JPH02285655A - Junction isolated structure of integrated circuit device - Google Patents
Junction isolated structure of integrated circuit deviceInfo
- Publication number
- JPH02285655A JPH02285655A JP10854989A JP10854989A JPH02285655A JP H02285655 A JPH02285655 A JP H02285655A JP 10854989 A JP10854989 A JP 10854989A JP 10854989 A JP10854989 A JP 10854989A JP H02285655 A JPH02285655 A JP H02285655A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- isolation layer
- substrate
- buried
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002955 isolation Methods 0.000 claims abstract description 60
- 239000004065 semiconductor Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 238000009792 diffusion process Methods 0.000 claims abstract description 16
- 238000000926 separation method Methods 0.000 claims description 27
- 230000003071 parasitic effect Effects 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 3
- 230000001965 increasing effect Effects 0.000 description 11
- 239000012535 impurity Substances 0.000 description 9
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
- Element Separation (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は集積回路装置の回路要素間の干渉を防止するだ
めの接合分離構造、とくに集積回路装置により容量性や
誘導性の負荷を直接に駆動する場合に適する接合分離構
造に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a junction isolation structure for preventing interference between circuit elements of an integrated circuit device, and in particular a junction isolation structure for preventing interference between circuit elements of an integrated circuit device. The present invention relates to a junction separation structure suitable for driving.
周知のように集積回路装置では、それを構成する回路要
素間の動作上の干渉を防止するために、エピタキシャル
層を基板から電位的に浮かされた複数個の半導体領域に
分離し、回路要素ないしは回路要素群をこれらの半導体
領域に振り分けて作り込むことが一般的に行なわれる。As is well known, in an integrated circuit device, in order to prevent operational interference between the circuit elements that make up the device, the epitaxial layer is separated into a plurality of semiconductor regions that are electrically floating above the substrate. Generally, element groups are divided into these semiconductor regions and manufactured.
この電位的な分離には、絶縁分離構造が最も完全ではあ
るがコスト的に高くつきやすい欠点があるので、通常は
互いに逆導電形の半導体層ないしは半導体領域間のpn
接合を用いる接合分離構造、すなわち一方の導電形例え
ばP形の基板上に成長された他方の導電形すなわちn形
のエピタキシャル層を、一方の導電形すなわちp形の分
離層によって、それぞれ集積回路用の回路要素ないしは
回路要素群を作り込むべき複数個の半導体領域に分離す
る構造が採用される。本発明はかかる接合分離構造に関
し、よく知られていることであるが、第2図に示された
例を参照しながら以下簡単に従来技術を説明する。This potential separation has the drawback that although the insulation isolation structure is the most perfect, it tends to be expensive.
A junction isolation structure using a junction, that is, an epitaxial layer of one conductivity type, e.g., P type, grown on a substrate of the other conductivity type, e.g., N type, by a separation layer of one conductivity type, e.g. A structure is adopted in which circuit elements or circuit element groups are separated into a plurality of semiconductor regions in which they are to be fabricated. Although the present invention relates to such a junction separation structure, which is well known, the prior art will be briefly explained below with reference to the example shown in FIG.
第2図において、基板1はp形であってその上にn形の
エピタキシャル層4が成長され、p形の分離層によって
図の例ではバイポーラトランジスタT用の半導体領域4
tとダイオードD用の半導体領域4dとに接合分離され
ている。トランジスタ用の半導体領@41の下側には通
例のようにエピタキシャル層4の成長に先立って強いn
形の埋込層2が基板lにあらかじめ拡散される。また、
分離層はこの例ではいずれも強いp形の埋込分離層3と
表面分離層5とからなる複合構成になっており、この内
の埋込分離層3はエピタキシャル層4の成長に前に拡散
され、表面分離層5はエピタキシャル成長後にその表面
から拡散される。In FIG. 2, the substrate 1 is of the p-type, on which an n-type epitaxial layer 4 is grown, with a p-type separation layer forming a semiconductor region 4 for a bipolar transistor T in the illustrated example.
t and a semiconductor region 4d for diode D. As usual, a strong n layer is formed under the semiconductor region @41 for the transistor prior to the growth of the epitaxial layer 4.
