JP2001284585A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2001284585A
JP2001284585A JP2000098735A JP2000098735A JP2001284585A JP 2001284585 A JP2001284585 A JP 2001284585A JP 2000098735 A JP2000098735 A JP 2000098735A JP 2000098735 A JP2000098735 A JP 2000098735A JP 2001284585 A JP2001284585 A JP 2001284585A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
effect transistor
vertical hole
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000098735A
Other languages
Japanese (ja)
Inventor
Kunihito Oshima
邦仁 大島
Mizue Kitada
瑞枝 北田
Hideyuki Nakamura
秀幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2000098735A priority Critical patent/JP2001284585A/en
Publication of JP2001284585A publication Critical patent/JP2001284585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

PROBLEM TO BE SOLVED: To provide a vertical type power MOSFET having a high withstand voltage. SOLUTION: In the power MOSFET 1, a p-type active layer 13 is formed on an n-type drain layer 12. In the active layer 13, vertical holes 17 are formed from the surface and a p-type impurity is diffused around the vertical holes 17 to form current channel diffusion layers 19. In the active layer 13, there are depletion layers extended in the transverse direction from the current channel diffusion layers 19 into the active layer 13, and depletion layers extended in the vertical direction from the drain layer 12 into the active layer 13, with the depletion layers extended in the transverse direction and the depletion layers extended in the vertical direction being connected to each other. Due to the depletion layers extended into the active layer 13 from two directions, an electric field is distributed nearly evenly in the depletion layers, resulting in a higher withstand voltage than by the conventional method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電界効果トランジス
タに関し、特に、電源回路等に多用されるパワーMOS
FETに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and more particularly, to a power MOS transistor frequently used in a power supply circuit and the like.
Related to FET.

【0002】[0002]

【従来の技術】従来より、多数のセルを配置したMOS
トランジスタが電力制御素子として用いられている。
2. Description of the Related Art Conventionally, a MOS in which a large number of cells are arranged is used.
Transistors are used as power control elements.

【0003】図45を参照し、符号105は従来型のM
OSトランジスタの一例であり、シリコン単結晶基板1
11と、該単結晶基板111上にエピタキシャル成長さ
れたドレイン層112とを有している。
Referring to FIG. 45, reference numeral 105 denotes a conventional M
This is an example of an OS transistor, and is a silicon single crystal substrate 1
11 and a drain layer 112 epitaxially grown on the single crystal substrate 111.

【0004】シリコン単結晶111内には、N型の不純
物が高濃度にドープされており、ドレイン層112内に
は、N型の不純物が低濃度にドープされている。ドレイ
ン層112内には、表面からP型の不純物が拡散され、
ベース領域154が形成されている。
The silicon single crystal 111 is heavily doped with N-type impurities, and the drain layer 112 is lightly doped with N-type impurities. In the drain layer 112, a P-type impurity is diffused from the surface,
A base region 154 is formed.

【0005】ベース領域154内には、更に、その表面
からN型の不純物が拡散され、リング状のソース領域1
61が形成されている。符号110で示した領域は、ベ
ース領域154の端部とソース領域161の外周部分の
間に位置するベース領域154の表面部分であり、チャ
ネル領域と呼ばれている。そのチャネル領域110と、
ベース領域154と、ソース領域161とで、1つのセ
ル101が形成されている。MOSトランジスタ105
は、ドレイン層112表面に多数のセル101が格子状
に規則正しく配置されている。
In the base region 154, N-type impurities are further diffused from the surface thereof to form a ring-shaped source region 1.
61 are formed. A region indicated by reference numeral 110 is a surface portion of the base region 154 located between an end portion of the base region 154 and an outer peripheral portion of the source region 161, and is called a channel region. The channel region 110;
One cell 101 is formed by the base region 154 and the source region 161. MOS transistor 105
In the first embodiment, a large number of cells 101 are regularly arranged in a grid on the surface of the drain layer 112.

【0006】図46に、MOSトランジスタ105のセ
ル101の配置状態を示す。各セル101内のソース領
域161のリング中央位置には、ベース領域154表面
が露出している。ソース領域161表面とベース領域1
54の表面には、ソース電極膜144が形成されてお
り、ソース領域161とベース領域154は、共にソー
ス電極膜144に接続されている。
FIG. 46 shows an arrangement state of the cell 101 of the MOS transistor 105. The surface of the base region 154 is exposed at the center of the ring of the source region 161 in each cell 101. Source region 161 surface and base region 1
A source electrode film 144 is formed on the surface of the source electrode film, and the source region 161 and the base region 154 are both connected to the source electrode film 144.

【0007】また、各セル101内のチャネル領域11
0上と、セル101間のドレイン層112表面上には、
シリコン酸化膜で構成されたゲート絶縁膜126が配置
されている。このゲート絶縁膜126上にはポリシリコ
ンで構成されたゲート電極膜127が配置されている。
The channel region 11 in each cell 101
0 and on the surface of the drain layer 112 between the cells 101,
A gate insulating film 126 made of a silicon oxide film is provided. On this gate insulating film 126, a gate electrode film 127 made of polysilicon is arranged.

【0008】ゲート電極膜127上には層間絶縁膜14
1が配置されており、各セル101上に形成されたソー
ス電極膜144とゲート電極膜127とは、層間絶縁膜
141によって絶縁されると共に、各セル101中に配
置されたソース電極膜144同士は、層間絶縁膜141
上に配置されたソース電極膜144によって互いに接続
されている。
The interlayer insulating film 14 is formed on the gate electrode film 127.
1, the source electrode film 144 and the gate electrode film 127 formed on each cell 101 are insulated by the interlayer insulating film 141, and the source electrode film 144 Is the interlayer insulating film 141
They are connected to each other by a source electrode film 144 disposed thereon.

【0009】符号150は保護膜であり、該保護膜15
0及び層間絶縁膜141はパターニングされ、MOSト
ランジスタ105上には、ソース電極144が部分的に
露出しており、また、ゲート電極膜127に接続された
金属膜も部分的に露出している。
Reference numeral 150 denotes a protective film.
The source electrode 144 is partially exposed on the MOS transistor 105, and the metal film connected to the gate electrode film 127 is also partially exposed on the MOS transistor 105.

【0010】また、単結晶基板111表面(MOSトラ
ンジスタ105の裏面)にはドレイン電極148が形成
されており、このドレイン電極148と、ソース電極1
44の露出部分と、ゲート電極膜127に接続された金
属膜の露出部分とが、外部端子にそれぞれ接続され、外
部端子を電気回路に接続することで、このMOSトラン
ジスタを動作させるように構成されている。
A drain electrode 148 is formed on the front surface of the single crystal substrate 111 (the back surface of the MOS transistor 105), and the drain electrode 148 and the source electrode 1
The exposed portion 44 and the exposed portion of the metal film connected to the gate electrode film 127 are connected to external terminals, respectively, and the MOS transistor is operated by connecting the external terminal to an electric circuit. ing.

【0011】このMOSトランジスタ105を使用する
場合、ソース電極144を接地電位に置き、ドレイン電
極148に正電圧を印加した状態でゲート電極膜127
にスレッショルド以上のゲート電圧(正電圧)を印加する
と、P型のチャネル領域110表面にN型の反転層が形
成され、ソース領域161と導電領域111とが反転層
によって接続され、ドレイン電極148からソース電極
144に電流が流れる。
When the MOS transistor 105 is used, the source electrode 144 is set at the ground potential, and the gate electrode film 127 is kept in a state where a positive voltage is applied to the drain electrode 148.
When a gate voltage (positive voltage) equal to or higher than the threshold is applied, an N-type inversion layer is formed on the surface of the P-type channel region 110, and the source region 161 and the conductive region 111 are connected by the inversion layer. A current flows through the source electrode 144.

【0012】その状態からゲート電極膜127にスレッ
ショルド電圧以下の電圧(例えば接地電位)を印加する
と、反転層は消滅し、ベース領域154と導電領域11
1とは逆バイアス状態になるので、ドレイン電極148
とソース電極144の間には電流は流れないようにな
る。
When a voltage lower than the threshold voltage (eg, ground potential) is applied to the gate electrode film 127 in this state, the inversion layer disappears, and the base region 154 and the conductive region 11
1 and the drain electrode 148
No current flows between the gate electrode and the source electrode 144.

【0013】上記のようなMOSトランジスタ105
は、ゲート電極膜127に印加する電圧を制御すること
で、ドレイン電極148とソース電極144との間を導
通させたり遮断させたりできるので、高速なスイッチと
して電源回路やモータ制御回路等の電力を扱う電気回路
に広く使用されている。
The MOS transistor 105 as described above
By controlling the voltage applied to the gate electrode film 127, the connection between the drain electrode 148 and the source electrode 144 can be turned on or off, so that the power of a power supply circuit, a motor control circuit, or the like can be used as a high-speed switch. Widely used for handling electrical circuits.

