JPS5831570A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5831570A
JPS5831570A JP12933681A JP12933681A JPS5831570A JP S5831570 A JPS5831570 A JP S5831570A JP 12933681 A JP12933681 A JP 12933681A JP 12933681 A JP12933681 A JP 12933681A JP S5831570 A JPS5831570 A JP S5831570A
Authority
JP
Japan
Prior art keywords
region
elements
semiconductor device
film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12933681A
Other languages
Japanese (ja)
Inventor
Homare Matsumura
松村 誉
Kenji Maeguchi
前口 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12933681A priority Critical patent/JPS5831570A/en
Publication of JPS5831570A publication Critical patent/JPS5831570A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

PURPOSE:To obtain a semiconductor device in which elements are isolated without decreasing the performance of the elements by providing an insulating layer containing charge for depleting the other conductive type impurity region of low density on the surface of an element isolating region. CONSTITUTION:An isolated p type region 28 and a thick insulating film 29 formed on the surface of the region 28 are formed. The boundary region of the element of the isolating region is formed particularly with a p<+> type region 30 of high density, and surrounds the element. In the film 29, positive ions of silicon or argon are implanted to include the positive charge therein, thereby completely depleting a p- type region 28 directly under it. In this manner, in the SOS structure of this embodiment, the isolation between the elements is complete, and no abnormality in the characteristics occur due to the improper gate withstand voltage and parasitic transistor. Since high temperature and long time heat treatment is not necessary, the leakage current between the source and the drain is not increased.

Description

【発明の詳細な説明】 本発明は半導体装置に係り、とくに絶縁基板上に設けら
れた半導体層に素子を形成する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device in which elements are formed in a semiconductor layer provided on an insulating substrate.

絶縁基板上に半導体単結晶薄膜を設けて、ここに素子を
形成する技術は1例えばg O8(5iliconOn
 8apphire )技術として実用化され注目を集
めている。
A technique for forming a semiconductor single crystal thin film on an insulating substrate and forming an element thereon is, for example, gO8 (5iliconOn).
8apphire) technology has been put into practical use and is attracting attention.

このような技術を用いた従来の装置を図面を用いて説明
する。
A conventional device using such technology will be explained with reference to the drawings.

is1図ta)は従来の装置の#面図であり、第1図(
b)はその人−λ線に沿った1llr面図を示すもので
ある。サファイア基板1上に2つのMOB@Nチ“ヤン
ネルトランジスタ素子T1.T、が形成されている。お
のおののトランジスタはサファイア基板1上に0.4〜
1.OJIIm成長させたP形シリコン単結晶膜2にソ
ース、ドレイン領域としてN形不純#IIJvs域3.
4が形成され、ソース、ドレイン間のチャンネル領域5
上にゲート酸化膜6とゲート電極7が設けられ九構成に
なっている。
is1 Figure ta) is a # side view of the conventional device, and Figure 1 (
b) shows a 1llr plane view along the person-λ line. Two MOB@N channel transistor elements T1.T are formed on the sapphire substrate 1.
1. N-type impurity #IIJvs region 3. is added to the OJIIm grown P-type silicon single crystal film 2 as source and drain regions.
4 is formed, and a channel region 5 between the source and drain is formed.
A gate oxide film 6 and a gate electrode 7 are provided thereon, resulting in a nine-structure structure.

これらの2つのトランジスタT1とT2は、シリコン4
L結晶12が空間的に分離されることによって、素子分
離されている。しかしこのような構造にすると第11山
)のようにゲート電極7は、シリコン単結晶膜2の@面
上を遣って絶縁膜1上に降りてから他との配線を行なう
ことになる。ところが、この単結晶−2の111面上に
は酸化膜ができにくいため、この部分でゲート電極とシ
リコン埜結晶膜2のP影領域との間のゲート耐圧が低く
なるという欠点が生じヤすい。また、この側面上で余分
なチャンネルが生じて、寄生riosトランジスタが形
成され電流電圧特性に異常をきたすという欠点もあった
These two transistors T1 and T2 are made of silicon 4
By spatially separating the L crystals 12, elements are separated. However, if such a structure is adopted, the gate electrode 7, as indicated by the eleventh peak), will descend onto the insulating film 1 using the @ plane of the silicon single crystal film 2, and then be interconnected with other parts. However, since it is difficult to form an oxide film on the 111 plane of this single crystal -2, the gate breakdown voltage between the gate electrode and the P shadow region of the silicon crystal film 2 tends to be low in this area. . In addition, there is also the drawback that an extra channel is generated on this side surface, forming a parasitic rios transistor and causing abnormal current-voltage characteristics.

