JPH11204804A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH11204804A
JPH11204804A JP132698A JP132698A JPH11204804A JP H11204804 A JPH11204804 A JP H11204804A JP 132698 A JP132698 A JP 132698A JP 132698 A JP132698 A JP 132698A JP H11204804 A JPH11204804 A JP H11204804A
Authority
JP
Japan
Prior art keywords
layer
concentration
diode
groove
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP132698A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
岳志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP132698A priority Critical patent/JPH11204804A/en
Publication of JPH11204804A publication Critical patent/JPH11204804A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-withstand voltage diode having a high reverse recovery characteristic and high surge current resistance at a low cost. SOLUTION: On one surface layer of an n<-> substrate 1, a high-concn. p<+> layer 2 is formed by an ion implanting and thermal diffusion, a trench 3 is formed into the p<+> layer 2, a bottom face 4 of the trench 3 is at a depth not reaching a p-n junction boundary face 5 defined by the substrate 1 and p<+> layer 2 and the top end of a depletion layer extending from the p-n junction boundary face 5 does not reach the bottom face 4 of the trench 3. On the surface of the p<+> layer 2, side face B and bottom face 4, a metal electrode to be an anode electrode 9 is formed. On the surface of the n<+> layer 11 a metal electrode to be a cathode electrode 12 is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、メサ型もしくは
プレーナ型のダイオードなどの半導体装置に関する。
The present invention relates to a semiconductor device such as a mesa-type or planar-type diode.

【0002】[0002]

【従来の技術】高速スイッチングが可能で、低飽和電圧
が得られるといった、絶縁ゲート型バイポーラトランジ
スタ(IGBT)のような素子の発達に伴い、これと組
み合わせる、フリーホイールダイオード(FWD)など
のダイオードの特性の改善も進められている。
2. Description of the Related Art With the development of devices such as insulated gate bipolar transistors (IGBTs) that enable high-speed switching and obtain a low saturation voltage, a diode such as a freewheel diode (FWD) is used in combination with such devices. Improvements in characteristics are also being pursued.

【0003】図4は従来のダイオードの要部構造図で、
同図(a)は平面図、同図(b)は同図(a)のX−X
線で切断した断面図である。尚、図4(b)には説明の
都合上、空乏層の先端部31、32も示した。図4にお
いて、n- 基板1の一方の表面層に、p+ 層22とp-
層27からなるp層が形成され、他方の表面祖層にn+
層22が形成される。通常、pin構造のダイオードで
は、このp層は全面に亘って平坦に形成されるが、ダイ
オードの特性改善のために、近年、前記のように低濃度
のp- 層27と、そこに選択的に形成された、より高濃
度のp+ 層22でp層が構成されるものもある。図4で
は高濃度のp+ 層22の平面パターンはストライプ状で
あるが、円形、多角形の島状に形成するものもある。ま
たp層を形成する領域の濃度は図示されるような2種類
ではなく複数種類の場合もある。p- 層27、p+ 層2
2の表面にはアノード電極29となる金属電極が形成さ
れ、n+ 層11の表面にはカソード電極12となる金属
電極が形成される。また、半導体チップの周辺の構造
は、素子耐圧を確保するために、良く知られている周辺
耐圧構造13となっている。
FIG. 4 is a structural view of a main part of a conventional diode.
FIG. 2A is a plan view, and FIG. 2B is XX in FIG.
It is sectional drawing cut | disconnected by the line. In addition, FIG. 4B also shows tip portions 31 and 32 of the depletion layer for convenience of explanation. In FIG. 4, n - on one surface layer of the substrate 1, p + layer 22 and p -
A p layer composed of the layer 27 is formed, and n +
Layer 22 is formed. Usually, in a diode having a pin structure, the p-layer is formed to be flat over the entire surface. However, recently, as described above, a low-concentration p layer 27 and a selective In some cases, the p layer is formed of a higher concentration p + layer 22 formed in the above. In FIG. 4, the planar pattern of the high-concentration p + layer 22 is a stripe pattern, but there is also a pattern formed in a circular or polygonal island shape. Further, the concentration of the region for forming the p-layer is not limited to two types as shown in the figure, but may be plural types. p - layer 27, p + layer 2
A metal electrode serving as the anode electrode 29 is formed on the surface of the second electrode 2, and a metal electrode serving as the cathode electrode 12 is formed on the surface of the n + layer 11. The peripheral structure of the semiconductor chip is a well-known peripheral withstand voltage structure 13 in order to secure the withstand voltage of the element.