A buried layer 2 of the shape is prediffused into the substrate l. Also,
In this example, the separation layer has a composite structure consisting of a strong p-type buried separation layer 3 and a surface separation layer 5, of which the buried separation layer 3 is diffused before the growth of the epitaxial layer 4. The surface isolation layer 5 is then diffused from its surface after epitaxial growth.
トランジスタTはこの例ではnpn形であって、n形の
半導体領域4を内にそれをコレクタ領域として作り込ま
れ、通例のようにn形のコレクタウオール層6.p形の
ベース層7.n形のエミツタ層9および強いn形のコレ
クタ接続層10を備え、それらに接続してコレクタC,
ベースBおよびエミッタE用の端子が図のように導出さ
れる。The transistor T is of the npn type in this example, and is built within an n-type semiconductor region 4 using it as a collector region, and is formed with an n-type collector all layer 6. p-type base layer7. It has an n-type emitter layer 9 and a strong n-type collector connection layer 10, and is connected to them to form a collector C,
Terminals for base B and emitter E are led out as shown.
この例でのダイオードDは、いずれもp形の基板1.埋
込分離層3および表面分離層5とn形の半導体領域4d
との間のpn接合を利用するいわゆる基板ダイオードで
あって、強いn形のダイオード接続層11からその負側
端子Nが導出される。図の中央部のp形の表面分離層5
には接地接続層8が強いp形で拡散され、接地端子Gが
これから導出される。なお、この接地端子Gは基板ダイ
オードDOP側端子を兼ねている。In this example, the diode D has a p-type substrate 1. Buried isolation layer 3, surface isolation layer 5, and n-type semiconductor region 4d
This is a so-called substrate diode that utilizes a pn junction between the two, and its negative terminal N is led out from a strong n-type diode connection layer 11. P-type surface separation layer 5 in the center of the figure
A ground connection layer 8 is diffused in strong p-type and a ground terminal G is derived from it. Note that this ground terminal G also serves as the substrate diode DOP side terminal.
以上の構造の集積回路装置では、通例のように接地端子
Gを介していずれもp形の表面分離層5と埋込分離層3
と基板1を接地電位に置き、n形の半導体領域4tおよ
び4dに正の電圧を掛けた状態で使用するので、両者間
のpn接合には常に逆方向にバイアス電圧が掛かり、こ
れによっていずれの半導体領域も基板から電位的に浮い
た状態で互いに独立した電位下で動作することができ、
従ってその中に作り込まれた回路要素間の干渉を避ける
ことができる。よく知られているように、これが接合分
離構造の原理である。In the integrated circuit device having the above structure, both the p-type surface isolation layer 5 and the buried isolation layer 3 are connected via the ground terminal G as usual.
and substrate 1 are placed at ground potential, and a positive voltage is applied to n-type semiconductor regions 4t and 4d. Semiconductor regions can also operate under mutually independent potentials while floating in potential from the substrate.
Therefore, interference between circuit elements built therein can be avoided. As is well known, this is the principle of the junction isolation structure.
なお、第2図の右側に示された面積の広い埋込分離層3
および表面分離層5はミ集積回路装置のチップをウェハ
から単離する際のいわゆるスクライブライン用の領域で
あって、ふつうはこの領域上を利用してチップを外部と
接続するための接続パッドPが図のように設けられる。Note that the buried isolation layer 3 with a large area shown on the right side of FIG.
The surface separation layer 5 is a region for a so-called scribe line when a chip of a micro-integrated circuit device is isolated from a wafer, and normally this region is used for connecting pads P for connecting the chip to the outside. are provided as shown in the figure.