【0014】上記構成のMOSトランジスタ105にお
いては、チャネル領域110とドレイン層112との間
で形成されるpn接合に、強い電界が集中的に加わるた
め、十分な耐圧を確保するためには、ドレイン層112
の濃度を低くし、空乏層の広がる領域を確保するためド
レイン層112を厚く形成しなければならなかった。し
かしながらこのように構成すると、MOSトランジスタ
105の導通抵抗が高くなるという問題が生じる。
In the MOS transistor 105 having the above-described structure, a strong electric field is intensively applied to the pn junction formed between the channel region 110 and the drain layer 112. Layer 112
The drain layer 112 must be formed thick in order to lower the concentration of GaN and secure a region where the depletion layer spreads. However, such a configuration causes a problem that the conduction resistance of MOS transistor 105 is increased.

【0015】[0015]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、従来に比して電界効果トランジスタの導通抵抗
を小さくしつつ、耐圧を大きくすることができる技術を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and has as its object to reduce the conduction resistance of a field-effect transistor and reduce the withstand voltage. It is an object of the present invention to provide a technology that can increase the size of the image.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、電界効果トランジスタであ
って、第1の導電型のドレイン層と、前記ドレイン層上
に配置され、前記第1の導電型とは反対の導電型である
第2導電型の活性層と、前記活性層内の表面側に配置さ
れ、前記第1の導電型の拡散層で構成されたソース拡散
層と、前記ソース拡散層と離間した位置に形成された縦
穴と、前記縦穴の壁面の、少なくとも前記ソース拡散層
と対向する面から前記第1の導電型の不純物が前記活性
層内に拡散されて形成された電流通路拡散層と、前記縦
穴内を充填する充填物と、前記活性層内の表面近傍であ
って、前記ソース拡散層と前記電流通路拡散層との間に
位置し、前記ソース拡散層に接して配置された前記第2
の導電型のチャネル領域と、前記チャネル領域上に配置
されたゲート絶縁膜と、前記ゲート絶縁膜上に配置され
たゲート電極と、前記ソース拡散層に接続されたソース
電極と、前記ドレイン層に接続された裏面電極とを有す
る。請求項2記載の発明は、請求項1記載の電界効果ト
ランジスタであって、前記充填物は半導体材料で構成さ
れ、前記半導体材料と前記電流通路拡散層との間には絶
縁膜が配置され、互いに絶縁されている。請求項3記載
の発明は、請求項2記載の電界効果トランジスタであっ
て、前記半導体材料は浮遊電位に置かれている。請求項
4記載の発明は、請求項1記載の電界効果トランジスタ
であって、前記充填物は絶縁物で構成されている。請求
項5記載の発明は、請求項1乃至請求項4のいずれか1
項記載の電界効果トランジスタであって、前記縦穴底部
は前記活性層内に位置し、前記電流通路拡散層が前記ド
レイン層と接している。請求項6記載の発明は、請求項
1乃至請求項5のいずれか1項記載の電界効果トランジ
スタであって、前記縦穴底部は前記ドレイン層内に位置
し、前記電流通路拡散層は前記縦穴よりも深い位置まで
伸ばされ、前記電流通路拡散層が前記ドレイン層と接し
ている。請求項7記載の発明は、請求項1乃至請求項6
のいずれか1項記載の電界効果トランジスタであって、
前記電流通路拡散層を形成する際に、前記第1の導電型
の不純物は前記縦穴底部から前記活性層内に拡散され、
前記電流通路拡散層の一部は前記縦穴の底部に位置す
る。請求項8記載の発明は、請求項1乃至請求項7のい
ずれか1項記載の電界効果トランジスタであって、前記
縦穴は細長の溝に形成され、該縦穴の両側に、前記ソー
ス拡散層と前記チャネル領域と前記ゲート絶縁膜と前記
ゲート電極とが配置されている。請求項9記載の発明
は、請求項1乃至請求項8のいずれか1項記載の電界効
果トランジスタであって、前記チャネル領域内の表面に
は、前記活性層よりも表面濃度が高い第2導電型の主拡
散層が配置されている。請求項10記載の発明は、請求
項1乃至請求項9のいずれか1項記載の電界効果トラン
ジスタであって、前記主拡散層内には、第2導電型の副
拡散層が前記活性層の表面側から拡散され、前記副拡散
層の表面濃度は前記主拡散層よりも高くされ、該副拡散
層は前記ソース電極に接続されている。請求項11記載
の発明は、請求項1乃至請求項10のいずれか1項記載
の電界効果トランジスタであって、前記ドレイン層は、
該ドレイン層と同じ導電型の半導体層上に形成され、該
半導体層に前記裏面電極が接続されている。請求項12
記載の発明は、請求項1乃至請求項10のいずれか1項
記載の電界効果トランジスタであって、前記ドレイン層
は、該ドレイン層と反対の導電型の半導体層上に形成さ
れ、該半導体層に前記裏面電極が接続されている。
According to a first aspect of the present invention, there is provided a field effect transistor, comprising: a first conductivity type drain layer; and a first conductivity type drain layer disposed on the drain layer. An active layer of a second conductivity type having a conductivity type opposite to the first conductivity type, and a source diffusion layer disposed on a surface side in the active layer and formed of the diffusion layer of the first conductivity type And a vertical hole formed at a position separated from the source diffusion layer, and the first conductivity type impurity is diffused into the active layer from at least a surface of the wall surface of the vertical hole facing the source diffusion layer. The formed current path diffusion layer, a filling material filling the inside of the vertical hole, and a surface near the surface in the active layer, located between the source diffusion layer and the current path diffusion layer, The second layer disposed in contact with the layer;
A conductive type channel region, a gate insulating film disposed on the channel region, a gate electrode disposed on the gate insulating film, a source electrode connected to the source diffusion layer, and a And a back electrode connected thereto. The invention according to claim 2 is the field-effect transistor according to claim 1, wherein the filler is made of a semiconductor material, and an insulating film is arranged between the semiconductor material and the current path diffusion layer. Insulated from each other. The invention according to claim 3 is the field-effect transistor according to claim 2, wherein the semiconductor material is placed at a floating potential. The invention according to claim 4 is the field-effect transistor according to claim 1, wherein the filler is made of an insulator. According to a fifth aspect of the present invention, there is provided any one of the first to fourth aspects.
3. The field effect transistor according to claim 1, wherein the bottom of the vertical hole is located in the active layer, and the current path diffusion layer is in contact with the drain layer. According to a sixth aspect of the present invention, in the field effect transistor according to any one of the first to fifth aspects, the bottom portion of the vertical hole is located in the drain layer, and the current path diffusion layer is located between the vertical hole and the vertical hole. And the current path diffusion layer is in contact with the drain layer. The invention according to claim 7 is the invention according to claims 1 to 6.
The field effect transistor according to any one of the above,
When forming the current path diffusion layer, the impurity of the first conductivity type is diffused from the bottom of the vertical hole into the active layer,
Part of the current path diffusion layer is located at the bottom of the vertical hole. The invention according to claim 8 is the field-effect transistor according to any one of claims 1 to 7, wherein the vertical hole is formed in an elongated groove, and the source diffusion layer is formed on both sides of the vertical hole. The channel region, the gate insulating film, and the gate electrode are arranged. According to a ninth aspect of the present invention, in the field effect transistor according to any one of the first to eighth aspects, the surface in the channel region has a second conductive layer having a higher surface concentration than the active layer. The main diffusion layer of the mold is arranged. According to a tenth aspect of the present invention, in the field effect transistor according to any one of the first to ninth aspects, a sub-diffusion layer of a second conductivity type is provided in the main diffusion layer. The sub-diffusion layer is diffused from the front side, and the surface concentration of the sub-diffusion layer is higher than that of the main diffusion layer, and the sub-diffusion layer is connected to the source electrode. An eleventh aspect of the present invention is the field-effect transistor according to any one of the first to tenth aspects, wherein the drain layer comprises:
The semiconductor device is formed on a semiconductor layer of the same conductivity type as the drain layer, and the back surface electrode is connected to the semiconductor layer. Claim 12
The field-effect transistor according to any one of claims 1 to 10, wherein the drain layer is formed on a semiconductor layer having a conductivity type opposite to that of the drain layer. Is connected to the back electrode.

