電圧
を加えた時、半導体素子の耐圧を決定るのは、NE領域
とPB領域によってできるpn接合J2であり、カソー
ド電極を正、アノード電極を負とする逆方向電圧を加え
た時、半導体素子の耐圧を決定するのはPE領域とNB
領域によってできるpn接合J1である。When a forward voltage is applied with the anode electrode being positive and the cathode electrode being negative, it is the pn junction J2 formed by the NE region and the PB region that determines the breakdown voltage of the semiconductor element, with the cathode electrode being positive and the anode electrode being negative. When a negative reverse voltage is applied, the PE region and NB determine the breakdown voltage of the semiconductor element.
This is a pn junction J1 formed by the region.
更に詳細に云えば両接合の両側にできる空間電荷領域に
よって決定される。More specifically, it is determined by the space charge regions formed on both sides of both junctions.
ラテラル型半導体素子では、pn接合はブレーナ構造を
採るので、耐圧は 接合終端部の表面安定化効果と半
導体素子内部における電界集中緩和効果を較べ、その効
果の小さい方によって決定される。In a lateral type semiconductor device, the pn junction has a Brehner structure, so the breakdown voltage is determined by comparing the surface stabilization effect at the junction termination and the electric field concentration relaxation effect inside the semiconductor device, whichever is smaller.
内部における電界集中緩和効果を増すためには、不純物
を深く拡散して、pn接合の曲率半径を太きくすればよ
いが、その場合拡散作業中に不純物は横方向にも拡散す
るので、不必要に半導体素子面積が大きくなる欠点があ
る。In order to increase the effect of mitigating electric field concentration inside, it is possible to increase the radius of curvature of the pn junction by diffusing the impurity deeply, but in that case, the impurity will also diffuse laterally during the diffusion process, making it unnecessary. However, the disadvantage is that the area of the semiconductor element becomes large.
それゆえ、本発明の目的は、深い拡散を行なうことなく
、高耐圧の半導体集積回路を提供するにある。Therefore, an object of the present invention is to provide a high breakdown voltage semiconductor integrated circuit without deep diffusion.
本発明では上記目的を達成するため、pn接合がプレー
ナ構造を採る半導体素子を構成する各領域にオーミツク
接触される電極をその電極が設けられる領域に隣接する
領域上にまで誘電体膜を介して延在させると共に、半導
体素子の耐圧を決めるpn接合の終端上を2個の電極が
延在する部分では、そのpn接合の終端する部分に対し
、両電極の僅少間隙を斜めに延在させ、かつ、その幅を
略一定にすることを特徴としている。In order to achieve the above object, in the present invention, an electrode that is in ohmic contact with each region constituting a semiconductor element in which a pn junction adopts a planar structure is placed over a region adjacent to the region where the electrode is provided, via a dielectric film. At the part where the two electrodes extend over the termination of the pn junction which determines the withstand voltage of the semiconductor element, a slight gap between the two electrodes is extended diagonally with respect to the termination part of the pn junction, Moreover, it is characterized in that its width is kept approximately constant.
以下、本発明を図面に示した実施例に従って説明する。Hereinafter, the present invention will be explained according to embodiments shown in the drawings.
第1図、第2図において、誘電体絶縁分離基板1は多結
晶半導体支持領域2に誘電体であるSiO2膜3を介し
て単結晶半導体島領域4を支持した構成をとっている。1 and 2, a dielectric insulating isolation substrate 1 has a structure in which a single crystal semiconductor island region 4 is supported in a polycrystalline semiconductor support region 2 via a dielectric SiO2 film 3.