また、第2図中の残余の構造については、後に第1図を
参照して説明する。Further, the remaining structure in FIG. 2 will be explained later with reference to FIG. 1.
以上説明した接合分離構造では、分離層によって複数個
に分離された半導体領域間に相互干渉はふつうの状態で
は発生しないが、ある条件下では半導体領域相互間が導
通してしまって干渉防止の役目を果たさなくなることが
ある。In the junction isolation structure described above, mutual interference does not occur between the semiconductor regions separated into multiple parts by the isolation layer under normal conditions, but under certain conditions the semiconductor regions become electrically conductive and the role of interference prevention is You may not be able to fulfill your goals.
これは、隣合う半導体領域間にそれらと逆導電形の分離
層が介在しているため、第2図に示すように例えばn形
の半導体領域4tおよび4dとp形の基板1等との間に
npn形の寄生トランジスタtが形成されていて、なん
らかの原因で導通することがあるからである。This is because a separation layer of the opposite conductivity type is interposed between adjacent semiconductor regions, so as shown in FIG. This is because an npn type parasitic transistor t is formed in the transistor t, which may become conductive for some reason.
例えば、第2図のトランジスタTが外部負荷を駆動して
おり、基板ダイオードDがこの負荷がもつキャパシタン
スやインダクタンスを放電させるためのフリーホイーリ
ング用に使われていると、その動作時にかなり大きなフ
リーホイーリング電流がダイオードDをもちろん順方向
に、第2図でいえば接地端子Gからダイオードの負側端
子Nに向けて流れるから、図の寄生トランジスタtにつ
いて見るとそのベースからエミッタに向けて電流が注入
されることになり、かかる外部からのベース電流の強制
、注入により寄生トランジスタtが導通しやすくなるの
である。For example, if the transistor T in Figure 2 is driving an external load and the substrate diode D is used for freewheeling to discharge the capacitance or inductance of this load, there will be a considerable amount of free wheeling during operation. Since the wheeling current flows through the diode D in the forward direction, from the ground terminal G to the negative terminal N of the diode in Figure 2, the current flows from the base to the emitter of the parasitic transistor t in the figure. is injected, and the parasitic transistor t becomes easily conductive due to such forced and injected base current from the outside.
この寄生トランジスタtの導通防止にはその電流増幅率
を下げる要があり、このためにはそのベース抵抗を下げ
るのが従来から知られているふつうの手段である。この
場合のベース抵抗は寄生トランジスタのベースを構成す
る基板1.埋込分離層3および表面分離層5の内で最も
比抵抗の高い基板1内の抵抗でほぼ決まるから、基板1
の不純物濃度を高めるのが最も有効である。In order to prevent the parasitic transistor t from becoming conductive, it is necessary to lower its current amplification factor, and a conventionally known means for this purpose is to lower its base resistance. The base resistance in this case is the substrate 1.0 that forms the base of the parasitic transistor. Since it is almost determined by the resistance within the substrate 1, which has the highest specific resistance among the buried separation layer 3 and the surface separation layer 5, the resistance of the substrate 1
The most effective method is to increase the impurity concentration.
しかし、この解決手段では集積回路装置と(にトランジ
スタTの耐圧値が不可避的に低下してしまう。すなわち
、第2図かられかるようにトランジスタTの耐圧値は強
いn形の埋込層2とp形の基板1との間のpn接合によ
ってほぼ決まるから、この接合がら空乏層が延びやすい
基板1例の不純物濃度まで上げてしまうと、トランジス
タTの耐圧値が低下してしまうのである。However, with this solution, the breakdown voltage value of the transistor T inevitably decreases due to the integrated circuit device. In other words, as can be seen from FIG. Since it is almost determined by the pn junction between the p-type substrate 1 and the p-type substrate 1, if the impurity concentration is increased to the level of the substrate in which the depletion layer tends to extend from this junction, the withstand voltage value of the transistor T will decrease.