【0017】本発明の電界効果トランジスタによれば、
第2の導電型の不純物が拡散された活性層内には、第1
の導電型の不純物が拡散された電流通路拡散層から活性
層内へと横方向に広がる空乏層と、第1の導電型の不純
物が拡散されたドレイン層から活性層内へと縦方向に広
がる空乏層とが生じ、横方向に広がる空乏層と縦方向に
広がる空乏層とが繋がった状態になる。このように、二
方向から空乏層が活性層内に広がることにより、空乏層
内の電界はほぼ一様に分布するので、従来に比して高い
耐圧を得ることができる。
According to the field effect transistor of the present invention,
In the active layer in which the impurity of the second conductivity type is diffused,
A depletion layer extending laterally from the current path diffusion layer into which the impurity of the first conductivity type is diffused into the active layer; and a depletion layer extending vertically from the drain layer into which the impurity of the first conductivity type is diffused into the active layer. A depletion layer is generated, and the depletion layer extending in the horizontal direction and the depletion layer expanding in the vertical direction are connected. As described above, since the depletion layer spreads in the active layer from two directions, the electric field in the depletion layer is distributed almost uniformly, so that a higher breakdown voltage can be obtained as compared with the related art.

【0018】かかる電界効果トランジスタを、従来と同
じ耐圧に設定した場合には、ドレイン層の不純物濃度を
高くして、かつドレイン層の厚みを薄くすることができ
るので、ドレイン層の抵抗成分を従来に比して小さく
し、電界効果トランジスタの導通抵抗を低くすることが
できる。
When such a field-effect transistor is set to the same withstand voltage as the conventional one, the impurity concentration of the drain layer can be increased and the thickness of the drain layer can be reduced. And the conduction resistance of the field effect transistor can be reduced.

【0019】[0019]

【発明の実施の形態】以下で図面を参照し、本発明の実
施の形態について説明する。まず、図1乃至図29を参
照して、本発明の実施形態の縦型パワーMOSFETの
製造方法について説明する。なお、図中で、同じ部材に
ついては、同じ符号で示している。
Embodiments of the present invention will be described below with reference to the drawings. First, a method for manufacturing a vertical power MOSFET according to an embodiment of the present invention will be described with reference to FIGS. In the drawings, the same members are denoted by the same reference numerals.

【0020】まず、N+型のシリコン基板11の表面上
に、厚み5μmのN-型エピタキシャル層からなるドレ
イン層12を形成する。次に、ドレイン層12上に、P
型エピタキシャル層からなる活性層13を27μmの厚
みに形成し、CVD法により、活性層13表面にシリコ
ン酸化膜14を形成する(図1)。
First, a drain layer 12 made of a 5 μm thick N -type epitaxial layer is formed on the surface of an N + -type silicon substrate 11. Next, on the drain layer 12, P
An active layer 13 of a type epitaxial layer is formed to a thickness of 27 μm, and a silicon oxide film 14 is formed on the surface of the active layer 13 by a CVD method (FIG. 1).

【0021】次いで、その表面に、細長の開口16が所
定間隔をおいて互いに平行になるように複数形成された
レジスト膜15を形成し(図2)、レジスト膜15をマス
クにしてシリコン酸化膜14をエッチングし、活性層1
3の表面を露出させる(図3)。ここでは各開口16間の
間隔を16μmとし、開口16の幅を2μmとしてい
る。
Next, a resist film 15 is formed on the surface so that a plurality of elongated openings 16 are parallel to each other at predetermined intervals (FIG. 2), and a silicon oxide film is formed using the resist film 15 as a mask. 14 and the active layer 1
3 is exposed (FIG. 3). Here, the interval between the openings 16 is 16 μm, and the width of the openings 16 is 2 μm.

【0022】次に、レジスト膜15を除去し、シリコン
酸化膜14をマスクにして活性層13を所定時間エッチ
ングすると、活性層13表面から活性層13内部に、レ
ジスト膜15と同じサイズであって、底部がドレイン層
12までには達しない深穴17が複数形成される(図
4)。ここでは深穴17の深さを25μmとしている。
Next, the resist film 15 is removed, and the active layer 13 is etched for a predetermined time using the silicon oxide film 14 as a mask. A plurality of deep holes 17 whose bottoms do not reach the drain layer 12 are formed (FIG. 4). Here, the depth of the deep hole 17 is 25 μm.

【0023】次いで、シリコン酸化膜14の表面から深
穴17の内部にわたって、リンがドープされたポリシリ
コンを堆積させると、ポリシリコン膜18が形成され、
深穴17内部は、ポリシリコン膜18で充填される(図
5)。
Next, when polysilicon doped with phosphorus is deposited from the surface of the silicon oxide film 14 to the inside of the deep hole 17, a polysilicon film 18 is formed.
The inside of the deep hole 17 is filled with a polysilicon film 18 (FIG. 5).

【0024】次に、熱処理すると、深穴17内部に充填
されたポリシリコン薄膜18内のリンが、深穴17の側
壁面及び底面から活性層13内に拡散され、深穴17の
側壁面及び底面の近傍に、N型不純物が拡散されてなる
電流通路拡散層19が形成される(図6)。
Next, when a heat treatment is performed, the phosphorus in the polysilicon thin film 18 filling the inside of the deep hole 17 is diffused into the active layer 13 from the side wall surface and bottom surface of the deep hole 17, and the side wall surface of the deep hole 17 and A current path diffusion layer 19 formed by diffusing an N-type impurity is formed near the bottom surface (FIG. 6).

【0025】次いで、ポリシリコン膜18のエッチング
を所定時間行うと、シリコン酸化膜14表面の上及び深
穴17内部のポリシリコン膜18が完全に除去される
(図7)。次に、エッチングによりシリコン酸化膜14を
除去した後(図8)、熱酸化法により、活性層13表面か
ら深穴17の内部側面及び内部底面にわたって熱酸化膜
20を50nmの厚みに形成する(図9)。
Next, when the polysilicon film 18 is etched for a predetermined time, the polysilicon film 18 on the surface of the silicon oxide film 14 and inside the deep hole 17 is completely removed.
(FIG. 7). Next, after the silicon oxide film 14 is removed by etching (FIG. 8), a thermal oxide film 20 is formed to a thickness of 50 nm from the surface of the active layer 13 to the inner side surface and the inner bottom surface of the deep hole 17 by thermal oxidation (FIG. 8). (FIG. 9).

【0026】次いで、CVD法により、全面にポリシリ
コンを堆積させると、ポリシリコン膜21が活性層13
の表面に形成されるとともに、深穴17内部に充填され
る。以下では、深穴17内部に充填されたポリシリコン
を充填物と称し、符号91に示す(図10)。
Next, when polysilicon is deposited on the entire surface by the CVD method, the polysilicon film 21 becomes the active layer 13.
And is filled in the deep hole 17. Hereinafter, the polysilicon filled in the deep hole 17 is referred to as a filling material, and is indicated by reference numeral 91 (FIG. 10).

【0027】次に、所定時間ポリシリコン膜21をエッ
チングすると、活性層13上のポリシリコン膜21が除
去され、深穴17内部に充填物91のみが充填された状
態になる(図11)。
Next, when the polysilicon film 21 is etched for a predetermined time, the polysilicon film 21 on the active layer 13 is removed, and the deep hole 17 is filled with only the filling material 91 (FIG. 11).

【0028】次いで、所定時間熱酸化膜20をエッチン
グすると、活性層13上の熱酸化膜20が除去され、深
穴17の内部側面及び内部底面に熱酸化膜20が残存し
た状態になる(図12)。
Next, when the thermal oxide film 20 is etched for a predetermined time, the thermal oxide film 20 on the active layer 13 is removed, and the thermal oxide film 20 remains on the inner side surface and the inner bottom surface of the deep hole 17 (FIG. 12).

【0029】次に、CVD法で全面にシリコン酸化膜2
2を100nmの厚みに形成した後、シリコン酸化膜22
上にポリシリコン薄膜23を500nmの厚みに形成する
(図13)。
Next, a silicon oxide film 2 is formed on the entire surface by CVD.
2 is formed to a thickness of 100 nm, and then a silicon oxide film 22 is formed.
A polysilicon thin film 23 is formed thereon to a thickness of 500 nm.
(FIG. 13).

【0030】次いで、パターニングされたレジスト膜2
4をポリシリコン薄膜23の上に形成する。このレジス
ト膜24の開口25は、互いに隣接する充填物19の間
のポリシリコン薄膜23上に、所定間隔をおいて互いに
平行になるように細長に形成されている(図14)。その
後、そのレジスト膜24をマスクにしてポリシリコン薄
膜23をエッチング・除去すると、開口25から露出す
るポリシリコン薄膜23が除去される。以下ではエッチ
ング後に残存したポリシリコン薄膜をゲート電極と称
し、符号27に示す。この状態では、開口25の底面か
らシリコン酸化膜22が露出している(図15)。
Next, the patterned resist film 2
4 is formed on the polysilicon thin film 23. The openings 25 of the resist film 24 are elongated on the polysilicon thin film 23 between the fillings 19 adjacent to each other so as to be parallel to each other at predetermined intervals (FIG. 14). Thereafter, when the polysilicon thin film 23 is etched and removed using the resist film 24 as a mask, the polysilicon thin film 23 exposed from the opening 25 is removed. Hereinafter, the polysilicon thin film remaining after the etching is referred to as a gate electrode, and is denoted by reference numeral 27. In this state, the silicon oxide film 22 is exposed from the bottom of the opening 25 (FIG. 15).