【0004】このダイオードに順電圧を印加すると、p
- 層27とn- 基板1のpn接合が順回復し、p- 層2
7からn- 基板1へ正孔の注入が起こり、n- 基板1で
伝導度変調が起こり、電流はp- 層27を通って流れ
る。もし、この動作状態でこのダイオードを逆回復動作
させると、n- 基板1へ注入される正孔の密度が小さい
ため、スイッチング損失が小さく、ソフトリカバリーな
特性など良好な逆回復特性が得られる。さらに、この順
電圧を高くすると、えん層電圧の高い、p+ 層22とn
- 基板1のpn接合を通って電流が流れるようになり、
伝導度変調がさらに進み、大電流を流しても、ダイオー
ドの順電圧降下は大きくならない。しかし、この動作状
態でダイオードを逆回復動作させると、pn接合に蓄積
したキャリヤが掃きだされ、最終的にp- 層27とn-
基板1のpn接合が回復するため、前記のように、スイ
ッチング損失の小さい、ソフトリカバリーな特性とな
る。
When a forward voltage is applied to this diode, p
- layer 27 and the n - pn junction of the substrate 1 is forward recovery, p - layer 2
Hole injection from 7 into n - substrate 1 occurs, conductivity modulation occurs in n - substrate 1, and current flows through p - layer 27. If this diode is subjected to a reverse recovery operation in this operating state, the density of holes injected into the n - substrate 1 is small, so that switching loss is small and good reverse recovery characteristics such as soft recovery characteristics can be obtained. When the forward voltage is further increased, the p + layer 22 and the n +
- now the current flows through the pn junction of the substrate 1,
Even if the conductivity modulation further proceeds and a large current flows, the forward voltage drop of the diode does not increase. However, when the diode performs the reverse recovery operation in this operation state, the carriers accumulated in the pn junction are swept out, and finally the p layer 27 and the n
Since the pn junction of the substrate 1 is recovered, the switching loss is small and the soft recovery characteristic is obtained as described above.

【0005】前記のp- 層27の濃度はできるだけ低
く、また拡散深さを浅く形成する方が逆回復特性にとっ
て好ましい。しかし、ダイオードに逆電圧を印加した場
合、p - 層27に広がった空乏層の先端部31がアノー
ド電極29に到達するという、所謂、パンチスルーを起
こして、ダイオードの耐圧を低下させる。このパンチス
ルーを防止する働きも前記のp+ 層22にもたせてい
る。それは、逆電圧印加時のp+ 層22とn- 基板1の
pn接合境界面25から、n- 基板1に広がる空乏層が
- 層27の直下ではピンチオフ(両側から広がった空
乏層がくっつくこと)し、n- 基板1内に広く空乏層が
広がることで、反対側のp- 層27内の空乏層の先端部
31の伸びが抑制さるためである。
[0005] The above p-Layer 27 concentration as low as possible
And the shallower diffusion depth is better for the reverse recovery characteristics.
Preferred. However, when a reverse voltage is applied to the diode,
If p -The leading end 31 of the depletion layer extending to the layer 27
In other words, a so-called punch-through of reaching the
Thus, the breakdown voltage of the diode is reduced. This punches
The function of preventing the loop+On layer 22
You. That is, p when reverse voltage is applied.+Layer 22 and n-Substrate 1
From the pn junction interface 25, n-The depletion layer spreading on the substrate 1
p-Pinch off immediately below the layer 27 (the sky spreading from both sides)
The poor layer sticks) n-A wide depletion layer in the substrate 1
By spreading, p on the other side-Tip of depletion layer in layer 27
This is because the elongation of 31 is suppressed.

