JP2000216381A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2000216381A
JP2000216381A JP11013919A JP1391999A JP2000216381A JP 2000216381 A JP2000216381 A JP 2000216381A JP 11013919 A JP11013919 A JP 11013919A JP 1391999 A JP1391999 A JP 1391999A JP 2000216381 A JP2000216381 A JP 2000216381A
Authority
JP
Japan
Prior art keywords
region
effect transistor
insulating film
band gap
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11013919A
Other languages
Japanese (ja)
Inventor
Masakatsu Hoshi
星  正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11013919A priority Critical patent/JP2000216381A/en
Publication of JP2000216381A publication Critical patent/JP2000216381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a drain breakdown voltage, simplify process, and lower channel resistance. SOLUTION: An epitaxial region 220 comprising an N-type SiC is formed on a wide-band gap semiconductor wafer 210 comprising an N+-type SiC, a channel region 230 comprising an N-type SiC and a source region 240 comprising an N+-type SiC are laminated and formed on an epitaxial region 220, a plurality of grooves 250 which reach the epitaxial region 220 are formed on a prescribed region on the main side of the epitaxial region 220, a semiconductor region 260 comprising a P-type SiC is formed on an adjacent section of the groove 250, a gate electrode 280 is formed in the groove 250 via a gate insulating film 270, a source electrode 300 is formed insulated from the gate electrode 280 by an interlayer insulating film 290, and a drain electrode 310 is formed on the backside of the wide-band gap semiconductor wafer 210.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はSi(珪素)よりバ
ンドギャップの広いSiC(炭化珪素)等の半導体から
なるワイドバンドギャップ半導体基板を有するパワーM
OSFET等の電界効果トランジスタに関するものであ
る。
The present invention relates to a power M having a wide band gap semiconductor substrate made of a semiconductor such as SiC (silicon carbide) having a wider band gap than Si (silicon).
It relates to a field effect transistor such as an OSFET.

【0002】[0002]

【従来の技術】図7は従来の電界効果トランジスタ(特
開平9−74191号公報)を示す断面図である。図に
示すように、高濃度N+型SiCからなるワイドバンド
ギャップ半導体基板10上にN型SiCからなるエピタ
キシャル領域20が形成され、エピタキシャル領域20
上にP型SiCからなるエピタキシャル領域60が形成
され、エピタキシャル領域60内に溝50およびN+
SiCからなるソース領域40が形成され、溝50の側
壁にN型SiCからなるチャンネル領域30が形成さ
れ、溝50内にゲート絶縁膜70を介してゲート電極8
0が形成されている。また、層間絶縁膜90によりゲー
ト電極80と絶縁されてソース領域40に接続されたソ
ース電極100が形成され、ワイドバンドギャップ半導
体基板10の裏面にドレイン電極110が形成されてい
る。
2. Description of the Related Art FIG. 7 is a sectional view showing a conventional field effect transistor (Japanese Patent Application Laid-Open No. 9-74191). As shown in the figure, an epitaxial region 20 made of N-type SiC is formed on a wide band gap semiconductor substrate 10 made of high-concentration N + -type SiC.
An epitaxial region 60 made of P-type SiC is formed thereon, a groove 50 and a source region 40 made of N + -type SiC are formed in the epitaxial region 60, and a channel region 30 made of N-type SiC is formed on the side wall of the groove 50. The gate electrode 8 is formed in the trench 50 via the gate insulating film 70.
0 is formed. Further, a source electrode 100 connected to the source region 40 while being insulated from the gate electrode 80 by the interlayer insulating film 90 is formed, and a drain electrode 110 is formed on the back surface of the wide band gap semiconductor substrate 10.

【0003】この電界効果トランジスタにおいては、ド
レイン電極110とソース電極100との間に電圧が印
加された状態で、ゲート電極80に電圧が印加される
と、ゲート電極80に対向したチャンネル領域30の表
面にN型蓄積層のチャンネルが形成され、ドレイン電極
110からソース電極100に電流が流れる。
In this field effect transistor, when a voltage is applied to the gate electrode 80 in a state where a voltage is applied between the drain electrode 110 and the source electrode 100, the channel region 30 facing the gate electrode 80 A channel of the N-type accumulation layer is formed on the surface, and current flows from the drain electrode 110 to the source electrode 100.