【0031】次に、開口25底面から露出するシリコン
酸化膜22をエッチングして除去する。この状態では、
開口25底面から活性層13の表面が露出する(図1
6)。以下ではエッチング後、ゲート電極27下に残存
したシリコン酸化膜をゲート絶縁膜と称し、符号26で
示す。
Next, the silicon oxide film 22 exposed from the bottom of the opening 25 is removed by etching. In this state,
The surface of the active layer 13 is exposed from the bottom of the opening 25 (FIG. 1).
6). Hereinafter, the silicon oxide film remaining under the gate electrode 27 after the etching is referred to as a gate insulating film, and is indicated by reference numeral 26.

【0032】次いで、レジスト膜24を除去した後、C
VD法により、ゲート電極27表面と活性層13の表面
に下地酸化膜28を形成する(図17)。次に、ボロンイ
オンを全面に照射すると、ゲート電極27がマスクとな
り、互いに隣接するゲート電極27間の領域の活性層1
3表面に、ボロンイオンが注入され、P型注入層29が
形成される(図18)。
Next, after removing the resist film 24, C
A base oxide film 28 is formed on the surface of the gate electrode 27 and the surface of the active layer 13 by the VD method (FIG. 17). Next, when the entire surface is irradiated with boron ions, the gate electrode 27 serves as a mask, and the active layer 1 in the region between the adjacent gate electrodes 27 is formed.
Boron ions are implanted into the three surfaces to form a P-type implanted layer 29 (FIG. 18).

【0033】次いで、熱処理を行うと、P型注入層29
が活性層13内で拡散され、活性層13の表面から深さ
方向に、P型不純物拡散層からなり、開口25のパター
ンに従った細長の主拡散層30が複数形成される(図1
9)。ここでは深さ2μmの主拡散層30が形成されて
いる。この主拡散層30は、その端部がゲート電極27
の下方に位置し、かつ電流通路拡散層19と離間するよ
うに形成されている。
Next, when heat treatment is performed, the P-type injection layer 29 is formed.
Are diffused in the active layer 13, and a plurality of elongated main diffusion layers 30 are formed in the depth direction from the surface of the active layer 13, each of which is formed of a P-type impurity diffusion layer according to the pattern of the opening 25 (FIG. 1).
9). Here, a main diffusion layer 30 having a depth of 2 μm is formed. The main diffusion layer 30 has an end portion at the gate electrode 27.
And is formed so as to be separated from the current path diffusion layer 19.

【0034】次に、下地酸化膜28上に、パターニング
されたレジスト膜31を形成する。そのレジスト膜31
の開口は、細長に形成され、各主拡散層30の略中央に
位置するように配置されている(図20)。その状態で、
全面にボロンイオンを照射すると、各開口32を介して
各主拡散層30の表面にボロンイオンが注入され、P型
注入層33が形成される(図21)。
Next, a patterned resist film 31 is formed on the underlying oxide film 28. The resist film 31
Are formed to be elongated, and are arranged so as to be located substantially at the center of each main diffusion layer 30 (FIG. 20). In that state,
When the entire surface is irradiated with boron ions, boron ions are implanted into the surface of each main diffusion layer 30 through each opening 32 to form a P-type implanted layer 33 (FIG. 21).

【0035】次いで、レジスト膜31を除去した後、熱
処理すると、P型注入層33が主拡散層30内で拡散さ
れ、主拡散層30の表面から深さ方向に、P型不純物が
拡散されてなる細長の副拡散層34が複数形成される
(図22)。
Next, when the resist film 31 is removed and then heat-treated, the P-type implanted layer 33 is diffused in the main diffusion layer 30 and P-type impurities are diffused from the surface of the main diffusion layer 30 in the depth direction. A plurality of elongated sub-diffusion layers 34 are formed.
(FIG. 22).

【0036】次に、各副拡散層34上の下地酸化膜28
の表面に、副拡散層34上であって、副拡散層34の幅
よりもやや狭い細長のレジスト膜35を複数形成した後
(図23)、全面に砒素イオンを照射すると、副拡散層3
4の両側の主拡散層30に、それぞれ砒素イオンが注入
され、細長のN型注入層36が形成される(図24)。
Next, the underlying oxide film 28 on each sub-diffusion layer 34
After forming a plurality of elongated resist films 35 on the sub-diffusion layer 34 and slightly smaller than the width of the sub-diffusion layer 34,
(FIG. 23), when the entire surface is irradiated with arsenic ions,
Arsenic ions are implanted into the main diffusion layers 30 on both sides of the substrate 4, respectively, to form elongated N-type implanted layers 36 (FIG. 24).

【0037】次いで、レジスト膜35を除去し、熱処理
すると、N型注入層36が主拡散層30内で拡散され、
主拡散層30の表面から、N型不純物が拡散されてなる
細長のソース拡散層37が複数形成される(図25)。こ
のソース拡散層37は、その端部がゲート電極37の端
部の下に位置しており、主拡散層30の端部よりも内側
に位置している。従って、電流通路拡散層19とソース
拡散層37との間の活性層13の表面には、活性層13
と、主拡散層30とが配置され、これらの活性層13と
主拡散層30により、図25の符号99に示すチャネル
領域が形成されることになる。
Next, when the resist film 35 is removed and heat-treated, the N-type implanted layer 36 is diffused in the main diffusion layer 30,
From the surface of the main diffusion layer 30, a plurality of elongated source diffusion layers 37 formed by diffusing N-type impurities are formed (FIG. 25). The end of the source diffusion layer 37 is located below the end of the gate electrode 37, and is located inside the end of the main diffusion layer 30. Therefore, the surface of the active layer 13 between the current path diffusion layer 19 and the source diffusion layer 37 is
And a main diffusion layer 30, and the active layer 13 and the main diffusion layer 30 form a channel region indicated by reference numeral 99 in FIG.

【0038】次に、PSG膜からなる層間絶縁膜38を
下地酸化膜28の全面に成膜する(図26)。その後、パ
ターニングされたレジスト膜40を層間絶縁膜38上に
形成する。このレジスト膜40の開口53は、副拡散層
34とその両側のソース拡散層37の形成領域とにわた
って細長に配置されている(図27)。
Next, an interlayer insulating film 38 made of a PSG film is formed on the entire surface of the underlying oxide film 28 (FIG. 26). After that, a patterned resist film 40 is formed on the interlayer insulating film 38. The opening 53 of the resist film 40 is narrowly arranged over the sub-diffusion layer 34 and the formation region of the source diffusion layer 37 on both sides thereof (FIG. 27).

【0039】次いで、レジスト膜40をマスクにして層
間絶縁膜38及び下地酸化膜28をエッチングすると、
開口53の底面から副拡散層34とその両側のソース拡
散層37とが露出する。レジスト膜40を除去すると、
層間絶縁膜38及び下地酸化膜28を貫通する孔54が
形成され、その孔54の底面から、副拡散層34とその
両側のソース拡散層37とが露出する(図28)。
Next, the interlayer insulating film 38 and the underlying oxide film 28 are etched using the resist film 40 as a mask.
The sub-diffusion layer 34 and the source diffusion layers 37 on both sides thereof are exposed from the bottom surface of the opening 53. When the resist film 40 is removed,
A hole 54 penetrating through the interlayer insulating film 38 and the base oxide film 28 is formed, and the sub-diffusion layer 34 and the source diffusion layers 37 on both sides thereof are exposed from the bottom surface of the hole 54 (FIG. 28).

【0040】その後、全面にAl薄膜をスパッタ法で形
成して、ソース電極膜41を形成すると、そのソース電
極膜41は、副拡散層34とその両側のソース拡散層3
7とに接続される。その後、基板裏面に金属薄膜を蒸着
法で形成し、ドレイン電極膜51を成膜する。すると、
そのドレイン電極膜51は、シリコン基板11に接続さ
れる。以上の工程を経て、図29に示すようなパワーM
OSFET1が形成される。図31に、パワーMOSF
ET1の素子周辺部の平面図を示す。図29は図31の
B−B線断面図に対応している。
Thereafter, a source electrode film 41 is formed by forming an Al thin film on the entire surface by sputtering, and the source electrode film 41 is formed by the sub-diffusion layer 34 and the source diffusion layers 3 on both sides thereof.
7 is connected. Thereafter, a metal thin film is formed on the back surface of the substrate by an evaporation method, and a drain electrode film 51 is formed. Then
The drain electrode film 51 is connected to the silicon substrate 11. Through the above steps, the power M shown in FIG.
OSFET1 is formed. FIG. 31 shows a power MOSF
FIG. 4 shows a plan view of an element peripheral portion of ET1. FIG. 29 corresponds to a sectional view taken along line BB of FIG.