【0006】[0006]

【発明が解決しようとする課題】前記のダイオードの逆
回復特性には、p層の不純物濃度が大きな影響を与え
る。図4のようなダイオードでは、前述したように、逆
回復動作が低濃度のp- 層27によって決まるために、
良好な逆回復特性を得ることができる。また、順方向特
性では高濃度のp+ 層22により、大電流領域での順電
圧降下(オン電圧のこと)を小さくできてサージ電流耐
量を向上させ、また、この高濃度のp+ 層22により、
前述したように耐圧特性も良好となる。
The reverse recovery characteristic of the diode has a great influence on the impurity concentration of the p-layer. In the diode as shown in FIG. 4, as described above, since the reverse recovery operation is determined by the low-concentration p layer 27,
Good reverse recovery characteristics can be obtained. Further, the high concentration p + layer 22 in the forward characteristics, to improve surge current withstand made smaller forward voltage drop in the high current region (that of the on-voltage), also in the high-concentration p + layer 22 By
As described above, the withstand voltage characteristics are also improved.

【0007】しかし、この構造では、p層を構成してい
るp- 層27とp+ 層22の2つの層を形成しなければ
ならない。このことは、2回のイオン注入工程と選択的
なイオン注入のための専用のフォト工程と、2回の熱処
理工程が必要となり、製造工程数が多く、製造コストが
高くなる。また、イオン注入を2回行うことから結晶欠
陥も発生し易くなる。さらに、p層が平坦でなく波打つ
ために空乏層の先端部31、32の伸びが均一でなく波
打ち、そのため空乏層が狭い箇所で電界集中33が生じ
る可能性もある。
However, in this structure, p constitutes a p layer - must form two layers of the layer 27 and the p + layer 22. This requires two ion implantation steps, a dedicated photo step for selective ion implantation, and two heat treatment steps, which increases the number of manufacturing steps and increases the manufacturing cost. In addition, since the ion implantation is performed twice, crystal defects are easily generated. Furthermore, since the p layer is not flat and undulates, the elongation of the tip portions 31 and 32 of the depletion layer is not uniform and undulates. Therefore, there is a possibility that the electric field concentration 33 occurs in a portion where the depletion layer is narrow.

【0008】この発明の目的は、低コストで、逆回復特
性およびサージ電流耐量が大きい、高耐圧の半導体装置
を提供することにある。
An object of the present invention is to provide a low-cost, high-withstand-voltage semiconductor device having a large reverse recovery characteristic and a large surge current resistance.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、第1導電形半導体基板の一方の主面に第2導電形
半導体層を形成し、他方の主面に高濃度の第1導電形半
導体層を形成し、前記第2導電形半導体層内に所定の深
さの溝を少なくとも一つ以上形成し、前記第2導電形半
導体層の露出面に第1主電極を選択的に形成し、前記第
1導電形半導体層表面に第2主電極を選択的に形成する
構成とする。
In order to achieve the above object, a second conductive type semiconductor layer is formed on one main surface of a first conductive type semiconductor substrate, and a high concentration first conductive semiconductor layer is formed on the other main surface. Forming a conductive type semiconductor layer, forming at least one groove having a predetermined depth in the second conductive type semiconductor layer, and selectively forming a first main electrode on an exposed surface of the second conductive type semiconductor layer. And a second main electrode is selectively formed on the surface of the first conductivity type semiconductor layer.