【0004】[0004]

【発明が解決しようとする課題】しかし、図7に示した
電界効果トランジスタにおいては、ドレイン電極110
に高電圧が印加されたとき、溝50の底部のゲート絶縁
膜70に電界が加わるので、ドレイン耐圧が低い。ま
た、溝50の側壁にチャンネル領域30をエピタキシャ
ル法によって形成するので、プロセス工程が複雑とな
る。そして、トレンチエッチングにより形成した溝50
の側壁にエピタキシャル法により均質で欠陥の少ないチ
ャンネル領域30を形成するのは困難であり、トレンチ
エッチングのダメージの影響によりチャンネル抵抗が高
い。
However, in the field effect transistor shown in FIG.
When a high voltage is applied to the gate insulating film 70, an electric field is applied to the gate insulating film 70 at the bottom of the groove 50, so that the drain breakdown voltage is low. Further, since the channel region 30 is formed on the side wall of the groove 50 by the epitaxial method, the process steps are complicated. Then, the groove 50 formed by the trench etching
It is difficult to form a uniform and less defective channel region 30 on the side wall of the trench by the epitaxial method, and the channel resistance is high due to the influence of the trench etching damage.

【0005】本発明は上述の課題を解決するためになさ
れたもので、ドレイン耐圧が高く、プロセス工程が単純
であり、チャンネル抵抗が低い電界効果トランジスタを
提供することを目的とする。
An object of the present invention is to provide a field effect transistor having a high drain breakdown voltage, a simple process, and a low channel resistance.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明においては、Siよりバンドギャップの広い
半導体からなるワイドバンドギャップ半導体基板を有す
る電界効果トランジスタにおいて、第1導伝型の上記ワ
イドバンドギャップ半導体基板の一主面の所定の領域に
複数の溝を形成し、隣接する上記溝の間に第1導伝型の
チャンネル領域を形成し、上記溝に隣接した部分に第2
導伝型の半導体領域を形成し、上記溝内にゲート絶縁膜
を形成し、上記ゲート絶縁膜により上記チャンネル領域
と絶縁してゲート電極を形成する。
According to the present invention, there is provided a field effect transistor having a wide bandgap semiconductor substrate made of a semiconductor having a bandgap wider than Si. A plurality of grooves are formed in a predetermined region of one main surface of the band gap semiconductor substrate, a first conductive type channel region is formed between the adjacent grooves, and a second channel region is formed in a portion adjacent to the grooves.
A conductive semiconductor region is formed, a gate insulating film is formed in the trench, and a gate electrode is formed insulated from the channel region by the gate insulating film.

【0007】さらに、上記ワイドバンドギャップ半導体
基板としてSiCからなるものを用いるのが好ましい。
Furthermore, it is preferable to use a substrate made of SiC as the wide band gap semiconductor substrate.

【0008】[0008]

【発明の効果】本発明に係る電界効果トランジスタにお
いては、ドレイン電極とソース電極との間に高電圧が印
加された場合、半導体領域から伸びる空乏層によってゲ
ート絶縁膜にかかる電界がシールドされるから、ドレイ
ン耐圧が高く、またチャンネル領域を溝の側壁にエピタ
キシャル成長させる必要がないから、プロセス工程が単
純であり、また均質で欠陥の少ないチャンネル領域を形
成することができるから、チャンネル抵抗が低い。
According to the field effect transistor of the present invention, when a high voltage is applied between the drain electrode and the source electrode, the electric field applied to the gate insulating film is shielded by the depletion layer extending from the semiconductor region. Since the drain withstand voltage is high and the channel region does not need to be epitaxially grown on the side wall of the groove, the process steps are simple, and a uniform and less defective channel region can be formed, so that the channel resistance is low.