また第2図に示すような構造も従来用いられていた。サ
ファイア基1[11上にP形シリコン単結晶膜12が形
成されている。このP形単結晶膜12にはN形不純**
域13.11>1形成サレ、MOSトランジスタのソー
ス・ドレイン領域となっている。また、このソース・ド
レイン間のチャンネル領域15上に、ゲート酸化膜16
が形成され、その酸化膜16上にはゲート電極17が形
成されている。このような構造の隣接する2つのMO8
トランジスタT□1とT11間は、Sム02膜18によ
って分離されている。
Furthermore, a structure as shown in FIG. 2 has also been conventionally used. A P-type silicon single crystal film 12 is formed on the sapphire base 1 [11]. This P-type single crystal film 12 has N-type impurity**
Area 13.11>1 is formed as the source/drain region of the MOS transistor. Further, a gate oxide film 16 is formed on the channel region 15 between the source and drain.
is formed, and a gate electrode 17 is formed on the oxide film 16. Two adjacent MO8s with such a structure
Transistors T□1 and T11 are separated by an Smu02 film 18.

このような構造では、前述した従来例のような欠点はな
いが1次のような別の欠点を生じる。
Although such a structure does not have the drawbacks of the conventional example described above, it does have other drawbacks such as linearity.

すなわち、この分離用の8io、膜18は熱酸化法によ
って形成されるが、この際に長時間高温の熱処理工程を
経る。ところがこの熱処理によって、ソース暢ドレイン
間のリーク電流が増大する結果となり、素子の性能の低
下をもたらすことが多い。
That is, this isolation film 18 is formed by a thermal oxidation method, and at this time a long-time high-temperature heat treatment step is performed. However, this heat treatment often results in an increase in leakage current between the source and the drain, resulting in a decrease in device performance.

本発明は以上のような従来装置の欠点を改善し、素子の
性能を低下させることなく素子が分離形成された半導体
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of conventional devices and to provide a semiconductor device in which elements are formed separately without deteriorating the performance of the elements.

本発明を以下に説明する。第3図(a)乃至(b)は、
一実施例を示す断面図と、その部分的な平面図である。
The invention will now be described. FIGS. 3(a) and 3(b) are
FIG. 2 is a cross-sectional view and a partial plan view of one embodiment.

サファイア基板21上に低#度P形シリコン単結晶膜2
2が気相成長法により形成され、この琳結晶膜上に2つ
のMO8型トランジスタT2.。
Low # degree P type silicon single crystal film 2 on sapphire substrate 21
2 is formed by a vapor phase growth method, and two MO8 type transistors T2.2 are formed on this phosphor crystal film. .

T2□が形成されている。この単結晶膜22の素子形成
部分は、MOSトランジスタのソース・ドレインとなる
リンを拡散した高AIf N型拡散譲域23.24とチ
ャンネル領域25からなろうこのチャンネル領域25上
に810□ゲート酸化嗅26とその上にアルミニウムゲ
ート電極27が形成されている。この素子と隣接する素
子との間の分離領域は、同じ低濃度P’杉シリコン檗結
晶lil!22で形成されている。
T2□ is formed. The element forming portion of this single crystal film 22 consists of a high AIf N-type diffusion zone 23, 24 in which phosphorus is diffused and which becomes the source and drain of the MOS transistor, and a channel region 25. On this channel region 25, 810□ gate oxide is formed. A probe 26 and an aluminum gate electrode 27 are formed thereon. The isolation region between this element and the adjacent element is the same low concentration P' cedar silicon cylindrical lil! It is formed of 22.

そして分離領域はP−影領域28とその表面上に形成さ
れた厚い絶縁膜29とからなる。さらにこの外−領域の
うちで、素子との境界領域はとくに高濃度のp+m頭域
3oが形成されており、素子の周囲を囲んでいる。また
、絶縁膜29中には、シリコンあるいはアルゴンなどの
正イオンをイオン注入し正電荷を含ませてあり、これに
よりその真下のp−m*穢28が完全に空乏層化されて
いる。
The isolation region consists of a P-shadow region 28 and a thick insulating film 29 formed on its surface. Further, in this outer region, a particularly high concentration p+m head region 3o is formed in the boundary region with the element, which surrounds the element. Further, positive ions such as silicon or argon are implanted into the insulating film 29 to contain a positive charge, so that the p-m* impurity 28 directly below the insulating film 29 is completely depleted.