【0041】このパワーMOSFET1を使用する場
合、ソース電極41を接地電位に置き、ドレイン電極5
1に正電圧を印加した状態でゲート電極27にスレッシ
ョルド以上のゲート電圧(正電圧)を印加すると、P型の
主拡散層30表面にN型の反転層が形成され、ソース拡
散層37と電流通路拡散層19とが反転層によって接続
され、図30に示すように、ドレイン電極51から、シ
リコン基板11、ドレイン層12、電流通路拡散層1
9、反転層、ソース拡散層37を順次介してソース電極
41へと電流Iが流れる。
When this power MOSFET 1 is used, the source electrode 41 is set at the ground potential and the drain electrode 5
When a gate voltage (positive voltage) equal to or higher than a threshold is applied to the gate electrode 27 while a positive voltage is applied to the N.1, an N-type inversion layer is formed on the surface of the P-type main diffusion layer 30, and the source diffusion layer 37 and the current The channel diffusion layer 19 is connected to the channel diffusion layer 19 by an inversion layer, and as shown in FIG.
9, a current I flows to the source electrode 41 via the inversion layer and the source diffusion layer 37 in this order.

【0042】本実施形態のパワーMOSFET1内部の
電界強度分布を図32に示す。図32のグラフの縦軸
(E)は電界強度の大きさを示しており、横軸(y)は、図
30に示したパワーMOSFET1の主拡散層30の表
面を原点とし、その原点からN +型シリコン基板11に
垂直に達する線分上の位置を示している。
The inside of the power MOSFET 1 of this embodiment is
FIG. 32 shows the electric field intensity distribution. The vertical axis of the graph of FIG.
(E) shows the magnitude of the electric field strength, and the horizontal axis (y) shows the figure.
Table of the main diffusion layer 30 of the power MOSFET 1 shown in FIG.
With the surface as the origin, N +Mold silicon substrate 11
The position on the line segment that reaches vertically is shown.

【0043】図30のA−A線は、副拡散層34内の一
点から、ソース拡散層37を通らず、活性層13とドレ
イン層12とを通ってN+型シリコン基板11に垂直に
達する線分を示しており、図32中の折れ線(A)は、そ
のA−A線上の位置と電界強度の関係を示すグラフであ
る。
The line AA in FIG. 30 reaches the N + type silicon substrate 11 from one point in the sub-diffusion layer 34 through the active layer 13 and the drain layer 12 without passing through the source diffusion layer 37. 32 shows a line segment, and a broken line (A) in FIG. 32 is a graph showing a relationship between a position on the AA line and an electric field intensity.

【0044】本実施形態のパワーMOSFET1では、
活性層13の内部には、N型不純物が拡散された電流通
路拡散層19から活性層13内へ向けて横方向に広がる
空乏層と、N型不純物が拡散されたドレイン層12から
活性層13内へと縦方向に広がる空乏層とが生じ、横方
向に広がる空乏層と縦方向に広がる空乏層とが繋がった
状態になる。
In the power MOSFET 1 of the present embodiment,
In the active layer 13, a depletion layer extending in the lateral direction from the current path diffusion layer 19 into which the N-type impurity is diffused into the active layer 13, and a drain layer 12 from which the N-type impurity is diffused to the active layer 13 are formed. A depletion layer extending in the vertical direction is generated inside, and the depletion layer expanding in the horizontal direction and the depletion layer expanding in the vertical direction are connected.

【0045】このため、活性層13内での電界強度は、
折れ線(A)に示すように一定値をとり、活性層13とド
レイン層12との間のpn接合(横軸yのx2)で最大電
界強度Sをとる。
Therefore, the electric field strength in the active layer 13 is
As shown by the polygonal line (A), a constant value is taken, and the maximum electric field strength S is taken at the pn junction (x 2 of the horizontal axis y) between the active layer 13 and the drain layer 12.

【0046】図32中、折れ線(B)は、本実施形態のパ
ワーMOSFET1において、電流通路拡散層19が形
成されていない素子の電界強度分布を示している。折れ
線(B)は、折れ線(A)と同じ最大電界強度Sが加えられ
た場合における図30のA−A線上の位置と電界強度と
の関係を示している。
In FIG. 32, the polygonal line (B) indicates the electric field intensity distribution of the device in which the current path diffusion layer 19 is not formed in the power MOSFET 1 of the present embodiment. The broken line (B) shows the relationship between the position on the line AA in FIG. 30 and the electric field strength when the same maximum electric field strength S as that of the broken line (A) is applied.

【0047】この場合には、電流通路拡散層19から活
性層13へ向けて横方向に広がる空乏層が存在しないの
で、ドレイン層12から活性層13内へと縦方向に広が
る空乏層のみが存在することになる。従って、折れ線
(B)に示すように、電界強度は活性層13とドレイン層
12との間のpn接合(横軸yのx2)で最大値をとる
が、折れ線(A)で示した電界強度と異なり、主拡散層3
0内では常に0をとり、活性層13内(横軸のx1〜x2)
では単調に増加するので、活性層13内では電界強度E
は一定値をとりえない。
In this case, there is no depletion layer extending in the horizontal direction from current path diffusion layer 19 to active layer 13, and only a depletion layer extending in the vertical direction from drain layer 12 to active layer 13 is present. Will do. Therefore, a broken line
As shown in (B), the electric field strength takes the maximum value at the pn junction (x 2 of the horizontal axis y) between the active layer 13 and the drain layer 12, but differs from the electric field strength shown by the polygonal line (A). , Main diffusion layer 3
It always takes 0 in 0, and in the active layer 13 (x 1 to x 2 on the horizontal axis)
In the active layer 13, the electric field intensity E monotonically increases.
Cannot take a constant value.

【0048】折れ線(A)と折れ線(B)に示す電界強度を
深さ方向について積分した積分値を比較すると、折れ線
(A)に示す電界強度の積分値が折れ線(B)の積分値に比
して大きくなる。この積分値は、耐圧に対応する値なの
で、本実施形態のパワーMOSFET1の耐圧は、電流
通路拡散層19が設けられていない素子のように、空乏
層が一方向にしか広がらない素子に比して高くなる。従
来の素子においても、空乏層は一方向にしか広がらない
ので、本実施形態のパワーMOSFET1は、従来の素
子に比して耐圧が高くなっている。
When the integrated values obtained by integrating the electric field strengths shown in the broken line (A) and the broken line (B) in the depth direction are compared, the broken line
The integral value of the electric field strength shown in FIG. 3A is larger than the integral value of the broken line B. Since this integrated value corresponds to the withstand voltage, the withstand voltage of the power MOSFET 1 of the present embodiment is smaller than that of an element in which the depletion layer extends only in one direction, such as an element without the current path diffusion layer 19. Get higher. Also in the conventional device, the depletion layer extends in only one direction, so that the power MOSFET 1 of the present embodiment has a higher breakdown voltage than the conventional device.

【0049】また、本実施形態のパワーMOSFET1
を、従来と同じ耐圧に設定した場合には、ドレイン層1
2の不純物濃度を高くして、かつドレイン層12の厚み
を薄くすることができるので、ドレイン層12の抵抗成
分を従来に比して小さくして、導通抵抗を低くすること
ができる。
The power MOSFET 1 according to the present embodiment
Is set to the same withstand voltage as before, the drain layer 1
2 can be increased and the thickness of the drain layer 12 can be reduced, so that the resistance component of the drain layer 12 can be reduced as compared with the related art, and the conduction resistance can be reduced.

【0050】上述したパワーMOSFET1の、素子周
辺部の断面図を図33に示す。図33は図31のC−C
線断面図である。図33に示すように、素子周辺部に
は、素子を取り囲むように形成された縦穴の内部壁面
に、深穴17の内部に形成された熱酸化膜20と同時に
形成された熱酸化膜80が形成され、その内部に、充填
物91と同時に形成され、ポリシリコンからなる充填物
81が形成されている。これらの充填物81及び熱酸化
膜80の周辺には、電流通路拡散層19と同じ工程で形
成されたN型拡散領域79が形成されている。
FIG. 33 is a cross-sectional view of the peripheral portion of the power MOSFET 1 described above. FIG. 33 is a cross-sectional view of CC of FIG.
It is a line sectional view. As shown in FIG. 33, a thermal oxide film 80 formed simultaneously with the thermal oxide film 20 formed inside the deep hole 17 is formed on the inner wall surface of a vertical hole formed so as to surround the element around the element. A filling material 81 formed simultaneously with the filling material 91 and made of polysilicon is formed therein. An N-type diffusion region 79 formed in the same step as the current path diffusion layer 19 is formed around the filler 81 and the thermal oxide film 80.