本発明は、かかる問題点を解決して、隣合う2個の半導
体頭載間とその相互間の分離層との間に形成される寄生
トランジスタの導通を抑制して、両生導体領域内に作り
込まれる回路要素間の干渉を有効に防止できる集積回路
装置の接合分離構造を得ることを目的とする。The present invention solves these problems and suppresses the conduction of parasitic transistors formed between two adjacent semiconductor heads and the separation layer between them, and is formed in an asymmetric conductor region. An object of the present invention is to obtain a junction separation structure for an integrated circuit device that can effectively prevent interference between integrated circuit elements.
〔課題を解決するための手段]
本発明ではこの目的は、分離層を複合構成にするととも
に、隣合う2個の半導体領域相互間の埋込分離層の拡散
幅を表面分離層の拡散幅よりも少なくとも一方の半導体
領域の下側に向けて広げることによって達成される。[Means for Solving the Problems] The object of the present invention is to make the separation layer have a composite structure, and to make the diffusion width of the buried separation layer between two adjacent semiconductor regions smaller than the diffusion width of the surface separation layer. This is also achieved by expanding downwards in at least one of the semiconductor regions.
なお、上記構成にいう2個の半導体領域の一方が基板ト
ランジスタ用である場合、この領域の方に埋込分離層の
拡散幅を広げるのが有利で、かつこの基板トランジスタ
用半導体領域上のスペースを利用して、集積回路の外部
との接続パッドを配設するのがとくに有利である。Note that when one of the two semiconductor regions in the above structure is for a substrate transistor, it is advantageous to widen the diffusion width of the buried isolation layer toward this region, and the space above the semiconductor region for the substrate transistor is It is particularly advantageous to arrange the connection pads to the outside of the integrated circuit by means of .
従来は寄生トランジスタの効果を減殺するためにそのベ
ース抵抗を減少させていたが、本発明はトランジスタの
電流増幅率がそのベース幅の二乗に反比例することに着
目して、上記構成にいうように隣合う2個の半導体領域
相互間の埋込分離層の拡散幅を表面分離層の拡散幅より
も少なくとも一方の半導体領域の下側に向けて広げるこ
とによって、寄生トランジスタのベース幅を増加させて
その電流増幅率を減少させるものである。これによって
、大きなベース電流が注入されても寄生トランジスタは
容易には導通しなくなり、両生導体領域に作り込まれる
回路要素間の相互干渉のおそれを大幅に減少させること
ができる。Conventionally, the base resistance of the parasitic transistor was reduced in order to reduce its effect, but the present invention focuses on the fact that the current amplification factor of the transistor is inversely proportional to the square of its base width. The base width of the parasitic transistor is increased by making the diffusion width of the buried isolation layer between two adjacent semiconductor regions wider than the diffusion width of the surface isolation layer toward the bottom of at least one of the semiconductor regions. This reduces the current amplification factor. As a result, even if a large base current is injected, the parasitic transistor does not easily become conductive, and the possibility of mutual interference between circuit elements built in the bidirectional conductor region can be significantly reduced.
第1図に本発明による接合分離構造の実施例を示す。同
図はこの本発明構造を第2図の従来例と同じくトランジ
スタTと基板ダイオードDが作り込まれる集積回路装置
部分に適用した例を示し、さらにこの例では基板ダイオ
ードD用の半導体領域上のスペースを利用して接続パッ
ドPが配設される。なお、この第1図中の第2図に対応
する部分には同じ符号が付されている。FIG. 1 shows an embodiment of a junction separation structure according to the present invention. This figure shows an example in which the structure of the present invention is applied to an integrated circuit device portion in which a transistor T and a substrate diode D are formed, as in the conventional example shown in FIG. Connection pads P are arranged using the space. Note that portions in FIG. 1 that correspond to those in FIG. 2 are given the same reference numerals.
