JPS6118344B2 - - Google Patents

Info

Publication number
JPS6118344B2
JPS6118344B2 JP2075176A JP2075176A JPS6118344B2 JP S6118344 B2 JPS6118344 B2 JP S6118344B2 JP 2075176 A JP2075176 A JP 2075176A JP 2075176 A JP2075176 A JP 2075176A JP S6118344 B2 JPS6118344 B2 JP S6118344B2
Authority
JP
Japan
Prior art keywords
type
diffusion region
region
buried
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2075176A
Other languages
Japanese (ja)
Other versions
JPS52103980A (en
Inventor
Naosada Tomari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2075176A priority Critical patent/JPS52103980A/en
Publication of JPS52103980A publication Critical patent/JPS52103980A/en
Publication of JPS6118344B2 publication Critical patent/JPS6118344B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体集積回路装置、特に容量素子を
含む半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and particularly to a semiconductor integrated circuit device including a capacitive element.

半導体集積回路ことにリニア集積回路において
は回路素子としてコンデンサを作り込む必要のあ
る場合が多い。
In semiconductor integrated circuits, especially linear integrated circuits, it is often necessary to incorporate capacitors as circuit elements.

ところで半導体集積回路中に作り込まれるコン
デンサとしてはシリコン酸化膜を用いたMOS容
量、あるいはPN接合のもつ接合容量が従来より
知られている。
By the way, as capacitors built into semiconductor integrated circuits, MOS capacitors using a silicon oxide film or junction capacitors of PN junctions have been known.

第1図は従来の半導体集積回路装置における
PN接合容量素子の構造を示す断面図であり、図
中1はP型シリコン基板、2はこの基板上にエピ
タキシヤル成長され、かつP+型分離拡散領域3
によつて島状とされたN型島領域、4は基板1と
エピタキシヤル領域2の間に選択的に埋込まれた
N+型埋込拡散領域である。そして5はN型島領
域2中にトランジスタのベース拡散と同時に形成
されたP型拡散領域、6はP型拡散領域55の中
にトランジスタのエミツタと同時に形成された
N+型拡散領域、7は同じくエミツタ拡散と同時
にN型島領域2中に形成されたコンタクト用の
N+型拡散領域、そして8はシリコン酸化膜、
9,10及び11はN型島領域2、P型拡散領域
5及びN+型拡散領域6の各領域へオーミツク接
触ししかも接合容量素子の電極となる導電体であ
る。
Figure 1 shows a conventional semiconductor integrated circuit device.
1 is a cross-sectional view showing the structure of a PN junction capacitive element, in which 1 is a P-type silicon substrate, 2 is a P + type isolation diffusion region 3 epitaxially grown on this substrate;
An N-type island region 4 formed into an island shape by is selectively embedded between the substrate 1 and the epitaxial region 2.
It is an N + type buried diffusion region. 5 is a P-type diffusion region that is formed in the N-type island region 2 at the same time as the base diffusion of the transistor, and 6 is a P-type diffusion region that is formed in the P-type diffusion region 55 at the same time as the emitter of the transistor.
The N + type diffusion region 7 is also a contact area formed in the N type island region 2 at the same time as the emitter diffusion.
N + type diffusion region, and 8 a silicon oxide film,
Reference numerals 9, 10, and 11 designate conductors that are in ohmic contact with the N-type island region 2, P-type diffusion region 5, and N + type diffusion region 6, and serve as electrodes of the junction capacitance element.

このような構造では電極9,10を用いれば接
合面12が容量の役目を果し、電極10,11を
用いれば接合面13が、また電極9とシリコン基
板1を用いる場合には基板1とN+型埋込拡散領
域4との間の接合面14が主として容量の役目を
果す。そして通常はこれらの接合面の1つあるい
は複数個が電気容量として用いられるわけであ
る。
In such a structure, if the electrodes 9 and 10 are used, the bonding surface 12 will act as a capacitor, if the electrodes 10 and 11 are used, the bonding surface 13 will act as a capacitor, and if the electrode 9 and the silicon substrate 1 are used, the bonding surface 13 will act as a capacitor, and if the electrode 9 and the silicon substrate 1 are used, the bonding surface 12 will act as a capacitor. The junction surface 14 between the N + type buried diffusion region 4 mainly serves as a capacitor. Usually, one or more of these junction surfaces are used as a capacitor.