【0010】第1導電形半導体基板と第2導電形半導体
層で形成されるpn接合境界面と、前記溝の底面との距
離が半導体装置の耐圧を確保する長さであるとよい。こ
れは逆耐圧印加時に第2導電形半導体層に形成された溝
の底面に空乏層が達しないようにすることで、パンチス
ルーを防止し、耐圧を確保することにある。第2導電形
半導体領域の表面濃度が1×1018cm-3ないし1×1
20cm-3であり、第2導電形半導体層に形成される溝
の底面の表面濃度が1×1016cm -3ないし1×1017
cm-3であると効果的である。これは、第2導電形半導
体領域の表面濃度を1×1018cm-3より小さくすると
サージ電流耐量が低下し、1×1020cm-3より大きく
するとイオン注入による結晶欠陥が発生し易くなり好ま
しくない。一方、第2導電形半導体層に形成される溝の
底面の表面濃度が1×1017cm-3より大きくすると、
ソフトリカバリー特性などの逆回復特性が阻害され、1
×1016cm-3より小さくすると、パンチスルー現象が
生じて、耐圧特性が低下し、好ましくない。
A first conductivity type semiconductor substrate and a second conductivity type semiconductor
The distance between the pn junction boundary formed by the layer and the bottom of the groove
It is preferable that the separation is a length that ensures the withstand voltage of the semiconductor device. This
This is a groove formed in the second conductivity type semiconductor layer when a reverse withstand voltage is applied.
By preventing the depletion layer from reaching the bottom of the
The purpose of the present invention is to prevent the loop and secure the pressure resistance. 2nd conductivity type
The surface concentration of the semiconductor region is 1 × 1018cm-3Or 1 × 1
020cm-3And a groove formed in the second conductivity type semiconductor layer.
Surface concentration of 1 × 1016cm -3Or 1 × 1017
cm-3Is effective. This is the second conductivity type semiconductor
The surface concentration of the body region is 1 × 1018cm-3If smaller
1 × 1020cm-3Bigger
Then, crystal defects due to ion implantation are likely to occur, which is preferable.
Not good. On the other hand, the groove formed in the second conductivity type semiconductor layer
Surface concentration of the bottom is 1 × 1017cm-3If you make it larger,
Reverse recovery characteristics such as soft recovery characteristics are hindered,
× 1016cm-3If you make it smaller, the punch-through phenomenon
As a result, the withstand voltage characteristics decrease, which is not preferable.

【0011】[0011]

【発明の実施の形態】図1はこの発明の第1実施例のダ
イオードの要部構成図で、同図(a)は平面図、同図
(b)は同図(a)のX−X線で切断した断面図であ
る。図1において、n- 基板1の一方の表面層に高濃度
のp+ 層2をイオン注入と熱拡散で形成する。このp+
層2にドライエッチングで溝3を形成する。この溝3の
平面パターンはストライプ状で、溝3の底面4はn-
板1とp+ 層2で形成されるpn接合境界面5に達しな
い深さで、ダイオードの耐圧に相当した電圧を確保でき
るように、このpn接合境界面5から伸びる空乏層の先
端部(図示されていない)が前記の溝3の底面4に達し
ない深さとする。p+ 層2の拡散プロフィルは後述する
図3に示すように、表面で濃度が高く、深さ方向で低く
なっている。従って、溝3の底面4の表面濃度はp+
2の表面濃度に比べると低くなっている。この底面4か
らpn接合境界面5までを低濃度のp- 層7とする。p
+ 層2の表面、側面8および底面4にアノード電極9と
なる金属電極を形成し、n+ 層11の表面にカソード電
極12となる金属電極を形成する。
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2A is a plan view of the main part of FIG.
FIG. 2B is a cross-sectional view taken along line XX of FIG.
You. In FIG. 1, n-High concentration on one surface layer of substrate 1
P+Layer 2 is formed by ion implantation and thermal diffusion. This p+
A groove 3 is formed in the layer 2 by dry etching. Of this groove 3
The plane pattern is a stripe, and the bottom surface 4 of the groove 3 is n-Base
Plate 1 and p+Do not reach the pn junction interface 5 formed by layer 2
With a large depth, a voltage equivalent to the withstand voltage of the diode can be secured.
As described above, the end of the depletion layer extending from the pn junction interface 5
The end (not shown) reaches the bottom surface 4 of the groove 3
No depth. p+The diffusion profile of layer 2 is described below
As shown in FIG. 3, the concentration is high on the surface and low in the depth direction.
Has become. Therefore, the surface concentration of the bottom surface 4 of the groove 3 is p+layer
2 is lower than the surface concentration. This bottom 4
From the pn junction interface 5 to the low concentration p.-Layer 7. p
+An anode electrode 9 is provided on the surface, the side surface 8 and the bottom surface 4 of the layer 2.
Forming a metal electrode of+Cathode voltage is applied to the surface of layer 11
A metal electrode to be the pole 12 is formed.