【0009】[0009]

【発明の実施の形態】図1は本発明に係る電界効果トラ
ンジスタを示す一部切断斜視図である。図に示すよう
に、N+型SiCからなるワイドバンドギャップ半導体
基板210上にN型SiCからなるエピタキシャル領域
220が形成され、エピタキシャル領域220上にN型
SiCからなるチャンネル領域230が形成され、チャ
ンネル領域230上にN+型SiCからなるソース領域
240が形成され、エピタキシャル領域220の一主面
側の所定の領域にエピタキシャル領域220に達する複
数の凹型の溝250が形成されている。すなわち、隣接
する溝250間にチャンネル領域230が形成されてい
る。また、溝250の下部と隣接する部分およびチャン
ネル領域230の一部の表面にP型SiCからなる半導
体領域260が形成され、溝250内にゲート絶縁膜2
70を介してゲート電極280が形成されている。ここ
で、ゲート電極280の材料としてはチャンネル領域2
30の多数キャリアが空乏化するような仕事関数の値を
有するものを選択している。また、層間絶縁膜290に
よりゲート電極280と絶縁されてソース領域240に
接続されたソース電極300が形成され、ワイドバンド
ギャップ半導体基板210の裏面にドレイン電極310
が形成され、ソース電極300にソース端子320が接
続され、ドレイン電極310にドレイン端子330が接
続され、ゲート電極280にゲート端子340が接続さ
れている。
FIG. 1 is a partially cutaway perspective view showing a field effect transistor according to the present invention. As shown in the figure, an epitaxial region 220 made of N-type SiC is formed on a wide band gap semiconductor substrate 210 made of N + -type SiC, and a channel region 230 made of N-type SiC is formed on the epitaxial region 220. A source region 240 made of N + -type SiC is formed on region 230, and a plurality of concave grooves 250 reaching epitaxial region 220 are formed in a predetermined region on one main surface side of epitaxial region 220. That is, the channel region 230 is formed between the adjacent grooves 250. Further, a semiconductor region 260 made of P-type SiC is formed in a portion adjacent to a lower portion of the groove 250 and a part of the surface of the channel region 230, and the gate insulating film 2 is formed in the groove 250.
A gate electrode 280 is formed via the gate electrode 70. Here, the material of the gate electrode 280 is the channel region 2
Those having a work function value such that 30 majority carriers are depleted are selected. Further, a source electrode 300 connected to the source region 240 while being insulated from the gate electrode 280 by the interlayer insulating film 290 is formed, and the drain electrode 310 is formed on the back surface of the wide band gap semiconductor substrate 210.
Are formed, a source terminal 320 is connected to the source electrode 300, a drain terminal 330 is connected to the drain electrode 310, and a gate terminal 340 is connected to the gate electrode 280.

【0010】この電界効果トランジスタにおいては、ゲ
ート電極280に電圧が印加されていない状態では、ゲ
ート電極280とチャンネル領域230との仕事関数差
により多数キャリアが空乏化しており、ドレイン電極3
10とソース電極300との間は電流が非導通状態とな
る。そして、ドレイン電極310とソース電極300と
の間に電圧が印加された状態で、ゲート電極280に電
圧が印加されると、ゲート電極280と対向したチャン
ネル領域230の表面にN型蓄積層型のチャンネルが形
成され、ドレイン電極310からソース電極300に電
流が流れる。
In this field-effect transistor, when no voltage is applied to the gate electrode 280, majority carriers are depleted due to a work function difference between the gate electrode 280 and the channel region 230.
The current is non-conductive between 10 and the source electrode 300. When a voltage is applied to the gate electrode 280 in a state where a voltage is applied between the drain electrode 310 and the source electrode 300, an N-type accumulation layer type is formed on the surface of the channel region 230 facing the gate electrode 280. A channel is formed, and current flows from the drain electrode 310 to the source electrode 300.