【0051】なお、パワーMOSFET1の平面構造を
図31に示したが、本発明はこれに限られるものではな
く、図34に示すように、ポリシリコンからなる充填物
91が格子状に形成され、副拡散層34、ソース拡散層
37、電流通路拡散層19及び熱酸化膜20が島状に形
成されるような平面構造としてもよい。
Although the planar structure of the power MOSFET 1 is shown in FIG. 31, the present invention is not limited to this. As shown in FIG. 34, a filling material 91 made of polysilicon is formed in a lattice shape. The planar structure may be such that the sub-diffusion layer 34, the source diffusion layer 37, the current path diffusion layer 19, and the thermal oxide film 20 are formed in an island shape.

【0052】また、上述のパワーMOSFET1は、縦
穴17の内部壁面に熱酸化膜20が形成され、熱酸化膜
20表面に充填物91が形成されて縦穴17が充填され
るように構成されていたが、本発明の電界効果トランジ
スタはこれに限らず、例えば、図35にその断面を示す
ように、ポリシリコンからなる充填物91のみで深穴1
7が構成されるような構造のパワーMOSFET61と
してもよい。このパワーMOSFET61の素子周辺部
の断面図を図37に示し、素子周辺部の平面図を図38
に示す。図35、図37は、それぞれ図38のD−D線
断面図、E−E線断面図に対応している。
Further, the above-mentioned power MOSFET 1 is configured such that the thermal oxide film 20 is formed on the inner wall surface of the vertical hole 17, the filling material 91 is formed on the surface of the thermal oxide film 20, and the vertical hole 17 is filled. However, the field effect transistor of the present invention is not limited to this. For example, as shown in FIG.
7 may be configured as the power MOSFET 61. FIG. 37 is a cross-sectional view of the element periphery of the power MOSFET 61, and FIG.
Shown in FIGS. 35 and 37 correspond to the sectional view taken along the line DD and the line EE of FIG. 38, respectively.

【0053】また、パワーMOSFET61の平面構造
を図38に示したが、本発明はこれに限られるものでは
なく、図39に示すように、ポリシリコンからなる充填
物91が格子状に形成され、副拡散層34、ソース拡散
層37及び電流通路拡散層19が島状に形成されるよう
な平面構造としてもよい。
Although the planar structure of the power MOSFET 61 is shown in FIG. 38, the present invention is not limited to this. As shown in FIG. 39, a filling 91 made of polysilicon is formed in a lattice shape. The planar structure may be such that the sub-diffusion layer 34, the source diffusion layer 37, and the current path diffusion layer 19 are formed in an island shape.

【0054】さらに、本発明の電界効果トランジスタの
構造は、以上までに述べたパワーMOSFET1、61
に限らず、例えば図36にその断面を示すように、シリ
コン酸化膜などの絶縁膜から構成される充填物63のみ
で、深穴17が充填される構造のパワーMOSFET6
2としてもよい。
Further, the structure of the field effect transistor of the present invention is the same as that of the power MOSFETs 1 and 61 described above.
However, as shown in FIG. 36, for example, as shown in FIG. 36, the power MOSFET 6 having a structure in which the deep hole 17 is filled with only the filling 63 made of an insulating film such as a silicon oxide film.
It may be 2.

【0055】また、上述のパワーMOSFET1、6
1、62では、半導体基板としてN+型シリコン基板1
1を用いたが、本発明の電界効果トランジスタの構造は
これに限られるものではなく、N+型シリコン基板11
に代えてP型シリコン基板81を用いた、図40にその
断面を示す構造のIGBT(Insulated gate bipolar tr
ansistor)64としてもよい。
Further, the above-mentioned power MOSFETs 1, 6
1 and 62, an N + type silicon substrate 1 is used as a semiconductor substrate.
1 was used, but the structure of the field effect transistor of the present invention is not limited thereto, N + -type silicon substrate 11
An IGBT (Insulated gate bipolar transistor) having a structure whose cross section is shown in FIG.
ansistor) 64.

【0056】さらに、上述したパワーMOSFET1、
61、62と、IGBT64では、縦穴17の底部がド
レイン層12の表面にまで達しないように形成されてい
るが、本発明の電界効果トランジスタはこれに限られる
ものではなく、例えば図41に示すように、縦穴17の
底部がドレイン層12にまで達する構造のパワーMOS
FET67としてもよい。同様に、縦穴17の底部がド
レイン層12にまで達する構造において、図43に示す
ように縦穴17内部にポリシリコンからなる充填物91
のみが充填された構造のパワーMOSFET65を構成
してもよく、図44に示すように縦穴17内部に絶縁膜
からなる充填物63のみが充填された構造のパワーMO
SFET66を構成してもよい。
Further, the power MOSFET 1 described above,
61 and 62 and the IGBT 64, the bottom of the vertical hole 17 is formed so as not to reach the surface of the drain layer 12. However, the field effect transistor of the present invention is not limited to this. Power MOS having a structure in which the bottom of the vertical hole 17 reaches the drain layer 12
The FET 67 may be used. Similarly, in a structure in which the bottom of the vertical hole 17 reaches the drain layer 12, as shown in FIG.
A power MOSFET 65 having a structure in which only the filling 63 made of an insulating film is filled in the vertical hole 17 as shown in FIG.
The SFET 66 may be configured.

【0057】また、縦穴17の底部がドレイン層12に
まで達する構造の電界効果トランジスタは、上述したパ
ワーMOSFET65、66、67に限られるものでは
なく、N+型シリコン基板11に代えてP型シリコン基
板81を用い、図42にその断面を示す構造のIGBT
64としてもよい。
[0057] The field effect transistor structure in which the bottom portion of the vertical hole 17 reaches the drain layer 12 is not limited to the power MOSFET65,66,67 described above, P-type silicon in place of the N + -type silicon substrate 11 IGBT having a structure using a substrate 81 and having a cross section shown in FIG.
It may be 64.

【0058】なお、本実施形態では、N型を第1導電型
とし、P型を第2導電型としており、P型ボディ領域1
5と、P+型拡散領域24とで、本発明の反対導電領域
の一例を構成しているが、本発明はこれに限らず、P型
を第1導電型とし、N型を第2導電型としてもよい。
In this embodiment, the N type is the first conductivity type and the P type is the second conductivity type.
5 and the P + type diffusion region 24 constitute an example of the opposite conductive region of the present invention, but the present invention is not limited to this, and the P type is the first conductive type and the N type is the second conductive type. It may be a type.

【0059】また、ソース電極膜37としてAl膜を用
いているが、本発明はこれに限らず、例えば銅膜などを
用いてもよい。さらに、ドレイン層12をエピタキシャ
ル成長で形成しているが、本発明のドレイン層12の形
成方法はこれに限らず、表面拡散で形成してもよい。
Although an Al film is used as the source electrode film 37, the present invention is not limited to this. For example, a copper film may be used. Furthermore, although the drain layer 12 is formed by epitaxial growth, the method of forming the drain layer 12 of the present invention is not limited to this, and may be formed by surface diffusion.

【0060】また、上述の実施形態ではいずれも半導体
基板としてシリコン基板を用いているが、本発明の半導
体基板はこれに限らず、例えばSiC等の基板に適用し
てもよい。
In each of the above embodiments, a silicon substrate is used as a semiconductor substrate. However, the semiconductor substrate of the present invention is not limited to this, and may be applied to a substrate such as SiC.

【0061】また、ゲート絶縁膜19としてシリコン酸
化膜を用いたが、本発明のゲート絶縁膜19はこれに限
らず、例えばシリコン窒化膜を用いてもよいし、シリコ
ン酸化膜とシリコン窒化膜との複合膜を用いてもよい。
Although the silicon oxide film is used as the gate insulating film 19, the gate insulating film 19 of the present invention is not limited to this. For example, a silicon nitride film may be used, or a silicon oxide film and a silicon nitride film may be used. May be used.

【0062】[0062]

【発明の効果】パワーMOSFETの耐圧を高くするこ
とができる。従来と同一の耐圧とした場合には、従来に
比して、導通抵抗が小さくなる。
The withstand voltage of the power MOSFET can be increased. When the breakdown voltage is the same as in the conventional case, the conduction resistance is smaller than in the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態のパワーMOSFETの製
造工程を説明する断面図
FIG. 1 is a sectional view illustrating a manufacturing process of a power MOSFET according to an embodiment of the present invention.

【図2】その続きの工程を説明する断面図FIG. 2 is a sectional view illustrating a subsequent step.

【図3】その続きの工程を説明する断面図FIG. 3 is a sectional view illustrating a subsequent step.

【図4】その続きの工程を説明する断面図FIG. 4 is a sectional view illustrating a subsequent step.

【図5】その続きの工程を説明する断面図FIG. 5 is a sectional view illustrating a subsequent step.

【図6】その続きの工程を説明する断面図FIG. 6 is a sectional view illustrating a subsequent step.