【0012】図1の構造では、図4のp層の濃度をp-
層27とp+ 層22の2種類を用いた場合と基本的には
同様の特性が得られる。図1のダイオードの製造工程で
は、p層形成の際の不純物イオン注入工程、熱拡散処理
工程がそれぞれ図4のダイオードの場合の2回から、1
回となること、またこのイオン注入回数が減ったため
に、イオン注入によるシリコン結晶へのダメージを少な
くでき、又高温熱処理の工程が少ないために、結晶欠陥
等の導入を低く抑えることができる。そのために、素子
特性、特に順電圧降下などのオン特性が改善される。ま
た、製造工程数が減るために、製造コストの低減を図る
ことができる。
[0012] In the structure of FIG. 1, the concentration of the p layer in FIG. 4 p -
Basically the same characteristics are obtained as in the case of using two types of layer 27 and p + layer 22. In the manufacturing process of the diode of FIG. 1, the impurity ion implantation process and the thermal diffusion process at the time of forming the p-layer are each performed from twice as in the case of the diode of FIG.
Since the number of times of ion implantation is reduced, damage to the silicon crystal due to ion implantation can be reduced, and introduction of crystal defects and the like can be suppressed low because the number of high-temperature heat treatment steps is small. For this reason, the device characteristics, particularly, the ON characteristics such as the forward voltage drop are improved. Further, since the number of manufacturing steps is reduced, manufacturing costs can be reduced.

【0013】さらに詳細に説明すると、図1のダイオー
ドの製造工程では、p+ 層2の不純物プロフィルを予め
調べておき、それに応じて溝3の深さを決定し、溝3の
底面4に露出するp- 層7の不純物濃度を調整する。溝
3の底面4がpn接合境界面5を超えてn- 基板1に入
り込むと、ダイオードが逆阻止状態を維持できなくなる
ため、底面4の位置はp層(p+ 層2およびp- 層7)
内に来なくてはならない。p- 層7は濃度が低い程良好
な逆回復特性を得られる。しかし、ダイオードの耐圧が
2500Vクラスの場合、p- 層7の厚さを2μm程度
にすると、耐圧確保の点から、p- 層7の表面濃度は1
×1016cm-3以上の濃度が必要となり、一方、逆回復
特性から1×1017cm-3を上限とすると良好な特性が
得られる。 この構造のp+ 層2は従来の構造のように
ピンチオフの効果はないが、サージ電流耐量を向上させ
る効果がある。つぎに、そのことについて説明する。
More specifically, in the manufacturing process of the diode shown in FIG. 1, the impurity profile of the p + layer 2 is checked in advance, and the depth of the groove 3 is determined in accordance with the impurity profile. The impurity concentration of the p layer 7 to be adjusted is adjusted. When the bottom surface 4 of the groove 3 enters the n substrate 1 beyond the pn junction boundary surface 5, the diode cannot maintain the reverse blocking state. Therefore, the position of the bottom surface 4 is the p layer (p + layer 2 and p layer 7). )
I have to come in. The lower the concentration of the p - layer 7, the better the reverse recovery characteristics can be obtained. However, when the withstand voltage of the diode is in the 2500 V class, if the thickness of the p layer 7 is set to about 2 μm, the surface concentration of the p layer 7 becomes 1 from the viewpoint of ensuring the withstand voltage.
A concentration of 10 16 cm -3 or more is required. On the other hand, if the upper limit is set to 1 10 17 cm -3 from the reverse recovery characteristic, good characteristics can be obtained. The p + layer 2 of this structure does not have a pinch-off effect unlike the conventional structure, but has an effect of improving the surge current resistance. Next, this will be described.

