JPH10135489A - Diode - Google Patents

Diode

Info

Publication number
JPH10135489A
JPH10135489A JP32746496A JP32746496A JPH10135489A JP H10135489 A JPH10135489 A JP H10135489A JP 32746496 A JP32746496 A JP 32746496A JP 32746496 A JP32746496 A JP 32746496A JP H10135489 A JPH10135489 A JP H10135489A
Authority
JP
Japan
Prior art keywords
semiconductor region
type semiconductor
region
diode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32746496A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kono
好伸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP32746496A priority Critical patent/JPH10135489A/en
Publication of JPH10135489A publication Critical patent/JPH10135489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar diode that attain improvement in breakdown voltage. SOLUTION: The diode comprises an n<-> -type semiconductor region 11, a p-type semiconductor region 13, an n<+> -type semiconductor region 13a, an n-type semiconductor region 13b and a FLR(field limiting ring) region 14. The n<+> -type semiconductor region 13a is formed, so that the shortest distance between the FLR region 14 and the n<+> -type semiconductor region 13a will be longer than the shortest distance between the p-type semiconductor region 12 and the n<+> -type semiconductor region 13a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、耐圧向上が図られた
ダイオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diode with improved withstand voltage.

【0002】[0002]

【従来の技術】図1に示すように、N形半導体領域
(1)に包囲されるP形半導体領域(2)がN形半導
体領域(1)の主面に島状に露出したプレーナ形ダイオ
ードは公知である。図1のダイオードにおいては、N
形半導体領域(1)のP形半導体領域(2)と反対側の
主面に素子動作時の内部抵抗(ON抵抗)を低減するた
めに、N形半導体領域(1)よりも不純物濃度の高い
形半導体領域(3)が形成されている。また、N
形半導体領域(1)とP形半導体領域(2)の界面に形
成されるPN接合(4)の外周側の耐圧を向上させるた
めに、P形半導体領域(2)の外周を包囲するようにP
形半導体領域から成るフィールド・リミッティング・リ
ング即ちFLR(Field Limiting Ri
ng)領域(5)が形成されている。このFLR領域
(5)は、ガードリングと呼ばれることもあり、プレー
ナ構造の耐圧向上に寄与する。なお、(6)はアノード
電極、(7)はカソード電極である。
BACKGROUND ART As shown in FIG. 1, N - planar exposed like islands on the main surface of the type semiconductor region (1) - P-type semiconductor region surrounded on type semiconductor region (1) (2) N Shaped diodes are known. In the diode 1, N -
In order to reduce the internal resistance P-type semiconductor region (2) and the opposite main surface during device operation type semiconductor region (1) (ON resistance), N - type semiconductor region (1) of the impurity concentration than A high N + type semiconductor region (3) is formed. Also, N
In order to improve the breakdown voltage on the outer peripheral side of the PN junction (4) formed at the interface between the P-type semiconductor region (1) and the P-type semiconductor region (2), the outer periphery of the P-type semiconductor region (2) is surrounded. P
Limiting ring composed of a semiconductor region, that is, FLR (Field Limiting Ri).
ng) Region (5) is formed. This FLR region (5) is sometimes called a guard ring, and contributes to the improvement of the breakdown voltage of the planar structure. (6) is an anode electrode, and (7) is a cathode electrode.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のように
単にFLR領域(5)を形成しても、十分な耐圧向上効
果は得られなかった。この理由は、FLR領域(5)か
ら延びる空乏層がN半導体領域(3)に到達(リーチ
スルー)し、空乏層の広がりが制限され、空乏層による
電界緩和効果が十分に発揮されないためである。
However, even if the FLR region (5) is simply formed as in the prior art, a sufficient withstand voltage improvement effect has not been obtained. The reason for this is that the depletion layer extending from the FLR region (5) reaches (reach-through) the N + semiconductor region (3), the expansion of the depletion layer is limited, and the electric field relaxation effect of the depletion layer is not sufficiently exhibited. is there.