【図7】その続きの工程を説明する断面図FIG. 7 is a sectional view illustrating a subsequent step.

【図8】その続きの工程を説明する断面図FIG. 8 is a sectional view illustrating a subsequent step.

【図9】その続きの工程を説明する断面図FIG. 9 is a sectional view illustrating a subsequent step.

【図10】その続きの工程を説明する断面図FIG. 10 is a sectional view illustrating a subsequent step.

【図11】その続きの工程を説明する断面図FIG. 11 is a sectional view illustrating a subsequent step.

【図12】その続きの工程を説明する断面図FIG. 12 is a sectional view illustrating a subsequent step.

【図13】その続きの工程を説明する断面図FIG. 13 is a sectional view illustrating a subsequent step.

【図14】その続きの工程を説明する断面図FIG. 14 is a sectional view illustrating a subsequent step.

【図15】その続きの工程を説明する断面図FIG. 15 is a sectional view illustrating a subsequent step.

【図16】その続きの工程を説明する断面図FIG. 16 is a sectional view illustrating a subsequent step.

【図17】その続きの工程を説明する断面図FIG. 17 is a sectional view illustrating a subsequent step.

【図18】その続きの工程を説明する断面図FIG. 18 is a sectional view illustrating a subsequent step.

【図19】その続きの工程を説明する断面図FIG. 19 is a sectional view illustrating a subsequent step.

【図20】その続きの工程を説明する断面図FIG. 20 is a sectional view illustrating a subsequent step.

【図21】その続きの工程を説明する断面図FIG. 21 is a sectional view illustrating a subsequent step.

【図22】その続きの工程を説明する断面図FIG. 22 is a sectional view illustrating a subsequent step.

【図23】その続きの工程を説明する断面図FIG. 23 is a sectional view illustrating a subsequent step.

【図24】その続きの工程を説明する断面図FIG. 24 is a sectional view illustrating a subsequent step.

【図25】その続きの工程を説明する断面図FIG. 25 is a sectional view illustrating a subsequent step.

【図26】その続きの工程を説明する断面図FIG. 26 is a sectional view illustrating a subsequent step.

【図27】その続きの工程を説明する断面図FIG. 27 is a sectional view illustrating a subsequent step.

【図28】その続きの工程を説明する断面図FIG. 28 is a sectional view illustrating a subsequent step.

【図29】その続きの工程を説明する断面図FIG. 29 is a sectional view illustrating a subsequent step.

【図30】本発明の一実施形態のパワーMOSFETの
動作を説明する断面図
FIG. 30 is a sectional view for explaining the operation of the power MOSFET according to one embodiment of the present invention;

【図31】本発明の一実施形態のパワーMOSFETの
平面図
FIG. 31 is a plan view of a power MOSFET according to an embodiment of the present invention.

【図32】本発明の一実施形態のパワーMOSFET内
部の電界強度分布を説明するグラフ
FIG. 32 is a graph illustrating an electric field intensity distribution inside a power MOSFET according to an embodiment of the present invention.

【図33】本発明の一実施形態のパワーMOSFETの
周辺部分の断面図
FIG. 33 is a sectional view of a peripheral portion of the power MOSFET according to the embodiment of the present invention;

【図34】本発明の一実施形態のパワーMOSFETの
他の平面構造を説明する平面図
FIG. 34 is a plan view illustrating another plan structure of the power MOSFET according to the embodiment of the present invention.

【図35】本発明の一実施形態のパワーMOSFETに
おいて、縦穴内にポリシリコン薄膜のみが充填された素
子構造を説明する断面図
FIG. 35 is a sectional view illustrating an element structure in which only a polysilicon thin film is filled in a vertical hole in a power MOSFET according to an embodiment of the present invention.

【図36】本発明の一実施形態のパワーMOSFETに
おいて、縦穴内に絶縁膜のみが充填された素子構造を説
明する断面図
FIG. 36 is a cross-sectional view illustrating an element structure in which only an insulating film is filled in a vertical hole in a power MOSFET according to an embodiment of the present invention.

【図37】本発明の一実施形態のパワーMOSFETに
おいて、縦穴内にポリシリコン薄膜のみが充填された素
子の、周辺部分の断面図
FIG. 37 is a cross-sectional view of a peripheral portion of an element in which only a polysilicon thin film is filled in a vertical hole in a power MOSFET according to an embodiment of the present invention;

【図38】本発明の一実施形態のパワーMOSFETに
おいて、縦穴内にポリシリコン薄膜のみが充填された素
子の、周辺部分を含む平面図
FIG. 38 is a plan view including a peripheral portion of an element in which only a polysilicon thin film is filled in a vertical hole in a power MOSFET according to an embodiment of the present invention.

【図39】本発明の一実施形態のパワーMOSFETに
おいて、縦穴内にポリシリコン薄膜のみが充填された素
子の、他の平面構造の一例を説明する平面図
FIG. 39 is a plan view illustrating an example of another planar structure of an element in which only a polysilicon thin film is filled in a vertical hole in a power MOSFET according to an embodiment of the present invention.

【図40】本発明の一実施形態のIGBTを説明する断
面図
FIG. 40 is a cross-sectional view illustrating an IGBT of one embodiment of the present invention.

【図41】本発明の一実施形態のパワーMOSFETに
おいて、縦穴の底部がドレイン層にまで達する素子構造
を説明する断面図
FIG. 41 is a cross-sectional view illustrating an element structure in which the bottom of the vertical hole reaches the drain layer in the power MOSFET according to the embodiment of the present invention;

【図42】本発明の電界効果トランジスタにおいて、縦
穴の底部がドレイン層にまで達する構造のIGBTを説
明する断面図
FIG. 42 is a cross-sectional view illustrating an IGBT having a structure in which the bottom of a vertical hole reaches a drain layer in the field-effect transistor of the present invention.

【図43】本発明の一実施形態のパワーMOSFETに
おいて、縦穴の底部がドレイン層にまで達し、縦穴内部
にポリシリコン薄膜のみが充填された素子構造を説明す
る断面図
FIG. 43 is a cross-sectional view illustrating an element structure in which the bottom of the vertical hole reaches the drain layer and only the polysilicon thin film is filled in the vertical hole in the power MOSFET according to one embodiment of the present invention;

【図44】本発明の一実施形態のパワーMOSFETに
おいて、縦穴の底部がドレイン層にまで達し、縦穴内部
に絶縁膜のみが充填された素子構造を説明する断面図
FIG. 44 is a cross-sectional view illustrating an element structure in which the bottom of the vertical hole reaches the drain layer and only the insulating film is filled in the vertical hole in the power MOSFET according to the embodiment of the present invention;

【図45】従来のMOSFETの構造を説明する断面図FIG. 45 is a cross-sectional view illustrating the structure of a conventional MOSFET.

【図46】従来のMOSFETの構造を説明する平面図FIG. 46 is a plan view illustrating the structure of a conventional MOSFET.

【符号の説明】[Explanation of symbols]

1、61、62、65、66……パワーMOSFET
(電界効果トランジスタ)64、68……IGBT(電界
効果トランジスタ) 11……シリコン基板(半導体
層) 12……ドレイン層 13……活性層 19
……電流通路拡散層 21……絶縁膜 26……ゲ
ート絶縁膜 27……ゲート電極 30……主拡散
層 34……副拡散層 37……ソース拡散層
41……ソース電極 51……ドレイン電極 91
……充填物
1, 61, 62, 65, 66 ... Power MOSFET
(Field effect transistors) 64, 68 IGBT (Field effect transistor) 11 Silicon substrate (semiconductor layer) 12 Drain layer 13 Active layer 19
... Current path diffusion layer 21... Insulating film 26... Gate insulating film 27... Gate electrode 30... Primary diffusion layer 34.
41 ... source electrode 51 ... drain electrode 91
…… filling