皐領域4はn型導電性でp型不純物を2個の領域に拡散
して一方をP領域5、他方をPB領域6とし、PB領域
6にはn型不純物を更に拡散してNE領域7とする。The reed region 4 has n-type conductivity, and p-type impurities are diffused into two regions, one being a P region 5 and the other being a PB region 6, and the n-type impurity is further diffused into the PB region 6 to form an NE region 7. shall be.
p,n両型不純物が拡散されなかつたn型領域をNB領
域8とすると、PE,NB,PBおよびNEの各領域5
〜8によってラテラル型サイリスタが構成される。Assuming that the n-type region in which both p- and n-type impurities are not diffused is the NB region 8, each region of PE, NB, PB, and NE 5
~8 constitute a lateral type thyristor.
PEとNB,NBとPB,PBとNBの各領域が隣接し
て形成するpn接合J1〜J3は全て、島領域4の主表
面上に終端し、プレーナ構造となっている。The pn junctions J1 to J3 formed adjacent to each other by the regions PE and NB, NB and PB, and PB and NB all terminate on the main surface of the island region 4, and have a planar structure.
基板1の上面に表面安定化のための誘電体膜であるSi
02膜9が設けられている。A dielectric film of Si for surface stabilization is formed on the upper surface of the substrate 1.
02 film 9 is provided.
PF,PB,NEの各領域5〜7上のSi02膜9に窓
開がされ、ここから、アノード、ゲート、カソードの各
電極10〜12が各領域5〜7にオーミツク(低抵抗)
接触している。A window is opened in the Si02 film 9 on each region 5 to 7 of PF, PB, and NE, and from there, each electrode 10 to 12 of anode, gate, and cathode is ohmic (low resistance) to each region 5 to 7.
are in contact.
第1図では、オーミツク接触している領域をハツチング
して示している。In FIG. 1, areas in ohmic contact are shown by hatching.
ここで、アノード電極10は、Si02膜9を介してN
B領域8上に延在するように設けられる。Here, the anode electrode 10 is made of N through the Si02 film 9.
It is provided so as to extend over the B area 8.
また、ゲート電極11はSiO2膜9を介してNB領域
8上に延在するように形成され、カソード電極12はS
iO2膜9を介してPR領域6、NB領域8上に延在す
るように設けられるが、ゲート電極11とカソード電極
12との間は、電気的に絶縁する必要があるために、僅
少間隙13が設けられる。Further, the gate electrode 11 is formed to extend over the NB region 8 via the SiO2 film 9, and the cathode electrode 12 is formed as an S
Although it is provided so as to extend over the PR region 6 and NB region 8 via the iO2 film 9, there is a slight gap 13 between the gate electrode 11 and the cathode electrode 12 because it is necessary to electrically insulate them. is provided.
さらに、NB領域6のpn接合J2に近傍する領域上に
於けるゲート電極11とカソード電極12との僅少間隙
13はpn接合J2の終端する部分に対して、一定の傾
斜をもち、略平行となるように設けられる。Furthermore, the slight gap 13 between the gate electrode 11 and the cathode electrode 12 on the region near the pn junction J2 in the NB region 6 has a certain inclination and is approximately parallel to the terminating portion of the pn junction J2. It is set up so that
次に本発明の原理を説明する。Next, the principle of the present invention will be explained.
半導体集積回路に構成されるサイリスタはあまりに小型
であるので、ゲート・カンード電極11,12間に抵抗
を接続することによって、アノード・カソード電極10
,12間に加わることがある急峻な立ち上りパルスによ
ってpn接合J2に変位電流が流れ、誤点弧するレート
効果を抑え、dv/dt耐量の向上を図っている。Since the thyristor constructed in a semiconductor integrated circuit is too small, by connecting a resistor between the gate and canode electrodes 11 and 12, the anode and cathode electrodes 10
, 12, a displacement current flows through the pn junction J2 due to a steep rising pulse, which suppresses the rate effect of erroneous firing and improves the dv/dt tolerance.
アノード電極10とカソード電極12間に電圧が印加さ
れた場合、P 領域6の電位はゲート・カンード電極1
1.12間に接続されている上記抵抗によってNE領域
7と同電位となる。When a voltage is applied between the anode electrode 10 and the cathode electrode 12, the potential of the P region 6 is
The potential is the same as that of the NE region 7 due to the resistor connected between 1 and 12.