【0004】そこで、本発明は、耐圧向上を図ることが
できるプレーナ形ダイオードを提供することを目的とす
る。
Accordingly, an object of the present invention is to provide a planar diode capable of improving the breakdown voltage.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、半導体基板内に第1の導電形の第1の半導
体領域と、前記第1の半導体領域に側面及び底面が包囲
された前記第1の導電形と反対導電形である第2の導電
形の第2の半導体領域と、前記第1の半導体領域と前記
第2の半導体領域とは反対側で接し且つ前記第1の半導
体領域よりも不純物濃度の高い前記第1導電形の第3の
半導体領域と、前記第1の半導体領域に側面及び底面が
包囲された前記第2導電形のフィールド・リミッティン
グ・リング領域とが設けられ、前記半導体基板の一方の
主面において前記第2の半導体領域に第1の電極が接続
され、前記半導体基板の他方の主面において前記第3の
半導体領域に第2の電極が接続されたダイオードにおい
て、前記第3の半導体領域が前記第2の半導体領域の下
方に配置された第1の部分と前記フィールド・リミッテ
ィング・リング領域の下方に配置された第2の部分とを
有し、前記第1の部分と前記第1の半導体領域とが接す
る界面が前記第2の部分と前記第1の半導体領域とが接
する界面よりも前記半導体基板の一方の主面側に位置
し、前記フィールド・リミッティング・リング領域と前
記第3の半導体領域との最短距離が前記第2の半導体領
域と前記第3の半導体領域との最短距離よりも長くなっ
ていることを特徴とするダイオードに係わるものであ
る。なお、請求項2に示すように、平面的に見て、第1
の電極が第2の半導体領域に接続されている部分の最外
周縁とフィールド・リミッティング・リング領域の最内
周縁との間に第3の半導体領域の前記第1の部分の最外
周縁が位置するように前記第1の部分が形成されるのが
望ましい。
According to the present invention, there is provided a semiconductor device, comprising: a first semiconductor region of a first conductivity type in a semiconductor substrate; and a side surface and a bottom surface surrounded by the first semiconductor region. A second semiconductor region of a second conductivity type, which is a conductivity type opposite to the first conductivity type, and the first semiconductor region and the second semiconductor region are in contact with each other on the opposite side, and the first semiconductor region is in contact with the first semiconductor region. A third semiconductor region of the first conductivity type having a higher impurity concentration than the semiconductor region; and a field limiting ring region of the second conductivity type having a side surface and a bottom surface surrounded by the first semiconductor region. A first electrode is connected to the second semiconductor region on one main surface of the semiconductor substrate, and a second electrode is connected to the third semiconductor region on the other main surface of the semiconductor substrate. The third half. A body region having a first portion disposed below the second semiconductor region and a second portion disposed below the field limiting ring region; An interface in contact with the first semiconductor region is located closer to one main surface of the semiconductor substrate than an interface in which the second portion and the first semiconductor region are in contact with each other. The present invention relates to a diode, wherein a shortest distance between the third semiconductor region and the third semiconductor region is longer than a shortest distance between the second semiconductor region and the third semiconductor region. In addition, as shown in claim 2, when viewed in plan, the first
Between the outermost peripheral edge of the portion where the first electrode is connected to the second semiconductor region and the innermost peripheral edge of the field limiting ring region, the outermost peripheral edge of the first portion of the third semiconductor region is Preferably, the first portion is formed to be located.

【0006】[0006]

【発明の作用及び効果】各請求項の発明によれば、フィ
ールド・リミッティング・リング領域と第3の半導体領
域との最短距離が従来のダイオードにおけるこの最短距
離よりも長くなるので、第2の半導体領域からフィール
ド・リミッティング・リング領域まで延びた空乏層が第
3の半導体領域に到達するような状態の発生を制限する
ことができ、耐圧向上が達成される。また、請求項2の
ように第3の半導体領域の第1の部分を形成すると、ダ
イオード動作時の内部抵抗を小さく保って耐圧向上を図
ることができる。
According to the present invention, the shortest distance between the field limiting ring region and the third semiconductor region is longer than the shortest distance in the conventional diode. The occurrence of a state in which the depletion layer extending from the semiconductor region to the field limiting ring region reaches the third semiconductor region can be limited, and the withstand voltage can be improved. Further, when the first portion of the third semiconductor region is formed as in claim 2, the internal resistance during the operation of the diode can be kept low to improve the breakdown voltage.