一般に絶縁膜と半導体層からなる二層構造の場合、絶縁
膜と半導体層との界面近くの絶縁膜中に含まれる電荷密
度Nox(、/sf )とその下の不純物濃度C8(/
d)の半導体層に生じる空乏t11の深さdl、1〕に
はN=dXC8の関係がある。例えば、x 絶縁膜中の電荷密It 5 X 10” /d、P−1
[領域28のアクセプタl1lf 5 X 10”/−
とすると、このP−m領域28の膜厚が1mm以下であ
れば完全に空乏層化できる。
In general, in the case of a two-layer structure consisting of an insulating film and a semiconductor layer, the charge density Nox (,/sf ) contained in the insulating film near the interface between the insulating film and the semiconductor layer and the impurity concentration C8 (/sf ) below it
The depth dl,1] of the depletion t11 generated in the semiconductor layer d) has the relationship N=dXC8. For example, x charge density in the insulating film It 5 X 10”/d, P-1
[Acceptor of area 28 l1lf 5 X 10”/-
If this P-m region 28 has a thickness of 1 mm or less, it can be completely depleted.

P−型分燗領域が空乏層化されていない場合の構造は、
分1111域にシリコン層が残っているために、本来の
SO8構造の利点である配線浮遊各1が少なく高速動作
ができるということを損う恐れがあった。しかし本実施
例ではこのシリコン層22は完全に空乏層化されている
ために、配線と基板間の容量は、絶縁模、空乏層絶縁基
板で分割され、実質的には増えない。またこのような構
造J)問題として、配線Fのシリコン層22の表面が反
転して素子分離を不児全にするという恐れがあったが。
The structure when the P-type separation region is not depleted is as follows:
Since the silicon layer remains in the 1111 region, there is a risk that the original advantage of the SO8 structure, which is that there are fewer floating interconnections and that high-speed operation is possible, will be impaired. However, in this embodiment, since the silicon layer 22 is completely depleted, the capacitance between the wiring and the substrate is divided by the insulating layer and the depletion layer insulating substrate, and does not substantially increase. Another problem with such a structure (J) is that the surface of the silicon layer 22 of the wiring F may be reversed, resulting in poor element isolation.

本実施例では高濃度P+型領域30が素子の周囲を囲ん
でいるために素子間でチャンネルが形成されることはな
い、このチャンネルストッパートシテのピ型領域30は
サファイア基板21表面まで達している必要はなく、シ
リコン単結晶膜22の表面部分のみでも十分である、 このように、本実施例の808 iIf造では、素子間
の分離は完全であることはもちろん、従来のように、ゲ
ート耐圧の不良や、寄生のトランジスタによる特性異常
が生じることはない。また高温。
In this embodiment, since the high concentration P+ type region 30 surrounds the device, no channel is formed between the devices.The P type region 30 of the channel stopper reaches the surface of the sapphire substrate 21. It is not necessary, and only the surface portion of the silicon single crystal film 22 is sufficient. In this way, in the 808 iIf structure of this embodiment, not only is the isolation between elements perfect, but the gate breakdown voltage is There will be no defects or characteristic abnormalities due to parasitic transistors. High temperature again.

長時間の熱処理も必要ないためにソース・ドレイン間の
リーク−1111Lが増大する恐れもない1.この上う
に本発明によれば、素子の性能を劣化させることなく素
子分−が完全に行なえる半導体装litを漫供すること
ができる。尚1分@領域のシリコン1−を空乏層化させ
る九めにその表面の絶縁膜に打ち込む正イオンはシリコ
ンやアルゴンに限らず他の正イオンでもよい1.あるい
は、絶縁膜中に不純物を添加してもよいし、構造的欠陥
を発生させてもよい。まえ本実施例はNチャンネルのM
OS)ランジスタであったが、Pチャンネルにも適用で
きることはいうまでもな(、CMO8構造も可能である
1. There is no need for long-term heat treatment, so there is no risk of an increase in leakage between the source and drain.1. Moreover, according to the present invention, it is possible to provide a semiconductor device LIT in which element separation can be performed completely without deteriorating the performance of the element. Note that the positive ions implanted into the insulating film on the surface of the silicon 1- region for 1 minute to form a depletion layer are not limited to silicon or argon, but may be other positive ions.1. Alternatively, impurities may be added to the insulating film, or structural defects may be generated. In this example, N-channel M
OS) transistor, but it goes without saying that it can also be applied to a P channel (a CMO8 structure is also possible).