【0014】順電圧を印加した場合、順電圧が低い状態
では、低濃度のp- 層7もp+ 層2からも同様に電流は
流れる。しかし、高い状態にすると、p+ 層2からの正
孔の注入が多くなり、n- 基板1内の伝導度変調が大き
くなり、サージ電流のような大電流でもダイオードの順
電圧降下が小さく抑えられ、サージ電流耐量が向上す
る。一方、逆回復時には、高濃度のためにp+ 層2のラ
イフタイムがp- 層7より短く、p+ 層2を流れるキャ
リヤが早く消滅して、最終的にはp- 層7を流れる電流
で逆回復特性が決まり、良好な逆回復特性が得られる。
前記のサージ電流耐量を向上させるためには、高濃度の
+ 層2の表面濃度を1×1018cm-3以上にする必要
がある。しかし、1×1020cm-3を超えるとイオン注
入量が多くなり過ぎて、結晶欠陥を発生させ易くなるの
で、p+ 層2の表面濃度の上限は1×1020cm-3
し、実用的には1×1019cm-3が好ましい。
When a forward voltage is applied, when the forward voltage is low, a current similarly flows from the low concentration p - layer 7 and the p + layer 2. However, when the state is high, the injection of holes from the p + layer 2 increases, the conductivity modulation in the n substrate 1 increases, and the forward voltage drop of the diode is suppressed even at a large current such as a surge current. As a result, the surge current resistance is improved. On the other hand, at the time of reverse recovery, high lifetime of the p + layer 2 for concentration p - shorter than layer 7, and quickly extinguished the carrier flowing through the p + layer 2, finally p - current through the layer 7 Determines the reverse recovery characteristic, and obtains a good reverse recovery characteristic.
In order to improve the surge current resistance, the surface concentration of the high concentration p + layer 2 needs to be 1 × 10 18 cm −3 or more. However, if it exceeds 1 × 10 20 cm −3 , the ion implantation amount becomes too large and crystal defects easily occur. Therefore, the upper limit of the surface concentration of the p + layer 2 is set to 1 × 10 20 cm −3. Specifically, 1 × 10 19 cm −3 is preferable.

【0015】p層を構成するp- 層7とp+ 層2の表面
パターンの面積の比率を変えると、順方向特性、逆回復
特性が変化する。p- 層7の比率が高くなり過ぎると、
逆回復特性は向上するものの、サージ電流のような大電
流領域での特性が悪化し、逆の場合、逆回復特性が悪化
する。そのため、それぞれの兼ね合いを見ながら面積の
割合は調整される。
When the ratio of the area of the surface pattern of the p - layer 7 to that of the p + layer 2 constituting the p layer is changed, the forward characteristics and the reverse recovery characteristics are changed. If the ratio of the p - layer 7 becomes too high,
Although the reverse recovery characteristic is improved, the characteristic in a large current region such as a surge current is deteriorated. In the opposite case, the reverse recovery characteristic is deteriorated. Therefore, the ratio of the area is adjusted while looking at the respective balance.

【0016】溝3の表面での幅と底面4での幅が図1で
は等しくなっているが、底面4の幅のほうが狭い逆台形
状の溝の断面形状にしてもよい。またこの溝構造は、ワ
イヤボンディングでの圧着力や、加圧接触構造での加圧
力などの、素子表面における力の分散効果もある。図2
はこの発明の第2実施例のダイオードの要部構成図で、
同図(a)は平面図、同図(b)は同図(a)のX−X
線で切断した断面図である。
Although the width of the groove 3 at the surface and the width at the bottom surface 4 are equal in FIG. 1, the cross-sectional shape of an inverted trapezoidal groove having a narrower bottom surface 4 may be used. The groove structure also has an effect of dispersing a force on the element surface, such as a pressing force in wire bonding and a pressing force in a pressure contact structure. FIG.
FIG. 4 is a configuration diagram of a main part of a diode according to a second embodiment of the present invention.
FIG. 2A is a plan view, and FIG. 2B is XX in FIG.
It is sectional drawing cut | disconnected by the line.

【0017】図2において、溝3aの平面パターンが円
形状となっている点が図1と異なる。この平面パターン
は多角形であっても勿論構わない。また、溝3aの表面
の幅が底部4の幅より狭い逆台形状でもよい。ここで
は、断面構造は図1(b)と同じであるので説明は省略
する。図3はこの発明のダイオードのp層の拡散プロフ
ィルである。p+ 層2はpn接合境界面5までの深さが
7μmである。不純物イオン種に例えばボロンを用い、
ドーズ量は約1×1015cm-2、拡散温度は1150℃
で、拡散時間は十数時間とした場合の拡散プロフィルで
ある。このダイオードの耐圧が2500V相当とした場
合、溝3の底部4での表面濃度を1×1016cm-3、溝
の深さを5μm程度とするとよい。勿論、ダイオードの
耐圧、拡散プロフィルの形状が異なる場合はこの溝4の
深さは異なったものとなる。
FIG. 2 differs from FIG. 1 in that the planar pattern of the groove 3a is circular. This plane pattern may of course be a polygon. Alternatively, the groove 3a may have an inverted trapezoidal shape in which the width of the surface is smaller than the width of the bottom portion 4. Here, the cross-sectional structure is the same as that of FIG. FIG. 3 shows the diffusion profile of the p-layer of the diode of the present invention. The p + layer 2 has a depth of 7 μm up to the pn junction interface 5. For example, using boron as the impurity ion species,
The dose is about 1 × 10 15 cm -2 and the diffusion temperature is 1150 ° C
Here, the diffusion time is a diffusion profile when the diffusion time is set to ten and several hours. When the breakdown voltage of this diode is equivalent to 2500 V, it is preferable that the surface concentration at the bottom 4 of the groove 3 is 1 × 10 16 cm −3 and the depth of the groove is about 5 μm. Of course, when the breakdown voltage of the diode and the shape of the diffusion profile are different, the depth of the groove 4 is different.