【0007】[0007]

【第1の実施例】次に、図2を参照して本発明の第1の
実施例に係わるダイオードを説明する。図2のダイオー
ドは、図1と同様に、第1の半導体領域としてのN
半導体領域(11)と、このN形半導体領域(11)
に側面及び底面が包囲された第2の半導体領域としての
P形半導体領域(12)と、N形半導体領域(11)
とP形半導体領域(12)が形成された側と反対側の主
面で接する第3の半導体領域としてのN形半導体領域
(13a)及びN形半導体領域(13b)と、P形半導
体領域(12)の外周をN形半導体領域(11)を介
して包囲するP形半導体領域から成るフィールド・リミ
ッティング・リング領域(FLR領域)(14)とを有
するシリコン半導体基板(15)を備える。半導体基板
(15)の一方の主面即ち上面(15a)には絶縁膜
(16)が設けられ、これに設けられた開口(17)を
介してP形半導体領域(12)にアノード電極(18)
が接続されている。また、半導体基板(15)の他方の
主面即ち下面(19)にはカソード電極(20)が接続
されている。
First Embodiment Next, a diode according to a first embodiment of the present invention will be described with reference to FIG. The diode of FIG. 2 includes an N − type semiconductor region (11) as a first semiconductor region and an N − type semiconductor region (11) as in FIG.
A P-type semiconductor region of the second semiconductor region (12) side surface and the bottom surface is surrounded, N - type semiconductor region (11)
An N + -type semiconductor region (13a) and an N-type semiconductor region (13b) as a third semiconductor region in contact with a main surface on a side opposite to a side where the P-type semiconductor region (12) is formed; comprising a type semiconductor region (11) made of P-type semiconductor region surrounding via the field-limiting ring region (FLR region) (14) and the silicon semiconductor substrate (15) having - periphery of N (12) . An insulating film (16) is provided on one main surface, that is, an upper surface (15a) of the semiconductor substrate (15), and an anode electrode (18) is connected to the P-type semiconductor region (12) through an opening (17) provided therein. )
Is connected. Further, a cathode electrode (20) is connected to the other main surface, that is, the lower surface (19) of the semiconductor substrate (15).

【0008】N形半導体領域(11)とP形半導体領
域(12)は図1と実質的に同一に形成されているが、
形半導体領域(13a)とN形半導体領域(13
b)とFLR領域(14)は図1と異なる。以下、これ
らを詳細に説明すると、P形半導体領域(12)はN
形半導体領域(11)の中に不純物拡散によって島状に
形成されており、この底面と側面はN形半導体領域
(11)に包囲されて、両領域の界面にはPN接合(2
1)が生じている。P形半導体領域(12)の上面は、
半導体基板(15)の上面から露出している。
[0008] N - type semiconductor region (11) and the P-type semiconductor region (12) is formed on substantially the same as FIG. 1,
The N + type semiconductor region (13a) and the N type semiconductor region (13
b) and the FLR region (14) are different from FIG. Hereinafter, these will be described in detail. The P-type semiconductor region (12) is N
The bottom and side surfaces are surrounded by the N -type semiconductor region (11) in the N-type semiconductor region (11) by impurity diffusion, and a PN junction (2
1) has occurred. The upper surface of the P-type semiconductor region (12)
It is exposed from the upper surface of the semiconductor substrate (15).

【0009】FLR領域(14)は、P形半導体領域
(12)と同じ拡散工程でN形半導体領域(11)の
中に不純物拡散して形成されており、この底面と側面は
形半導体領域(11)に包囲されている。FLR領
域(14)は、平面的に見て、P形半導体領域(12)
をN形半導体領域(11)を介して環状に包囲してお
り、その上面は半導体基板(15)の上面から露出して
いる。
[0009] FLR region (14), N in the same diffusion process as P-type semiconductor region (12) - is formed by impurity diffusion in a type semiconductor region (11), the bottom and side surfaces are N - form It is surrounded by the semiconductor region (11). The FLR region (14) is a P-type semiconductor region (12) in plan view.
Are annularly surrounded via an N − type semiconductor region (11), and the upper surface thereof is exposed from the upper surface of the semiconductor substrate (15).