【図面の簡単な説明】[Brief explanation of the drawing]

謔1図talは、従来の半導体装置の断面図、第1図(
b)は第1図13)のA−A線に沿った断面図、第2図
は、従来の半導体装置の断面図、嬉3図(a)、 (b
)は本発明の半導体装置の断面図及び平面図である。 21・・・絶縁基体 23・・・ソース領域 24・・・ドレイン領域 22・・・チャンネル領域 28・・・末子分離P−型領領 域9・・・絶縁膜 代理人 弁理士  則 近 憲 佑(ほか1名)妬7図
Figure 1 is a cross-sectional view of a conventional semiconductor device.
b) is a sectional view taken along line A-A in Fig. 1 (13), Fig. 2 is a sectional view of a conventional semiconductor device, and Fig. 3 (a), (b)
) are a cross-sectional view and a plan view of a semiconductor device of the present invention. 21...Insulating substrate 23...Source region 24...Drain region 22...Channel region 28...Last son isolated P-type region 9...Insulating film agent Patent attorney Noriyuki Chika ( 1 other person) Envy 7

Claims (1)

【特許請求の範囲】[Claims] 絶縁基体と、この基体上に形成された複数の素子領域と
素子分離領域からなる半導体層を有し、前記素子領域が
複数の一導電形不純物領域とこれらに挾まれたチャンネ
ル領域から構成され、前記素子分離−城が主に低濃度の
他導電形不純物領域から構成され、m紀素子領域との境
界部分に高濃度の他導電形不純物領域が形成されてお妙
、前記素子分離領域表面上に前記低濃度の他導電形不純
物領域を空乏層化できるような電荷を含んだ絶縁層を有
することを4I微とする半導体装置。
A semiconductor layer comprising an insulating base and a plurality of element regions and an element isolation region formed on the base, the element region comprising a plurality of impurity regions of one conductivity type and a channel region sandwiched therebetween, The element isolation region is mainly composed of a low concentration impurity region of another conductivity type, and a high concentration impurity region of another conductivity type is formed at the boundary with the m-th generation element region. A semiconductor device characterized in that the semiconductor device further comprises an insulating layer containing charges such that the low concentration impurity region of another conductivity type can be made into a depletion layer.
JP12933681A 1981-08-20 1981-08-20 Semiconductor device Pending JPS5831570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12933681A JPS5831570A (en) 1981-08-20 1981-08-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12933681A JPS5831570A (en) 1981-08-20 1981-08-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5831570A true JPS5831570A (en) 1983-02-24

Family

ID=15007082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12933681A Pending JPS5831570A (en) 1981-08-20 1981-08-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5831570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005780A (en) * 2005-05-26 2007-01-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2007318110A (en) * 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for fabricating semiconductor device
US8809862B2 (en) 2005-05-26 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2022177013A (en) * 2011-11-11 2022-11-30 株式会社半導体エネルギー研究所 Light-emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005780A (en) * 2005-05-26 2007-01-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US8809862B2 (en) 2005-05-26 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US9373723B2 (en) 2005-05-26 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2007318110A (en) * 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for fabricating semiconductor device
JP2022177013A (en) * 2011-11-11 2022-11-30 株式会社半導体エネルギー研究所 Light-emitting device

Similar Documents

Publication Publication Date Title
JP2950025B2 (en) Insulated gate bipolar transistor
JPS5831570A (en) Semiconductor device
JPS584829B2 (en) semiconductor integrated circuit
JPH0740607B2 (en) Method of manufacturing thin film transistor
JPS5834943A (en) Semiconductor device and manufacture thereof
JP2712098B2 (en) Semiconductor device
JPH07221116A (en) Transistor
JPH0346980B2 (en)
JPS6327865B2 (en)
JPS6243167A (en) Mesa type semiconductor device
EP0851487A1 (en) Antimony-phosphor buried layer for a MOs FET or like semiconductor device, and method of fabrication
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPS6394667A (en) Semiconductor integrated circuit
JP2663668B2 (en) Power MOSFET structure
JPS6022358A (en) Semiconductor integrated circuit device
JPH09172189A (en) Semiconductor substrate and high breakdown voltage semiconductor device using the substrate
JPH03155659A (en) Semiconductor device
JPS5980970A (en) V-groove mos type field-effect transistor
JP2682231B2 (en) Semiconductor device
JP3233002B2 (en) Field effect transistor
JPH0516196B2 (en)
JPS59155178A (en) Semiconductor device with schottky barrier diode
JPS61289667A (en) Semiconductor device and manufacture thereof
JPS6235535A (en) Semiconductor device
JPS6196757A (en) Semiconductor device