第2図は従来の半導体集積回路装置における
PN接合容量素子の他の例を示す断面図で、第1
図の構造を改良した例として知られているものの
構造を示す図である(特願昭46−44416)。第1図
との相異点はトランジスタのベース拡散と同時に
形成するP型拡散領域5の位置に、P+型分離拡
散領域3と同時に、P+型拡散領域15が形成さ
れている点である。この場合P+型拡散領域15
とN+型埋込拡散領域4とによつて形成される接
合面16が第1図の接合面12と同様の容量の役
目を果す。そして接合面16はその両側の領域で
あるP+型拡散領域15とN+型埋込拡散領域4の
不純物濃度が3×10161/cm3程度で第1図の接合
面12を形成するP型拡散領域5とN型島領域2
の不純物濃度(=5×1015)よりも高いために、
単位面積当りの容量が接合面12の場合の約2倍
となる。しかしながら第1図及び第2図の構造で
は接合面13と12又は接合面16と17の容量
を並列接続に使用する場合、大部分の容量は、接
合面13,17にそれぞれ依存する。したがつて
第2図の構造は第1図の構造に比べて1割及至2
割程度大きい容量を提供し得るにすぎない。
Figure 2 shows a conventional semiconductor integrated circuit device.
This is a cross-sectional view showing another example of a PN junction capacitive element.
This is a diagram showing the structure of a known example of improving the structure shown in the figure (Japanese Patent Application No. 44416/1986). The difference from FIG. 1 is that a P + type diffusion region 15 is formed at the same time as the P + type isolation diffusion region 3 at the position of the P type diffusion region 5 which is formed at the same time as the base diffusion of the transistor. . In this case P + type diffusion region 15
A junction surface 16 formed by the N + type buried diffusion region 4 serves as a capacitor similar to the junction surface 12 in FIG. The junction surface 16 forms the junction surface 12 in FIG. 1 with the impurity concentration of the P + type diffusion region 15 and the N + type buried diffusion region 4 on both sides thereof being about 3×10 16 1/cm 3 . P-type diffusion region 5 and N-type island region 2
Because it is higher than the impurity concentration (=5×10 15 ),
The capacitance per unit area is approximately twice that of the bonding surface 12. However, in the structures of FIGS. 1 and 2, when the capacitance of the bonding surfaces 13 and 12 or the bonding surfaces 16 and 17 is used for parallel connection, most of the capacitance depends on the bonding surfaces 13 and 17, respectively. Therefore, the structure in Figure 2 is 10% to 20% lower than the structure in Figure 1.
It can only provide a relatively large capacity.

従来はこれらの構造により半導体集積回路中へ
の容量の作り込みがなされていたが、かかる構造
をもつてしては単位面積当りの容量が小さく数
PF程度の容量を作り込む場合でも半導体チツプ
のかなりの面積を占有してしまう。
Conventionally, capacitance has been built into semiconductor integrated circuits using these structures, but with such structures, the capacitance per unit area is small and the number of
Even when creating a capacitance comparable to that of a PF, it occupies a considerable amount of area on a semiconductor chip.

本発明はかかる従来の構造における問題点すな
わち単位面積当りの容量の小ささに鑑みてなされ
たものであり、単位面積当りの容量を大ならしめ
うる構造を提供しようとするものである。
The present invention has been made in view of the problem with the conventional structure, that is, the small capacity per unit area, and it is an object of the present invention to provide a structure that can increase the capacity per unit area.

以下本発明の実施例にかかる第3図、第4図及
び第5図の構造にもとずいて本発明を説明する。
The present invention will be described below based on the structures of FIGS. 3, 4, and 5 according to embodiments of the present invention.