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】第1の導電型のドレイン層と、 前記ドレイン層上に配置され、前記第1の導電型とは反
対の導電型である第2導電型の活性層と、 前記活性層内の表面側に配置され、前記第1の導電型の
拡散層で構成されたソース拡散層と、 前記ソース拡散層と離間した位置に形成された縦穴と、 前記縦穴の壁面の、少なくとも前記ソース拡散層と対向
する面から前記第1の導電型の不純物が前記活性層内に
拡散されて形成された電流通路拡散層と、 前記縦穴内を充填する充填物と、 前記活性層内の表面近傍であって、前記ソース拡散層と
前記電流通路拡散層との間に位置し、前記ソース拡散層
に接して配置された前記第2の導電型のチャネル領域
と、 前記チャネル領域上に配置されたゲート絶縁膜と、 前記ゲート絶縁膜上に配置されたゲート電極と、 前記ソース拡散層に接続されたソース電極と、 前記ドレイン層に接続された裏面電極とを有する電界効
果トランジスタ。
A drain layer of a first conductivity type; an active layer of a second conductivity type disposed on the drain layer and having a conductivity type opposite to the first conductivity type; A source diffusion layer formed of the diffusion layer of the first conductivity type, a vertical hole formed at a position separated from the source diffusion layer, and at least the source diffusion of a wall surface of the vertical hole. A current path diffusion layer formed by diffusing the first conductivity type impurity into the active layer from a surface facing the layer; a filler filling the vertical hole; and a surface near the surface in the active layer. A second conductive type channel region located between the source diffusion layer and the current path diffusion layer and in contact with the source diffusion layer; and a gate disposed on the channel region. An insulating film; and a gate disposed on the gate insulating film. Gate electrode and a source electrode connected to the source diffusion layer, a field effect transistor having a back surface electrode connected to the drain layer.
【請求項2】前記充填物は半導体材料で構成され、 前記半導体材料と前記電流通路拡散層との間には絶縁膜
が配置され、互いに絶縁された請求項1記載の電界効果
トランジスタ。
2. The field effect transistor according to claim 1, wherein the filling is made of a semiconductor material, and an insulating film is arranged between the semiconductor material and the current path diffusion layer, and is insulated from each other.
【請求項3】前記半導体材料は浮遊電位に置かれている
請求項2記載の電界効果トランジスタ。
3. The field effect transistor of claim 2, wherein said semiconductor material is at a floating potential.
【請求項4】前記充填物は絶縁物で構成された請求項1
記載の電界効果トランジスタ。
4. The method according to claim 1, wherein the filling is made of an insulating material.
A field-effect transistor according to claim 1.
【請求項5】前記縦穴底部は前記活性層内に位置し、前
記電流通路拡散層が前記ドレイン層と接している請求項
1乃至請求項4のいずれか1項記載の電界効果トランジ
スタ。
5. The field effect transistor according to claim 1, wherein the bottom of the vertical hole is located in the active layer, and the current path diffusion layer is in contact with the drain layer.
【請求項6】前記縦穴底部は前記ドレイン層内に位置
し、前記電流通路拡散層は前記縦穴よりも深い位置まで
伸ばされ、前記電流通路拡散層が前記ドレイン層と接し
ている請求項1乃至請求項5のいずれか1項記載の電界
効果トランジスタ。
6. The vertical hole is located in the drain layer, the current path diffusion layer is extended to a position deeper than the vertical hole, and the current path diffusion layer is in contact with the drain layer. The field-effect transistor according to claim 5.
【請求項7】前記電流通路拡散層を形成する際に、前記
第1の導電型の不純物は前記縦穴底部から前記活性層内
に拡散され、前記電流通路拡散層の一部は前記縦穴の底
部に位置する請求項1乃至請求項6のいずれか1項記載
の電界効果トランジスタ。
7. When forming the current path diffusion layer, the impurities of the first conductivity type are diffused from the bottom of the vertical hole into the active layer, and a part of the current path diffusion layer is formed at the bottom of the vertical hole. The field-effect transistor according to claim 1, wherein
【請求項8】前記縦穴は細長の溝に形成され、該縦穴の
両側に、前記ソース拡散層と前記チャネル領域と前記ゲ
ート絶縁膜と前記ゲート電極とが配置された請求項1乃
至請求項7のいずれか1項記載の電界効果トランジス
タ。
8. The vertical hole is formed in an elongated groove, and the source diffusion layer, the channel region, the gate insulating film, and the gate electrode are arranged on both sides of the vertical hole. The field-effect transistor according to claim 1.
【請求項9】前記チャネル領域内の表面には、前記活性
層よりも表面濃度が高い第2導電型の主拡散層が配置さ
れた請求項1乃至請求項8のいずれか1項記載の電界効
果トランジスタ。
9. The electric field according to claim 1, wherein a main diffusion layer of a second conductivity type having a higher surface concentration than the active layer is disposed on a surface in the channel region. Effect transistor.
【請求項10】前記主拡散層内には、第2導電型の副拡
散層が前記活性層の表面側から拡散され、 前記副拡散層の表面濃度は前記主拡散層よりも高くさ
れ、 該副拡散層は前記ソース電極に接続された請求項1乃至
請求項9のいずれか1項記載の電界効果トランジスタ。
10. A sub-diffusion layer of a second conductivity type is diffused into the main diffusion layer from the surface side of the active layer, and the surface concentration of the sub-diffusion layer is made higher than that of the main diffusion layer. The field effect transistor according to claim 1, wherein a sub-diffusion layer is connected to the source electrode.
【請求項11】前記ドレイン層は、該ドレイン層と同じ
導電型の半導体層上に形成され、該半導体層に前記裏面
電極が接続された請求項1乃至請求項10のいずれか1
項記載の電界効果トランジスタ。
11. The semiconductor device according to claim 1, wherein the drain layer is formed on a semiconductor layer of the same conductivity type as the drain layer, and the back electrode is connected to the semiconductor layer.
Item 3. The field-effect transistor according to Item 1.
【請求項12】前記ドレイン層は、該ドレイン層と反対
の導電型の半導体層上に形成され、該半導体層に前記裏
面電極が接続された請求項1乃至請求項10のいずれか
1項記載の電界効果トランジスタ。
12. The semiconductor device according to claim 1, wherein the drain layer is formed on a semiconductor layer having a conductivity type opposite to that of the drain layer, and the back electrode is connected to the semiconductor layer. Field effect transistor.
JP2000098735A 2000-03-31 2000-03-31 Field effect transistor Pending JP2001284585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098735A JP2001284585A (en) 2000-03-31 2000-03-31 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098735A JP2001284585A (en) 2000-03-31 2000-03-31 Field effect transistor

Publications (1)

Publication Number Publication Date
JP2001284585A true JP2001284585A (en) 2001-10-12

Family

ID=18613186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098735A Pending JP2001284585A (en) 2000-03-31 2000-03-31 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2001284585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134684A (en) * 2013-05-01 2014-11-05 英飞凌科技奥地利有限公司 Super junction structure semiconductor device based on compensation structure including compensation layer and fill structure
JP2019068065A (en) * 2017-09-28 2019-04-25 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Silicon carbide semiconductor device with trench gate structure and vertical pn junction between body region and drift structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134684A (en) * 2013-05-01 2014-11-05 英飞凌科技奥地利有限公司 Super junction structure semiconductor device based on compensation structure including compensation layer and fill structure
US9627471B2 (en) 2013-05-01 2017-04-18 Infineon Technologies Austria Ag Super junction semiconductor device having strip structures in a cell area
CN104134684B (en) * 2013-05-01 2017-06-13 英飞凌科技奥地利有限公司 Super junction-semiconductor device based on interstitital texture, the collocation structure containing compensation layer
JP2019068065A (en) * 2017-09-28 2019-04-25 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Silicon carbide semiconductor device with trench gate structure and vertical pn junction between body region and drift structure
US10964808B2 (en) 2017-09-28 2021-03-30 Infineon Technologies Ag Silicon carbide semiconductor device with trench gate structure and vertical PN junction between body region and drift structure
US11195946B2 (en) 2017-09-28 2021-12-07 Infineon Technologies Ag Method of manufacturing a silicon carbide semiconductor device with trench gate structure and vertical pn junction between body region and drift structure

Similar Documents

Publication Publication Date Title
US6737704B1 (en) Transistor and method of manufacturing the same
US7649223B2 (en) Semiconductor device having superjunction structure and method for manufacturing the same
US6706615B2 (en) Method of manufacturing a transistor
US6670673B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20030080379A1 (en) Semiconductor device and method for manufacturing the same
TWI404205B (en) Igbt with fast reverse recovery time rectifier and manufacturing method thereof
JP2001102576A (en) Semiconductor device
KR100883795B1 (en) Symmetric trench mosfet device and method of making same
KR100214408B1 (en) Termination structure of semiconductor device and process for manufacture thereof
US7649222B2 (en) Semiconductor device
US6703665B1 (en) Transistor
JP2001127285A (en) Vertical field-effect transistor
US20010023957A1 (en) Trench-gate semiconductor devices
JP2000260990A (en) High-voltage element and its manufacture
KR100940643B1 (en) Method of fabricating semiconductor device
JP5023423B2 (en) Vertical insulated gate field effect transistor and manufacturing method thereof
US5143859A (en) Method of manufacturing a static induction type switching device
JP4576805B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP2001284585A (en) Field effect transistor
JPH11251590A (en) High breakdown voltage semiconductor device
US5264381A (en) Method of manufacturing a static induction type switching device
JPH11307768A (en) Silicon carbide semiconductor device and manufacture thereof
JP3303806B2 (en) Semiconductor device and manufacturing method thereof
JPH0282534A (en) Vertical mos-fet and manufacture thereof
JP2686125B2 (en) Static induction type switching element and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124