その結果、アノード電極10を正電位カソード電極12
を負電位とする電圧が印加された場合は、ゲート・カソ
ード電極11,12の電界効果によりNB領域8の表面
部に正電荷が発生し、pn接合J2の両側に生ずる空間
電荷領域のうち、NB領域8におけるものはゲート・カ
ソード両電極11,12の延在する部分にまで拡がる。As a result, the anode electrode 10 is changed to the positive potential cathode electrode 12.
When a voltage with a negative potential of The area in the NB region 8 extends to the areas where both the gate and cathode electrodes 11 and 12 extend.
また、アノード電極10を負電位、カソード電極12を
正電位とする電圧が加わった場合は、pn接合J1の両
側に生ずる空間電荷領域のうちNB領域8におけるもの
は、アノード電極10の電界効果によりアノード電極1
0の延在する部分にまで拡がる。Furthermore, when a voltage is applied that makes the anode electrode 10 a negative potential and the cathode electrode 12 a positive potential, the space charge region generated on both sides of the pn junction J1 in the NB region 8 is caused by the electric field effect of the anode electrode 10. Anode electrode 1
It extends to the part where 0 extends.
空間電荷領域が拡がることにより、空間電荷領域内の電
界は弱められ、なだれ降伏電圧は高くなる。By expanding the space charge region, the electric field within the space charge region is weakened and the avalanche breakdown voltage is increased.
従って、半導体素子の耐圧は高くなる。ところで、pn
接合J1の主表面に終端する全部分は、SiO2膜を介
してアノード電極10が延在し、アノード電極に覆われ
ているが、pn接合J2の主表面に終端する部分の一部
には、僅少間隙13が存在する。Therefore, the breakdown voltage of the semiconductor element becomes high. By the way, pn
The entire portion of the junction J1 that terminates on the main surface is covered with the anode electrode 10 extending through the SiO2 film, but a portion of the portion that terminates on the main surface of the p-n junction J2 includes: A slight gap 13 exists.
これは、PB領域6、N領域7からゲート電極11、カ
ソード電極12を互いに電気的に絶縁する必要があるた
めで、この僅少間隙13の部分では、空間電荷領域が拡
がらず、耐圧はpn接合J1より低くなる。This is because it is necessary to electrically insulate the gate electrode 11 and cathode electrode 12 from each other from the PB region 6 and N region 7, and in this small gap 13, the space charge region does not expand, and the breakdown voltage of the pn It becomes lower than junction J1.
そこで、本発明では第1図に示した実施例のように、N
B領域6の主表面上の僅少間隙13は、その幅が略一定
で、かつ、pn接合J2の主表面に終端する部分に対し
て一定の傾斜をもつように設ける。Therefore, in the present invention, as in the embodiment shown in FIG.
The slight gap 13 on the main surface of region B 6 is provided so that its width is substantially constant and has a constant slope with respect to the portion terminating on the main surface of pn junction J2.
第3図は、僅少間隙13をpn接合J2の主表面に終端
する部分に対して垂直に設ける場合(第3図a)と、本
発明の実施例のように一定の傾斜をもつ様に設ける場合
(第3図b)とに於ける空間電荷領域14の拡がりを示
す拡大図である。FIG. 3 shows a case in which the slight gap 13 is provided perpendicularly to the portion terminating on the main surface of the p-n junction J2 (FIG. 3a), and a case in which it is provided with a constant inclination as in the embodiment of the present invention. FIG. 3 is an enlarged view showing the spread of the space charge region 14 in the case (FIG. 3b).
第3図aでは、僅少間隙13の部分の空間電荷領域14
は拡がりが少ないが、第3図bに示す本発明の実施例に
於いては、ゲート電極11、カソード電極12のBに示
す部分の電界効果により僅少間隙13の部分の空間電荷
領域14が第3図aに比べて拡がる。In FIG. 3a, the space charge region 14 in the part of the small gap 13
However, in the example of the present invention shown in FIG. It is expanded compared to Figure 3a.