第3図は本発明の一実施例図で1,2及び4は
従来と同一構造部分であるが以下の構造において
従来のものと異なる。すなわちN+型埋込拡散領
域4とエピタキシヤル領域2の間に図示する様に
P型埋込拡散領域18を形成し、エピタキシヤル
層の表面からP型埋込拡散領域18に到するP型
第1拡散領域19を形成する。次いでトランジス
タのベース拡散と同時にエピタキシヤル領域2の
中にP型第2拡散領域20を形成し、さらにP型
第1拡散領域19、P型第2拡散領域20及びエ
ピタキシヤル2の三領域にわたつて存在するN+
型拡散領域21を形成する。
FIG. 3 is a diagram showing an embodiment of the present invention, and 1, 2, and 4 are the same structural parts as the conventional one, but the following structure differs from the conventional one. That is, a P-type buried diffusion region 18 is formed between the N + type buried diffusion region 4 and the epitaxial region 2 as shown in the figure, and a P-type diffusion region 18 is formed from the surface of the epitaxial layer to the P-type buried diffusion region 18. A first diffusion region 19 is formed. Next, a P-type second diffusion region 20 is formed in the epitaxial region 2 at the same time as the base diffusion of the transistor, and the P-type second diffusion region 20 is further spread over three regions: the P-type first diffusion region 19, the P-type second diffusion region 20, and the epitaxial region 2. N +
A mold diffusion region 21 is formed.

かかる構造においては互に隣接しているN+
埋込拡散領域4エピタキシヤル領域2及びN+
散領域21がPN接合容量素子の一方の極板(プ
ラス側)に相当する。一方、N+型埋込拡散領域
4とエピタキシヤル領域2にはさまれているP型
埋込拡散領域18及びエピタキシヤル領域2と
N+型拡散領域21にはさまれているP型第2拡
散領域20が他方の極板(マイナス側)に相当
し、これらはP型第1拡散領域によつて互に接続
されている。そして導電体22と23はそれぞれ
P型第1拡散領域19とN+型拡散領域21とに
オーミツク接触されている。
In this structure, the N + type buried diffusion region 4 epitaxial region 2 and the N + diffusion region 21 which are adjacent to each other correspond to one plate (positive side) of the PN junction capacitive element. On the other hand, the P-type buried diffusion region 18 and the epitaxial region 2 sandwiched between the N + type buried diffusion region 4 and the epitaxial region 2
The P-type second diffusion region 20 sandwiched between the N + type diffusion regions 21 corresponds to the other plate (minus side), and these are connected to each other by the P-type first diffusion region. The conductors 22 and 23 are in ohmic contact with the P type first diffusion region 19 and the N + type diffusion region 21, respectively.

かかる構造によれば接合面24,25,26と
27が容量の役目を果す。しかも接合面24は、
従来の第1図ないし第2図に示した構造に於ける
接合面13及び接合面17と同様、不純物濃度の
高いN型とP型の接合面(=10171/cm3)となつ
ており、かつ接合面27もP型側の不純物濃度が
約8×10171/cm3と、従来の第2図に於ける接合
面16の場合の不純物濃度3×10161/cm3に比べ
て高くなつているために単位面積当りの容量は、
約1.2×105PF/cm3となり従来の構造に比べて約
2倍に増大する。
According to this structure, the bonding surfaces 24, 25, 26 and 27 serve as capacitors. Moreover, the joint surface 24 is
Similar to the junction surface 13 and the junction surface 17 in the conventional structure shown in FIGS. 1 and 2, this is a junction surface between N-type and P-type with a high impurity concentration (=10 17 1/cm 3 ). In addition, the impurity concentration on the P-type side of the junction surface 27 is approximately 8×10 17 1/cm 3 , which is the same as the impurity concentration of 3×10 16 1/cm 3 in the case of the conventional junction surface 16 in FIG. Since it is higher than that, the capacity per unit area is
This is approximately 1.2×10 5 PF/cm 3 , which is approximately twice as large as that of the conventional structure.

本実施例においては降服電圧が最も低い、約
7Vの接合面24を容量として用いているために
それ以上の電圧では使用できなくなる。
In this example, the breakdown voltage is the lowest, approximately
Since the 7V junction surface 24 is used as a capacitor, it cannot be used at a higher voltage.

第4図は本発明の他の実施例図で約7V以上の
端子間電圧が印加される場合にも使用しうる。こ
の場合にはN+型拡散領域28はN型島領域2の
中だけにありコンタクトとしてのみ使用される。
FIG. 4 shows another embodiment of the present invention, which can also be used when a voltage of about 7V or more is applied between the terminals. In this case, the N + type diffusion region 28 is located only within the N type island region 2 and is used only as a contact.