【0011】このような電界効果トランジスタにおいて
は、ドレイン電極310とソース電極300との間に高
電圧が印加された場合、溝250の下部と隣接する部分
に形成された半導体領域260から伸びる空乏層によっ
てゲート絶縁膜270にかかる電界がシールドされるか
ら、ドレイン耐圧が高い。また、チャンネル領域230
を溝250の側壁にエピタキシャル成長させる必要がな
いから、プロセス工程が単純である。また、チャンネル
領域230へのプロセス形成上のダメージが少なく、均
質で欠陥の少ないチャンネル領域230を形成すること
ができるから、チャンネル抵抗が低い。また、ゲート電
極280の材料としてチャンネル領域230の多数キャ
リアが空乏化するような仕事関数の値を有するものを選
択しているから、ゲート電極280に電圧が印加されな
い状態でチャンネルをオフにすることが容易である。
In such a field effect transistor, when a high voltage is applied between drain electrode 310 and source electrode 300, a depletion layer extending from semiconductor region 260 formed in a portion adjacent to the lower portion of trench 250 This shields the electric field applied to the gate insulating film 270, so that the drain withstand voltage is high. Also, the channel area 230
Need not be epitaxially grown on the sidewalls of the groove 250, the process steps are simple. In addition, since the channel region 230 is less likely to be damaged in process formation and can be formed in a uniform and less defective channel region, the channel resistance is low. In addition, since a material having a work function value such that majority carriers in the channel region 230 are depleted is selected as a material of the gate electrode 280, the channel is turned off in a state where no voltage is applied to the gate electrode 280. Is easy.

【0012】つぎに、図1に示した電界効果トランジス
タの製造方法を図2〜図6により説明する。まず、図2
に示すように、ワイドバンドギャップ半導体基板210
上に例えば不純物濃度が1×1014〜1×1018
-3、厚さが0.1〜数十μmのエピタキシャル領域2
20を形成し、エピタキシャル領域220の表面に例え
ば不純物濃度が1×1014〜1×1017cm-3、厚さが
数千Å〜数μmのチャンネル領域230を形成し、さら
にチャンネル領域230の表面に例えば不純物濃度が1
×1018〜1×1021cm-3、厚さが数十Å〜数μmの
ソース領域240を形成する。つぎに、図3に示すよう
に、所定の領域にパターンニングされた絶縁膜410を
マスクとして、エピタキシャル領域220に達するよう
に溝250を形成する。つぎに、図4に示すように、絶
縁膜410をマスクとして溝250の下部と隣接する部
分に溝250からの不純物の拡散によって半導体領域2
60を形成する。このとき、所定の領域の絶縁膜410
を除去したのちに半導体領域260を形成することによ
り、チャンネル領域230の一部の表面にも半導体領域
260を形成する。つぎに、図5に示すように、溝25
0内に例えば厚さが100〜3000Åの酸化膜よりな
るゲート絶縁膜270を形成し、さらに溝250の内部
にゲート電極280を形成する。つぎに、図6に示すよ
うに、溝250内に層間絶縁膜290を形成したのち、
ソース領域240の表面にソース電極300を形成す
る。その後、ワイドバンドギャップ半導体基板210の
裏面にドレイン電極310を形成する。
Next, a method of manufacturing the field effect transistor shown in FIG. 1 will be described with reference to FIGS. First, FIG.
As shown in FIG.
For example, the impurity concentration is 1 × 10 14 to 1 × 10 18 c
m −3 , an epitaxial region 2 having a thickness of 0.1 to several tens μm
Then, a channel region 230 having an impurity concentration of, for example, 1 × 10 14 to 1 × 10 17 cm −3 and a thickness of several thousand to several μm is formed on the surface of the epitaxial region 220. For example, the surface has an impurity concentration of 1
A source region 240 having a size of × 10 18 to 1 × 10 21 cm −3 and a thickness of several tens to several μm is formed. Next, as shown in FIG. 3, a groove 250 is formed to reach the epitaxial region 220 using the insulating film 410 patterned in a predetermined region as a mask. Next, as shown in FIG. 4, the semiconductor region 2 is diffused into the portion adjacent to the lower portion of the trench 250 by diffusion of impurities from the trench 250 using the insulating film 410 as a mask.
Form 60. At this time, the insulating film 410 in a predetermined region
The semiconductor region 260 is formed on the surface of a part of the channel region 230 after removing the semiconductor region 260. Next, as shown in FIG.
A gate insulating film 270 made of, for example, an oxide film having a thickness of, for example, 100 to 3000 0 is formed in the gate electrode 250, and a gate electrode 280 is formed in the trench 250. Next, as shown in FIG. 6, after forming an interlayer insulating film 290 in the groove 250,
A source electrode 300 is formed on the surface of the source region 240. Thereafter, a drain electrode 310 is formed on the back surface of the wide band gap semiconductor substrate 210.