【0010】半導体基板(15)の上面に形成された絶
縁膜(16)は、例えば熱酸化によって形成されたシリ
コン酸化膜等から成り、FLR領域(14)の上面を被
覆している。絶縁膜(16)に形成された開口(17)
はP形半導体領域(12)の上面に位置するが、その径
(開口幅)は、P形半導体領域(12)の上面露出部分
の幅に比べて短くなっており、平面的に見て開口(1
7)の内縁はP形半導体領域(12)の外縁よりも内側
に位置する。したがって、アノード電極(18)は開口
(17)の内側でP形半導体領域(12)の上面の中央
側に接続されている。
The insulating film (16) formed on the upper surface of the semiconductor substrate (15) is made of, for example, a silicon oxide film formed by thermal oxidation and covers the upper surface of the FLR region (14). Opening (17) formed in insulating film (16)
Is located on the upper surface of the P-type semiconductor region (12), but its diameter (opening width) is shorter than the width of the exposed upper surface of the P-type semiconductor region (12). (1
The inner edge of 7) is located inside the outer edge of the P-type semiconductor region (12). Therefore, the anode electrode (18) is connected to the center of the upper surface of the P-type semiconductor region (12) inside the opening (17).

【0011】N形半導体領域(13a)及びN形半導
体領域(13b)は、N形半導体領域(11)に不純
物拡散して形成されており、N形半導体領域(13
a)は、本発明の第3の半導体領域の第1の部分に相当
してP形半導体領域(12)の下方に配置されており、
N形半導体領域(13b)は本発明の第3の半導体領域
の第2の部分に相当してN形半導体領域(13a)の
外側でFLR領域(14)の下方に配置されている。以
下、便宜上N形半導体領域(13a)とN形半導体領
域(13b)を総称して第3の半導体領域(13)と称
することがある。第3の半導体領域(13)を更に詳し
く説明すると、N形半導体領域(13a)の最外周縁
は、平面的に見てアノード電極(18)がP形半導体領
域(12)に接している部分の最外周縁からFLR領域
(14)の最内周縁までの間に形成されている。N形半
導体領域(13b)は、N形半導体領域(13a)の
外周側に隣接してこれを包囲しており、平面的に見てF
LR領域(14)の全てを含むようにしている。
[0011] N + type semiconductor region (13a) and the N-type semiconductor region (13b) is, N - is formed by impurity diffusion in the form semiconductor regions (11), N + type semiconductor region (13
a) corresponds to the first portion of the third semiconductor region of the present invention and is disposed below the P-type semiconductor region (12);
The N-type semiconductor region (13b) corresponds to the second portion of the third semiconductor region of the present invention, and is disposed outside the N + -type semiconductor region (13a) and below the FLR region (14). Hereinafter, the N + type semiconductor region (13a) and the N type semiconductor region (13b) may be collectively referred to as a third semiconductor region (13) for convenience. To describe the third semiconductor region (13) in more detail, the outermost peripheral edge of the N + -type semiconductor region (13a) is such that the anode electrode (18) is in contact with the P-type semiconductor region (12) in plan view. The portion is formed between the outermost peripheral edge of the portion and the innermost peripheral edge of the FLR region (14). The N type semiconductor region (13b) is adjacent to and surrounds the outer peripheral side of the N + type semiconductor region (13a).
The entire LR region (14) is included.