従来の構造である第1図及び第2図に於いても
端子間電圧が7Vを越えるような場合には、接合
面13及び接合面17は使用できなくなり、かか
る構造の容量はそれぞれ6×103PF/cm3、1.2×
104PF/cm3程度となる。一方、本実施例における
容量は5×104PF/cm3程度となり従来に比べて4
乃至8倍に増大する。
Even in the conventional structure shown in FIGS. 1 and 2, if the voltage between the terminals exceeds 7V, the junction surface 13 and the junction surface 17 can no longer be used, and the capacitance of such a structure is 6×10 3PF / cm3 , 1.2×
It will be about 10 4 PF/cm 3 . On the other hand, the capacity in this example is about 5×10 4 PF/cm 3 , which is 4
or an increase of 8 times.

又、第5図は本発明の更に他の実施例図で容量
素子の一方の電極が集積回路の最低電位となる場
合の適用例でありP型第2拡散領域20とP型分
離拡散領域29及びP型埋込拡散領域18とP型
分離埋込拡散領域30をそれぞれ直接つないでよ
い。
FIG. 5 is still another embodiment of the present invention, which is an application example where one electrode of the capacitive element has the lowest potential of the integrated circuit. Alternatively, the P-type buried diffusion region 18 and the P-type isolation buried diffusion region 30 may be directly connected.

本実施例においては接合面31も容量に寄与す
ることになり単位面積当りの容量はいつそう増大
する。
In this embodiment, the bonding surface 31 also contributes to the capacitance, and the capacitance per unit area increases rapidly.

以上、説明してきたように本発明によれば従来
のものに比べ単位面積当りの容量がすこぶる大な
るPN接合容量素子をもつた半導体集積回路装置
が得られ、したがつて従来よりも大きな容量の作
り込みが可能になるのはもちろんの事、従来と同
等の容量の作り込みに当つてはコンデンサ部分に
よる半導体チツプの占有率が低下するため半導体
集積回路装置の集積度を高める面での効果も奏す
る。
As explained above, according to the present invention, it is possible to obtain a semiconductor integrated circuit device having a PN junction capacitive element with a much larger capacitance per unit area than that of the conventional one, and therefore a semiconductor integrated circuit device with a much larger capacitance per unit area than the conventional one. Not only does this make it possible to increase the integration density of semiconductor integrated circuit devices, but it also has the effect of increasing the degree of integration of semiconductor integrated circuit devices, since the occupancy rate of the semiconductor chip by the capacitor part decreases when building the same capacitance as before. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路装置に於ける
PN接合容量素子の構造を示す断面図、第2図は
従来の半導体集積回路に於けるPN接合容量素子
の他の例を示す断面図、第3図は本発明にかかる
半導体集積回路装置に於けるPN接合容量素子の
一実施例を示す断面図、第4図は他の実施例を示
す断面図、第5図は更に他の実施例を示す断面図
である。 1…P型シリコン基板、2…エピタキシヤル成
長されたN型島領域、3…P+型分離拡散領域、
4…N+型埋込拡散領域、5…P型拡散領域、6
…N+型拡散領域、7…N+型拡散領域、8…シリ
コン酸化膜、9,10,11…導電体、12,1
3,14…接合面、15…P+型拡散領域、1
6,17…接合面、18…P型埋込拡散領域、1
9…P型第1拡散領域、20…P型第2拡散領
域、21…N+型拡散領域、22,23…導電
体、24,25,26,27…接合面、28…
N+型拡散領域、29…P型分離拡散領域、30
…P型分離埋込拡散領域、31…接合面。
Figure 1 shows a conventional semiconductor integrated circuit device.
FIG. 2 is a sectional view showing the structure of a PN junction capacitive element, FIG. 2 is a sectional view showing another example of a PN junction capacitive element in a conventional semiconductor integrated circuit, and FIG. FIG. 4 is a cross-sectional view showing another example, and FIG. 5 is a cross-sectional view showing still another example. 1...P type silicon substrate, 2...Epitaxially grown N type island region, 3...P + type isolation diffusion region,
4...N + type buried diffusion region, 5... P type diffusion region, 6
... N + type diffusion region, 7 ... N + type diffusion region, 8 ... silicon oxide film, 9, 10, 11 ... conductor, 12, 1
3, 14...Joint surface, 15...P + type diffusion region, 1
6, 17... Junction surface, 18... P-type buried diffusion region, 1
9... P type first diffusion region, 20... P type second diffusion region, 21... N + type diffusion region, 22, 23... conductor, 24, 25, 26, 27... bonding surface, 28...
N + type diffusion region, 29...P type isolation diffusion region, 30
...P-type isolated buried diffusion region, 31...junction surface.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体基板上に形成された第2
導電型のエピタキシヤル領域と、前記エピタキシ
ヤル領域と前記基板との間に埋込まれた前記第2
導電型の第1埋込領域と、前記第1埋込領域と前
記エピタキシヤル領域との間に埋込まれた前記第
1導電型の第2埋込領域と、前記第2埋込領域と
対向するように前記エピタキシヤル層の表面部分
に形成された前記第1導電型の第1領域と、夫々
が前記第2埋込領域および前記第1領域の両方よ
りも狭い幅で形成されて前記第2埋込領域と前記
第1領域とを連結する前記第1導電型の複数の第
2領域とを含んで構成されたPN接合容量素子を
備えることを特徴とする半導体集積回路装置。
1 A second semiconductor substrate formed on a first conductivity type semiconductor substrate.
a conductive type epitaxial region; and the second epitaxial region embedded between the epitaxial region and the substrate.
a first buried region of a conductive type; a second buried region of the first conductive type buried between the first buried region and the epitaxial region; and a second buried region opposite to the second buried region. the first region of the first conductivity type formed on the surface portion of the epitaxial layer; 1. A semiconductor integrated circuit device comprising: a PN junction capacitive element configured to include a plurality of second regions of the first conductivity type connecting two buried regions and the first region.
JP2075176A 1976-02-26 1976-02-26 Semiconductor integrated circuit device Granted JPS52103980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075176A JPS52103980A (en) 1976-02-26 1976-02-26 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075176A JPS52103980A (en) 1976-02-26 1976-02-26 Semiconductor integrated circuit device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16302683A Division JPS59130454A (en) 1983-09-05 1983-09-05 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS52103980A JPS52103980A (en) 1977-08-31
JPS6118344B2 true JPS6118344B2 (en) 1986-05-12