【0013】この電界効果トランジスタの製造方法にお
いては、溝250からの不純物の拡散によって半導体領
域260を形成するから、SiCにおいては高温でも不
純物が拡散しにくく、深い接合を形成することが困難で
あったとしても、エピタキシャル領域220の内部に半
導体領域260を容易に形成することができる。
In this method of manufacturing a field effect transistor, since the semiconductor region 260 is formed by diffusion of the impurity from the trench 250, it is difficult for SiC to diffuse the impurity even at a high temperature, and it is difficult to form a deep junction. Even if it does, semiconductor region 260 can be easily formed inside epitaxial region 220.

【0014】なお、上述実施の形態においては、第1導
伝型をN型とし、第2導伝型をP型としたが、第1導伝
型をP型とし、第2導伝型をN型としてもよい。また、
上述実施の形態においては、溝250の下部と隣接する
部分に半導体領域260を形成したが、溝に隣接する部
分に半導体領域を形成すればよい。
In the above embodiment, the first conductive type is N-type and the second conductive type is P-type. However, the first conductive type is P-type and the second conductive type is P-type. It may be N-type. Also,
In the above-described embodiment, the semiconductor region 260 is formed in a portion adjacent to the lower portion of the groove 250, but a semiconductor region may be formed in a portion adjacent to the groove.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電界効果トランジスタを示す一部
切断斜視図である。
FIG. 1 is a partially cutaway perspective view showing a field effect transistor according to the present invention.

【図2】図1に示した電界効果トランジスタの製造方法
の説明図である。
FIG. 2 is an explanatory diagram of a method for manufacturing the field-effect transistor shown in FIG.

【図3】図1に示した電界効果トランジスタの製造方法
の説明図である。
FIG. 3 is an explanatory diagram of a method for manufacturing the field-effect transistor shown in FIG.

【図4】図1に示した電界効果トランジスタの製造方法
の説明図である。
FIG. 4 is an explanatory diagram of a method for manufacturing the field-effect transistor shown in FIG.

【図5】図1に示した電界効果トランジスタの製造方法
の説明図である。
FIG. 5 is an explanatory diagram of a method for manufacturing the field-effect transistor shown in FIG.

【図6】図1に示した電界効果トランジスタの製造方法
の説明図である。
FIG. 6 is an explanatory diagram of the method for manufacturing the field-effect transistor shown in FIG.

【図7】従来の電界効果トランジスタを示す断面図であ
る。
FIG. 7 is a sectional view showing a conventional field-effect transistor.