従って、本実施例によればゲート電極11、カソード電
極12間に、僅少間隙13が設けられていても、僅少間
隙13の部分の空間電荷領域14は充分に延び、半導体
素子の耐圧は充分向上させることができる。Therefore, according to this embodiment, even if a small gap 13 is provided between the gate electrode 11 and the cathode electrode 12, the space charge region 14 in the small gap 13 is sufficiently extended, and the breakdown voltage of the semiconductor device is sufficiently improved. can be done.
本発明は実施例に挙げたサイリスタに限らず、トランジ
スタなどにも適用できるものである。The present invention is applicable not only to the thyristors mentioned in the embodiments but also to transistors and the like.
また、絶縁分離基板についても、誘電体分離型に限らず
、pn接合分離型などにおいても適用できる。Furthermore, the insulating separation substrate is not limited to a dielectric separation type, but can also be applied to a pn junction separation type.
以上述べた様に、本発明によれば、高耐圧の半導体集積
回路を得ることができる。As described above, according to the present invention, a semiconductor integrated circuit with high breakdown voltage can be obtained.
第1図は本発明の一実施例を示す半導体集積回路の平面
図、第2図は第1図の■一■切断線に沿った縦断面図、
第3図は第1図に示す一実施例の空間電荷領域の拡がり
を示す拡大図である。
5・・・PE,領域、6・・・PR領域、7・・・N領
域、8・・・N 領域、9・・・誘電体膜、10・・・
アノード電極、11・・・ゲート電極、12・・・カソ
ード電極、13・・・僅少間隙、14・・・空間電荷領
域。FIG. 1 is a plan view of a semiconductor integrated circuit showing an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view taken along the cutting line
FIG. 3 is an enlarged view showing the spread of the space charge region of the embodiment shown in FIG. 1. FIG. 5... PE region, 6... PR region, 7... N region, 8... N region, 9... dielectric film, 10...
Anode electrode, 11... Gate electrode, 12... Cathode electrode, 13... Slight gap, 14... Space charge region.
Claims (1)
露出する第1導電型の第1の領域、上記第1の領域との
間に形成される第1のpn接合が上記一方の主表面に終
端するように上記第1の領域内に形成される第2導電型
の第2の領域、上記第2の領域との間に形成される第2
のpn接合が上記一方の主表面に終端するように上記第
2の領域内に形成される第1導電型の第3の領域、を有
する半導体基体と、上記一方の主表面に於いて上記第2
の領域に低抵抗接触し、かつ誘電体膜を介して少なくと
も上記第1の領域上に延在するように形成される第1の
電極と、上記一方の主表面に於いて上記第3の領域に低
抵抗接触し、かつ誘電体膜を介して上記第2の領域を越
えて上記第1の領域上に延在するように形成される第2
の電極とを有し、上記第1の電極及び第2の電極のうち
いずれか一方が他方を略包囲するように誘電体膜を介し
て上記第1のpn接合終端部上に延在し、上記第1の電
極と上記第2の電極とは、上記第10のpn接合終端部
上からそれに隣接する上記第1の領域の上記第1のpn
接合に近傍する領域上に於いてそれぞれの対向面が上記
第1のpn接合終端部と一定の傾斜をもち、略平行な僅
少間隙を介して面していることを特徴とする半導体集積
回路。1 has a pair of main surfaces, a first region of a first conductivity type exposed on one of the main surfaces, and a first pn junction formed between the first region and the first region. a second region of a second conductivity type formed within the first region so as to terminate on one main surface; a second region formed between the second region and the second region;
a third region of the first conductivity type formed in the second region such that the pn junction terminates on the one main surface; 2
a first electrode formed in low resistance contact with the region and extending at least over the first region via a dielectric film; a second region formed so as to be in low resistance contact with the first region and to extend over the first region beyond the second region via a dielectric film.
one of the first electrode and the second electrode extends over the first pn junction termination portion via a dielectric film so as to substantially surround the other; The first electrode and the second electrode are connected to the first pn in the first region from above the tenth pn junction termination portion to adjacent thereto.