【0012】また、N形半導体領域(13a)とN
形半導体領域(11)とが接する界面は、N形半導体領
域(13b)とN形半導体領域(11)とが接する界
面よりも半導体基板(15)の上面側に位置する。この
ため、第3の半導体領域(13)とFLR領域(14)
との最短距離Lは、P形半導体領域(12)と第3の
半導体領域(13)との最短距離Lよりも長くなって
いる。上記の第3の半導体領域(13)は、まずN
半導体領域(13a)をN形半導体領域(11)内に
相対的に深く拡散形成した後に、N形半導体領域(13
b)をこれよりも浅く拡散形成することによって得られ
る。各半導体領域の不純物濃度を例示すると以下のとお
りである。 N形半導体領域 11:1×1014〜5×1014
cm−3 P形半導体領域 12:1×1018〜5×1018
−3 FLR領域 14:1×1018〜5×1018cm
−3形半導体領域 13a:1×1020〜5×10
20cm−3 N形半導体領域 13b:1×1020〜3×1020
cm−3
Further, the N + type semiconductor region (13a) and N
The interface where the N-type semiconductor region (11) is in contact with the N-type semiconductor region (11b) is located closer to the upper surface of the semiconductor substrate (15) than the interface where the N-type semiconductor region (13b) and the N -type semiconductor region (11) are in contact. Therefore, the third semiconductor region (13) and the FLR region (14)
The shortest distance L 2 between is longer than the shortest distance L 1 between the P-type semiconductor region (12) and the third semiconductor region (13). The third semiconductor region (13) is formed by first diffusing the N + type semiconductor region (13a) relatively deeply into the N − type semiconductor region (11), and then forming the N type semiconductor region (13).
b) can be obtained by forming a shallower diffusion. An example of the impurity concentration of each semiconductor region is as follows. N - type semiconductor region 11: 1 × 10 14 ~5 × 10 14
cm −3 P-type semiconductor region 12: 1 × 10 18 to 5 × 10 18 c
m −3 FLR region 14: 1 × 10 18 to 5 × 10 18 cm
-3 N + type semiconductor region 13a: 1 × 10 20 ~5 × 10
20 cm −3 N-type semiconductor region 13b: 1 × 10 20 to 3 × 10 20
cm -3

【0013】図2のダイオードのP形半導体領域12と
形半導体領域11の間に形成されるPN接合21を
逆バイアスする方向に電圧が印加されると、PN接合2
1から空乏層が広がる。この空乏層は、P形半導体12
に比べてN形半導体領域11の方が不純物濃度が低い
ため、主としてN形半導体領域11側に広がる。ま
た、図1のダイオードと同様に、この印加電圧が増大す
るとFLR領域14とN形半導体領域11の間に形成
されるPN接合22からも空乏層が広がる。しかし、F
LR領域14の下では第3の半導体領域13が下方に偏
位して形成されているので、FLR領域14と第3の半
導体領域13との最短距離が従来よりも長くなってお
り、FLR領域14から下側に延びる空乏層が第3の半
導体領域13に到達し難たい。従って、主たるPN接合
(21)から広がった空乏層がN形半導体領域(13
a)に到達した後も、FLR領域(14)側から広がる
空乏層がN形半導体領域(13a)の側方のN形半
導体領域(11)に広がることができるので、半導体基
板15の表面における空乏層の広がりが制限されず、高
耐圧化が良好に達成される。また、P形半導体領域(1
2)の下ではN形半導体領域(13a)が比較的狭い
間隔で形成されているので、P形半導体領域(12)と
形半導体領域(13a)との最短距離は従来と同じ
であり、ダイオードの動作抵抗は十分に小さいレベルを
維持できる。
[0013] P-type semiconductor region 12 and the N diode of Figure 2 - the voltage PN junction 21 in a reverse bias to the direction formed between the type semiconductor region 11 is applied, PN junction 2
From 1 the depletion layer expands. This depletion layer is formed by the P-type semiconductor 12
Since the impurity concentration of the N − type semiconductor region 11 is lower than that of, the N − type semiconductor region 11 mainly spreads to the N − type semiconductor region 11 side. As in the diode of FIG. 1, when the applied voltage increases, the depletion layer also spreads from the PN junction 22 formed between the FLR region 14 and the N − type semiconductor region 11. But F
Since the third semiconductor region 13 is formed below the LR region 14 so as to be deviated downward, the shortest distance between the FLR region 14 and the third semiconductor region 13 is longer than before, and the FLR region It is difficult for the depletion layer extending downward from 14 to reach third semiconductor region 13. Therefore, the depletion layer extending from the main PN junction (21) forms an N + type semiconductor region (13
Since the depletion layer extending from the FLR region (14) side can reach the N − type semiconductor region (11) on the side of the N + type semiconductor region (13a) even after reaching the a), the semiconductor substrate 15 The extension of the depletion layer on the surface is not restricted, and a high breakdown voltage is satisfactorily achieved. The P-type semiconductor region (1
Under 2), since the N + type semiconductor regions (13a) are formed at relatively small intervals, the shortest distance between the P + type semiconductor region (12) and the N + type semiconductor region (13a) is the same as the conventional one. Yes, the operating resistance of the diode can be maintained at a sufficiently low level.