【0018】[0018]

【発明の効果】この発明によれば、p層を構成するp-
層とp+ 層の形成は、同一のイオン注入工程および熱拡
散工程で行われ、製造コストの低減を図ることができ
る。またイオン注入工程回数および熱拡散工程回数を1
回とすることができるために、結晶欠陥の導入が抑制さ
れ、ダイオードのオン特性などの素子特性が向上する。
またpn接合面を平坦とすることで、従来のダイオード
の逆回復特性とサージ電流耐量を維持し、または向上さ
せつつ、耐圧特性も向上できる。
Effect of the Invention] The present invention constitutes a p layer p -
The formation of the layer and the p + layer is performed in the same ion implantation step and thermal diffusion step, so that the manufacturing cost can be reduced. In addition, the number of times of the ion implantation process and the number of thermal diffusion processes are
Since the number of times can be reduced, the introduction of crystal defects is suppressed, and the device characteristics such as the ON characteristics of the diode are improved.
By flattening the pn junction surface, the withstand voltage characteristic can be improved while maintaining or improving the reverse recovery characteristic and the surge current resistance of the conventional diode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例のダイオードの要部構成
図で、(a)は平面図、(b)は(a)のX−X線で切
断した断面図
FIGS. 1A and 1B are main part configuration diagrams of a diode according to a first embodiment of the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line XX of FIG.

【図2】この発明の第2実施例のダイオードの要部構成
図で、(a)は平面図、(b)は(a)のX−X線で切
断した断面図
FIGS. 2A and 2B are main part configuration diagrams of a diode according to a second embodiment of the present invention, wherein FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line XX of FIG.

【図3】この発明のダイオードのp層の拡散プロフィル
を示す図
FIG. 3 is a diagram showing a diffusion profile of a p-layer of the diode of the present invention.

【図4】従来のダイオードの要部構造図で、(a)は平
面図、(b)は(a)のX−X線で切断した断面図
4 (a) is a plan view, and FIG. 4 (b) is a cross-sectional view taken along line XX of FIG. 4 (a).

【符号の説明】[Explanation of symbols]

1 n- 基板 2 p+ 層 3 溝 3a 溝 4 底面 5 pn接合境界面 7 p- 層 8 側面 9 アノード電極 11 n+ 層 12 カソード電極 13 周辺耐圧構造 22 p+ 層 25 pn接合境界面 27 p- 層 29 アノード電極 31 空乏層の先端部 32 空乏層の先端部 33 電界集中Reference Signs List 1 n - substrate 2 p + layer 3 groove 3 a groove 4 bottom surface 5 pn junction boundary surface 7 p - layer 8 side surface 9 anode electrode 11 n + layer 12 cathode electrode 13 peripheral breakdown voltage structure 22 p + layer 25 pn junction boundary surface 27 p - the distal end portion 32 depletion layer 29 anode electrode 31 depletion tip 33 field concentration