1. A semiconductor integrated circuit, wherein each opposing surface has a certain inclination with the first pn junction termination portion on a region near the junction, and faces the first pn junction terminal portion with a slight gap therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53036597A JPS584829B2 (en) | 1978-03-31 | 1978-03-31 | semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53036597A JPS584829B2 (en) | 1978-03-31 | 1978-03-31 | semiconductor integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54129887A JPS54129887A (en) | 1979-10-08 |
JPS584829B2 true JPS584829B2 (en) | 1983-01-27 |
Family
ID=12474187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53036597A Expired JPS584829B2 (en) | 1978-03-31 | 1978-03-31 | semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS584829B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054849U (en) * | 1983-09-21 | 1985-04-17 | 株式会社シマノ | free wheel |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753944A (en) * | 1980-09-17 | 1982-03-31 | Hitachi Ltd | Semiconductor integrated circuit |
JPS58153367A (en) * | 1982-03-05 | 1983-09-12 | Hitachi Ltd | Planar type semiconductor device |
JPS5939066A (en) * | 1982-08-27 | 1984-03-03 | Hitachi Ltd | Semiconductor integrated circuit |
JP2782758B2 (en) * | 1989-02-17 | 1998-08-06 | 日本電気株式会社 | Semiconductor integrated circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144885A (en) * | 1974-10-16 | 1976-04-16 | Hitachi Ltd | HANDOTAISH USEKAIRO |
JPS5199478A (en) * | 1975-02-28 | 1976-09-02 | Hitachi Ltd | HANDOTAISH USEKAIRO |
-
1978
- 1978-03-31 JP JP53036597A patent/JPS584829B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144885A (en) * | 1974-10-16 | 1976-04-16 | Hitachi Ltd | HANDOTAISH USEKAIRO |
JPS5199478A (en) * | 1975-02-28 | 1976-09-02 | Hitachi Ltd | HANDOTAISH USEKAIRO |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054849U (en) * | 1983-09-21 | 1985-04-17 | 株式会社シマノ | free wheel |
Also Published As
Publication number | Publication date |
---|---|
JPS54129887A (en) | 1979-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3911566B2 (en) | MOS type semiconductor device | |
US4686551A (en) | MOS transistor | |
JPH0563949B2 (en) | ||
JPH0457111B2 (en) | ||
JPH07115189A (en) | Insulated gate type bipolar transistor | |
JP2862027B2 (en) | Insulated gate bipolar transistor | |
JPH0715006A (en) | Integrated structure protective device | |
EP0071335B1 (en) | Field effect transistor | |
US5691555A (en) | Integrated structure current sensing resistor for power devices particularly for overload self-protected power MOS devices | |
JP2950025B2 (en) | Insulated gate bipolar transistor | |
EP0625797B1 (en) | Integrated structure current sensing resistor for power MOS devices, particularly for overload self-protected power MOS devices | |
JPH0332234B2 (en) | ||
JPS584829B2 (en) | semiconductor integrated circuit | |
JP2808871B2 (en) | Method for manufacturing MOS type semiconductor device | |
JPH058582B2 (en) | ||
JPH08130318A (en) | High breakdown strength diode and its manufacture | |
JPH0612823B2 (en) | Bidirectional power high speed MOSFET device | |
US5281832A (en) | Bidirectional two-terminal thyristor | |
JPH0758228A (en) | Integrated device | |
JPH0888290A (en) | Semiconductor device and using method therefor | |
JPH0974187A (en) | High withstand voltage lateral type semiconductor device | |
JPS6321347B2 (en) | ||
JPS6327865B2 (en) | ||
JPH04192366A (en) | Semiconductor device | |
JPS5831570A (en) | Semiconductor device |