【0014】[0014]

【第2の実施例】次に、図3を参照して第2の実施例の
ダイオードを説明する。但し、図3において図2と実質
的に同一の部分には同一の符号を付してその説明を省略
する。図3のダイオードは、図2のダイオードのN
半導体領域(13a)が埋め込み層によって形成されて
いることを除いて図2と実質的に同一に構成されてい
る。図3のダイオードは、N形半導体領域(13b)に
相当するN形の半導体基板を出発母材として、この一方
の主面に選択的にN形不純物を導入してN形半導体領
域(13a)の下側部分に相当する領域を形成し、次に
N形半導体基板の一方の主面に周知のエピタキシャル成
長法によってN形半導体領域(11)を形成する。こ
のエピタキシャル成長時に先にN形半導体基板中に導入
した不純物がN形半導体領域中にアウトディフュージ
ョンして、N形半導体領域内(11)に上記のN
半導体領域(13a)の下側部分に連接するN形半導
体領域(13a)の上側部分が形成される。この結果、
形半導体領域(13a)の上面がN形半導体領域
(13b)の上面よりも上方に偏位した第3の半導体領
域(13)が得られる。P形半導体領域(12)及びF
LR領域(14)は、図2と同様にN形半導体領域
(11)に不純物拡散して形成される。図3のダイオー
ドでは、半導体基板(15)の下面の全体にN形半導体
領域(13b)が露出した構造となるが、図2のダイオ
ードと同様にFLR領域(14)と第3の半導体領域
(13)との最短距離がP形半導体領域(12)と第3
の半導体領域(13)との最短距離よりも長くなり、動
作時の内部抵抗を小さく保って耐圧向上を図ることがで
きる。各半導体領域の不純物濃度を例示すると以下のと
おりである。 N形半導体領域 11:1×1014〜5×1014
cm−3 P形半導体領域 12:1×1018〜5×1018
−3 FLR領域 14:1×1018〜5×1018cm
−3形半導体領域 13a:1×1018〜5×10
18cm−3 N形半導体領域 13b:1×1018〜3×1018
cm−3
Second Embodiment Next, a diode according to a second embodiment will be described with reference to FIG. However, in FIG. 3, substantially the same parts as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. The diode of FIG. 3 has substantially the same configuration as that of FIG. 2 except that the N + type semiconductor region (13a) of the diode of FIG. 2 is formed by a buried layer. Diode of Figure 3, as a starting base material of N-type semiconductor substrate corresponding to the N-type semiconductor region (13b), the main surface of the one selectively introducing an N-type impurity N + type semiconductor region (13a forming a region corresponding to the lower portion of the), then N on one main surface of the N-type semiconductor substrate by a known epitaxial growth method - to form a type semiconductor region (11). The epitaxial previously introduced into the N-type semiconductor substrate during the growth impurities the N - and out-diffusion in type semiconductor region, N - lower type semiconductor region (11) above the N + -type semiconductor region (13a) An upper portion of the N + type semiconductor region (13a) connected to the portion is formed. As a result,
A third semiconductor region (13) in which the upper surface of the N + type semiconductor region (13a) is deviated upward from the upper surface of the N type semiconductor region (13b) is obtained. P-type semiconductor region (12) and F
The LR region (14) is formed by diffusing impurities into the N − type semiconductor region (11) as in FIG. The diode of FIG. 3 has a structure in which the N-type semiconductor region (13b) is exposed on the entire lower surface of the semiconductor substrate (15), but the FLR region (14) and the third semiconductor region ( 13) is the shortest distance between the P-type semiconductor region (12) and the third
Is longer than the shortest distance to the semiconductor region (13), and the internal resistance during operation can be kept low to improve the breakdown voltage. An example of the impurity concentration of each semiconductor region is as follows. N - type semiconductor region 11: 1 × 10 14 ~5 × 10 14
cm −3 P-type semiconductor region 12: 1 × 10 18 to 5 × 10 18 c
m −3 FLR region 14: 1 × 10 18 to 5 × 10 18 cm
-3N + type semiconductor region 13a: 1 * 10 < 18 > to 5 * 10
18 cm −3 N-type semiconductor region 13b: 1 × 10 18 to 3 × 10 18
cm -3