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1導電形半導体基板の一方の主面に第2
導電形半導体層が形成され、他方の主面に高濃度の第1
導電形半導体層が形成され、前記第2導電形半導体層内
に所定の深さの溝が少なくとも一つ以上形成され、前記
第2導電形半導体層の露出面に第1主電極が選択的に形
成され、前記第1導電形半導体層表面に第2主電極が選
択的に形成されることを特徴とする半導体装置。
A first conductive type semiconductor substrate having a second main surface on one main surface thereof;
A conductive semiconductor layer is formed, and a high-concentration first layer is formed on the other main surface.
A conductive semiconductor layer is formed, at least one groove having a predetermined depth is formed in the second conductive semiconductor layer, and a first main electrode is selectively formed on an exposed surface of the second conductive semiconductor layer. And a second main electrode is selectively formed on the surface of the first conductivity type semiconductor layer.
【請求項2】第1導電形半導体基板と第2導電形半導体
層で形成されるpn接合境界面と、前記溝の底面との距
離が半導体装置の耐圧を確保する長さであることを特徴
とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a distance between a pn junction boundary formed by the first conductivity type semiconductor substrate and the second conductivity type semiconductor layer and a bottom surface of the groove is a length for ensuring a withstand voltage of the semiconductor device. 2. The semiconductor device according to claim 1, wherein
【請求項3】第2導電形半導体層の表面濃度が1×10
18cm-3ないし1×1020cm-3であり、第2導電形半
導体層に形成される溝の底面の表面濃度が1×1016
-3ないし1×1017cm-3であることを特徴とする請
求項1記載の半導体装置。
3. The method according to claim 1, wherein the surface concentration of the second conductivity type semiconductor layer is 1 × 10 5.
18 cm −3 to 1 × 10 20 cm −3 , and the surface concentration of the bottom surface of the groove formed in the second conductivity type semiconductor layer is 1 × 10 16 c
2. The semiconductor device according to claim 1, wherein the thickness is from m -3 to 1 × 10 17 cm -3 .
JP132698A 1998-01-07 1998-01-07 Semiconductor device Pending JPH11204804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP132698A JPH11204804A (en) 1998-01-07 1998-01-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP132698A JPH11204804A (en) 1998-01-07 1998-01-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH11204804A true JPH11204804A (en) 1999-07-30

Family

ID=11498382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP132698A Pending JPH11204804A (en) 1998-01-07 1998-01-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH11204804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269445A (en) * 2014-10-11 2015-01-07 丽晶美能(北京)电子技术有限公司 Fast recovery diode and manufacturing method of fast recovery diode
US9041143B2 (en) 2013-03-22 2015-05-26 Kabushiki Kaisha Toshiba Semiconductor devices
US9620631B2 (en) 2012-09-12 2017-04-11 Kabushiki Kaisha Toshiba Power semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620631B2 (en) 2012-09-12 2017-04-11 Kabushiki Kaisha Toshiba Power semiconductor device
US9041143B2 (en) 2013-03-22 2015-05-26 Kabushiki Kaisha Toshiba Semiconductor devices
CN104269445A (en) * 2014-10-11 2015-01-07 丽晶美能(北京)电子技术有限公司 Fast recovery diode and manufacturing method of fast recovery diode

Similar Documents

Publication Publication Date Title
US7572683B2 (en) Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
JP4351745B2 (en) Semiconductor device
JP5787853B2 (en) Power semiconductor device
EP3238260B1 (en) Reverse-conducting semiconductor device
JP2008016747A (en) Trench-mos silicon carbide semiconductor device and method for manufacturing the same
EP0663698B1 (en) Semiconductor device and its manufacture
KR20090031194A (en) Semiconductor device
US11489047B2 (en) Semiconductor device and method of manufacturing the same
JP6454443B2 (en) Flat gate commutation thyristor
JP4904625B2 (en) Semiconductor device
JP5011634B2 (en) Semiconductor device and bidirectional switch element using the semiconductor device
US11239352B2 (en) Self-aligned and robust IGBT devices
KR100297703B1 (en) Power semiconductor device adopting a SIPOS and method for forming thereof
US11699744B2 (en) Semiconductor device and semiconductor apparatus
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP3409244B2 (en) Semiconductor device
US20150255629A1 (en) Semiconductor device
JP5865860B2 (en) Semiconductor device
JP5556862B2 (en) Method for manufacturing trench MOS type silicon carbide semiconductor device
JP2006237553A (en) Semiconductor device and its manufacturing method
US7741655B2 (en) Semiconductor device
JPH11204804A (en) Semiconductor device
JP4471922B2 (en) Semiconductor device
JPH0870121A (en) Insulated gate semiconductor device
JP2000299476A (en) Semiconductor device