Family

ID=12035881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075176A Granted JPS52103980A (en) 1976-02-26 1976-02-26 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS52103980A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54166269U (en) * 1978-05-15 1979-11-22
JPS5681961A (en) * 1979-12-07 1981-07-04 Hitachi Ltd Semiconductor junction capacitor
JPS604250A (en) * 1983-06-22 1985-01-10 Nec Corp Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS52103980A (en) 1977-08-31

Similar Documents

Publication Publication Date Title
JP3313431B2 (en) Monolithic unidirectional protection diode
KR880008428A (en) Semiconductor structure using merged bipolar / CMOS technology using electrically active trench and method of manufacturing the same
US4704625A (en) Capacitor with reduced voltage variability
JP2000277621A (en) Semiconductor device
JPS6118344B2 (en)
JPH01214055A (en) Electrostatic breakdown protective device
JP2824329B2 (en) Variable capacitance diode device
JP3217552B2 (en) Horizontal high voltage semiconductor device
TW454332B (en) Semiconductor device
JP2774220B2 (en) Semiconductor device
JP2627369B2 (en) Semiconductor integrated circuit
JP2563456B2 (en) MIS type capacitive element
JP2613939B2 (en) Semiconductor device
JPS59130454A (en) Semiconductor integrated circuit device
JP3157187B2 (en) Semiconductor integrated circuit
JPS601843A (en) Semiconductor integrated circuit
JPS61296760A (en) Semiconductor device
JP2522350B2 (en) Semiconductor integrated circuit protection device
JPH03155659A (en) Semiconductor device
JPH02285655A (en) Junction isolated structure of integrated circuit device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JP3249834B2 (en) Semiconductor device
JPH0432754Y2 (en)
JPH0440867B2 (en)
JPH0474478A (en) Diode