【0015】[0015]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1)実施例では、FLR領域(14)の不純物濃度及
び拡散の深さを第2の半導体領域(12)と同じにして
いるが、FLR領域(14)の不純物濃度を第2の半導
体領域(12)のそれよりも小さくしたり(一例として
1×1017〜5×1017cm−3)、FLR領域
(14)の拡散深さを第2の半導体領域(12)のそれ
よりも深くしてもよい。なお、この場合には、FLR領
域(14)からの空乏層の広がりが良好となり、PN接
合(21)のカバーチャがより緩和され、耐圧向上に更
に有利となる。 (2)FLR領域(14)を第2の半導体領域(12)
を包囲するように複数本形成してもよい。 (3)第3の半導体領域(13)の第1の部分(13
a)と第2の部分(13b)の不純物濃度を同じにして
もよい。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) In the embodiment, the impurity concentration and the diffusion depth of the FLR region (14) are made the same as those of the second semiconductor region (12), but the impurity concentration of the FLR region (14) is made second semiconductor region. The diffusion depth of the FLR region (14) is made deeper than that of the second semiconductor region (12) by making it smaller than that of (12) (for example, 1 × 10 17 to 5 × 10 17 cm −3 ). May be. In this case, the spread of the depletion layer from the FLR region (14) becomes good, and the cover of the PN junction (21) is further reduced, which is further advantageous for improving the breakdown voltage. (2) FLR region (14) is replaced with second semiconductor region (12)
May be formed so as to surround. (3) The first portion (13) of the third semiconductor region (13)
a) and the second portion (13b) may have the same impurity concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のダイオードを示す断面図である。FIG. 1 is a sectional view showing a conventional diode.

【図2】本発明の第1の実施例のダイオードを示す断面
図である。
FIG. 2 is a sectional view showing a diode according to the first embodiment of the present invention.

【図3】本発明の第2の実施例のダイオードを示す断面
図である。
FIG. 3 is a sectional view showing a diode according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 第1の半導体領域 12 第2の半導体領域 13a 第3の半導体領域の第1の部分 13b 第3の半導体領域の第2の部分 14 FLR領域 11 first semiconductor region 12 second semiconductor region 13a first portion of third semiconductor region 13b second portion of third semiconductor region 14 FLR region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板内に第1の導電形の第1の半
導体領域と、前記第1の半導体領域に側面及び底面が包
囲された前記第1の導電形と反対導電形である第2の導
電形の第2の半導体領域と、前記第1の半導体領域と前
記第2の半導体領域とは反対側で接し且つ前記第1の半
導体領域よりも不純物濃度の高い前記第1導電形の第3
の半導体領域と、前記第1の半導体領域に側面及び底面
が包囲された前記第2の導電形のフィールド・リミッテ
ィング・リング領域とが設けられ、前記半導体基板の一
方の主面において前記第2の半導体領域に第1の電極が
接続され、前記半導体基板の他方の主面において前記第
3の半導体領域に第2の電極が接続されたダイオードに
おいて、前記第3の半導体領域が前記第2の半導体領域
の下方に配置された第1の部分と前記フィールド・リミ
ッティング・リング領域の下方に配置された第2の部分
とを有し、前記第1の部分と前記第1の半導体領域とが
接する界面が前記第2の部分と前記第1の半導体領域と
が接する界面よりも前記半導体基板の一方の主面側に位
置し、前記フィールド・リミッティング・リング領域と
前記第3の半導体領域との最短距離が前記第2の半導体
領域と前記第3の半導体領域との最短距離よりも長くな
っていることを特徴とするダイオード。
1. A first semiconductor region of a first conductivity type in a semiconductor substrate, and a second semiconductor region having a side opposite to the first conductivity type and a side surface and a bottom surface surrounded by the first semiconductor region. And a second semiconductor region of the first conductivity type, which is in contact with the second semiconductor region on the opposite side to the first semiconductor region and the second semiconductor region, and has a higher impurity concentration than the first semiconductor region. 3
And a field limiting ring region of the second conductivity type, the side surface and the bottom surface of which are surrounded by the first semiconductor region, wherein the second conductive type field limiting ring region is provided on one main surface of the semiconductor substrate. In a diode in which a first electrode is connected to a semiconductor region and a second electrode is connected to the third semiconductor region on the other main surface of the semiconductor substrate, the third semiconductor region is connected to the second electrode. A first portion disposed below the semiconductor region; and a second portion disposed below the field limiting ring region, wherein the first portion and the first semiconductor region are separated from each other. The contacting interface is located closer to one main surface of the semiconductor substrate than the interface where the second portion contacts the first semiconductor region, and the field limiting ring region and the third semiconductor Diode, wherein a shortest distance between frequency is longer than the shortest distance between the third semiconductor region and the second semiconductor region.
【請求項2】 平面的に見て、前記第1の電極が前記第
2の半導体領域に接続されている部分の最外周縁と前記
フィールド・リミッティング・リング領域の最内周縁と
の間に前記第3の半導体領域の前記第1の部分の最外周
縁が位置するように前記第1の部分が形成されている請
求項1に記載のダイオード。
2. A planar view between an outermost peripheral edge of a portion where the first electrode is connected to the second semiconductor region and an innermost peripheral edge of the field limiting ring region. 2. The diode according to claim 1, wherein the first portion is formed such that an outermost peripheral edge of the first portion of the third semiconductor region is located. 3.
JP32746496A 1996-11-01 1996-11-01 Diode Pending JPH10135489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32746496A JPH10135489A (en) 1996-11-01 1996-11-01 Diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32746496A JPH10135489A (en) 1996-11-01 1996-11-01 Diode