【符号の説明】[Explanation of symbols]

210…ワイドバンドギャップ半導体基板 230…チャンネル領域 250…溝 260…半導体領域 270…ゲート絶縁膜 210: wide band gap semiconductor substrate 230: channel region 250: groove 260: semiconductor region 270: gate insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Siよりバンドギャップの広い半導体から
なるワイドバンドギャップ半導体基板を有する電界効果
トランジスタにおいて、第1導伝型の上記ワイドバンド
ギャップ半導体基板の一主面の所定の領域に複数の溝を
形成し、隣接する上記溝の間に第1導伝型のチャンネル
領域を形成し、上記溝に隣接した部分に第2導伝型の半
導体領域を形成し、上記溝内にゲート絶縁膜を形成し、
上記ゲート絶縁膜により上記チャンネル領域と絶縁して
ゲート電極を形成したことを特徴とする電界効果トラン
ジスタ。
1. A field effect transistor having a wide band gap semiconductor substrate made of a semiconductor having a band gap wider than that of Si, wherein a plurality of grooves are formed in a predetermined region on one main surface of the first conduction type wide band gap semiconductor substrate. A channel region of the first conductivity type is formed between the adjacent grooves, a semiconductor region of the second conductivity type is formed in a portion adjacent to the groove, and a gate insulating film is formed in the groove. Forming
A field effect transistor, wherein a gate electrode is formed insulated from the channel region by the gate insulating film.
【請求項2】上記ワイドバンドギャップ半導体基板とし
てSiCからなるものを用いたことを特徴とする請求項
1に記載の電界効果トランジスタ。
2. A field effect transistor according to claim 1, wherein said wide band gap semiconductor substrate is made of SiC.
JP11013919A 1999-01-22 1999-01-22 Field effect transistor Pending JP2000216381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11013919A JP2000216381A (en) 1999-01-22 1999-01-22 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11013919A JP2000216381A (en) 1999-01-22 1999-01-22 Field effect transistor

Publications (1)

Publication Number Publication Date
JP2000216381A true JP2000216381A (en) 2000-08-04

Family

ID=11846594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11013919A Pending JP2000216381A (en) 1999-01-22 1999-01-22 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2000216381A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032244A1 (en) * 2002-10-04 2004-04-15 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and process for fabricating the same
JP2005236267A (en) * 2004-01-23 2005-09-02 Toshiba Corp Semiconductor device
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032244A1 (en) * 2002-10-04 2004-04-15 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device and process for fabricating the same
US7196376B2 (en) 2002-10-04 2007-03-27 Shindengen Electric Manufacturing Co., Ltd., Trench-type power MOSFET with embedded region at the bottom of the gate and increased breakdown voltage
KR100958561B1 (en) 2002-10-04 2010-05-17 신덴겐코교 가부시키가이샤 Semiconductor device and process for fabricating the same
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
JP2005236267A (en) * 2004-01-23 2005-09-02 Toshiba Corp Semiconductor device
JP4564362B2 (en) * 2004-01-23 2010-10-20 株式会社東芝 Semiconductor device

Similar Documents

Publication Publication Date Title
JP4192281B2 (en) Silicon carbide semiconductor device
JP3327135B2 (en) Field effect transistor
JP3575331B2 (en) Field effect transistor
JP2019071313A (en) Semiconductor device
JP2006073740A (en) Semiconductor device and its manufacturing method
US5739044A (en) Method of manufacturing semiconductor device
JP2006186145A (en) Semiconductor device and manufacturing method thereof
JP4538870B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2005520319A (en) Symmetrical trench metal oxide semiconductor field effect transistor device and method for manufacturing the same
JP3484690B2 (en) Vertical field-effect transistor
JP2006287127A (en) Semiconductor device and its manufacturing method
JP4416288B2 (en) Reverse conduction thyristor
JP4794546B2 (en) Semiconductor device and manufacturing method thereof
JP2000216381A (en) Field effect transistor
JP4241158B2 (en) Semiconductor device
JP3968901B2 (en) Field effect transistor and manufacturing method thereof
JPH10135489A (en) Diode
JPS6327865B2 (en)
JPH09213954A (en) Vertical type mos transistor and static induction transistor and mos transistor having trench structure and manufacture of vertical type semiconductor device
JP2000299476A (en) Semiconductor device
JPH11307768A (en) Silicon carbide semiconductor device and manufacture thereof
JP2005136208A (en) Semiconductor device
JP2001284585A (en) Field effect transistor
JP2888652B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH11266012A (en) Manufacture of silicon carbide semiconductor device