Publications (1)

Publication Number Publication Date
JPH10135489A true JPH10135489A (en) 1998-05-22

Family

ID=18199464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32746496A Pending JPH10135489A (en) 1996-11-01 1996-11-01 Diode

Country Status (1)

Country Link
JP (1) JPH10135489A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465863B1 (en) 1998-05-28 2002-10-15 Infineon Technologies Ag Power diode structure
JP2006156936A (en) * 2004-10-25 2006-06-15 Matsushita Electric Ind Co Ltd Voltage regulating diode and its manufacturing method
JP2006303369A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Constant voltage diode
JP2008205512A (en) * 2008-05-16 2008-09-04 Mitsubishi Electric Corp Semiconductor device for power and manufacturing method thereof
JP2014150226A (en) * 2013-02-04 2014-08-21 Lapis Semiconductor Co Ltd Semiconductor device and semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465863B1 (en) 1998-05-28 2002-10-15 Infineon Technologies Ag Power diode structure
JP2006156936A (en) * 2004-10-25 2006-06-15 Matsushita Electric Ind Co Ltd Voltage regulating diode and its manufacturing method
JP2006303369A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Constant voltage diode
JP2008205512A (en) * 2008-05-16 2008-09-04 Mitsubishi Electric Corp Semiconductor device for power and manufacturing method thereof
JP2014150226A (en) * 2013-02-04 2014-08-21 Lapis Semiconductor Co Ltd Semiconductor device and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP2766239B2 (en) High voltage semiconductor device
US6190948B1 (en) Method of forming power semiconductor devices having overlapping floating field plates for improving breakdown voltage capability
US5489799A (en) Integrated edge structure for high voltage semiconductor devices and related manufacturing processs
EP0663698B1 (en) Semiconductor device and its manufacture
JP2005057028A (en) Insulated gate-type bipolar transistor
JP2003142698A (en) Power semiconductor device
WO2004032244A1 (en) Semiconductor device and process for fabricating the same
JP4416288B2 (en) Reverse conduction thyristor
EP1081768A2 (en) Insulated gate field-effect transistor and method of making the same
KR20030017317A (en) Semiconductor device
JPH10135489A (en) Diode
JPH07226514A (en) High-conductivity insulated gate bipolar transistor integration structure
JP2003031821A (en) Semiconductor device
JPH07202204A (en) Mos type semiconductor element
JP2796470B2 (en) Self-extinguishing thyristor and manufacturing method thereof
JP3180672B2 (en) Semiconductor device
JPH06151728A (en) Semiconductor integrated circuit device
JP3329376B2 (en) Semiconductor device
JPH09283646A (en) Semiconductor integrated circuit
JPH11121768A (en) Semiconductor integrated circuit
JP2000216381A (en) Field effect transistor
JPH05275719A (en) Semiconductor element and its manufacture
JPH0737975A (en) Semiconductor device
JP2002299465A (en) Semiconductor device
JPH11204804A (en) Semiconductor device