p形の基板1には不純物濃度が1015原子/ afl
程度の通常のものが用いられ、まずその表面の所定範囲
に強いn形の埋込層2と強いp形の埋込分離層3とが拡
散される。埋込層2用の不純物には拡散速度の低い砒素
等を2埋込分離層3用には拡散速度の高いボロン等を用
いるのがよく、それらの濃度ば埋込N2でば10′8原
子/ ci程度、埋込分離層3では例えば1019原子
/ cJとされる。基板ダイオードD用の半導体領域4
dの下側になる埋込分離層3は本発明に基づき図のよう
に表面分離層5よりもずっと広幅に拡散される。The p-type substrate 1 has an impurity concentration of 1015 atoms/afl
A strong n-type buried layer 2 and a strong p-type buried isolation layer 3 are first diffused into a predetermined range of the surface. It is best to use arsenic, which has a low diffusion rate, as the impurity for the buried layer 2, and boron, which has a high diffusion rate, for the buried isolation layer 3, and their concentration is 10'8 atoms in the case of buried N2. /ci, for example, 1019 atoms/cJ in the buried isolation layer 3. Semiconductor region 4 for substrate diode D
According to the invention, the buried isolation layer 3 lying below d is diffused much wider than the surface isolation layer 5, as shown in the figure.
この例では集積回路装置が高耐圧用なので、n形のエピ
タキシャル層4をこの基板1上に15屑程度以上の厚み
に例えば5Ωcm程度の比較的高比抵抗で成長させ、そ
の表面から強いp形の表面分離層5を10′8原子/C
l11程度の不純物濃度で深く拡散して、図示のように
下側から上がり込んでくる埋込分離層3と導電的に融合
させることにより、エピタキシャル層4を基板1から接
合分離されたこの例では2個の半導体領域4tと4dと
に分離する。In this example, since the integrated circuit device is for high breakdown voltage, an n-type epitaxial layer 4 is grown on this substrate 1 to a thickness of about 15 Ω or more with a relatively high resistivity of, for example, about 5 Ωcm, and from its surface, a strong p-type The surface separation layer 5 of 10'8 atoms/C
In this example, the epitaxial layer 4 is junction-separated from the substrate 1 by deeply diffusing with an impurity concentration of about 11 and conductively fusing with the buried isolation layer 3 rising from below as shown in the figure. It is separated into semiconductor regions 4t and 4d.
この内のバイポーラトランジスタT用の半導体領域4t
に対しては、通例のようにその表面から強いn形のコレ
クタウオール層6が拡散速度の高い燐等を不純物として
、1018原子/ ctA程度の濃度で埋込層2と融合
するよう深く拡散される。Semiconductor region 4t for bipolar transistor T among these
As is customary, the strong n-type collector all layer 6 is deeply diffused from the surface using impurities such as phosphorus with a high diffusion rate so as to fuse with the buried layer 2 at a concentration of about 1018 atoms/ctA. Ru.
この例でのトランジスタTはnpn形で、そのコレクタ
領域としてのn形の半導体領域4tの表面からp形のベ
ース層7が例えば10I11原子/C−程度の比較的高
不純物濃度で例えば3−程度の深さに拡散され、この工
程を利用して表面分離層5の表面にn形の接地接続層8
が同時拡散される。The transistor T in this example is of the npn type, and the p-type base layer 7 from the surface of the n-type semiconductor region 4t serving as the collector region has a relatively high impurity concentration of about 10I11 atoms/C-, for example about 3- Using this process, an n-type ground connection layer 8 is formed on the surface of the surface isolation layer 5.
are simultaneously diffused.
同様に、トランジスタT用のエミツタ層9とコレクタ接
続層10および基板ダイオードD用のダイオード接続層
11がいずれも強いn形で同時拡散され、それらの不純
物濃度は例えば1020原子/cJ深さは2IIfn程
度とされる。Similarly, the emitter layer 9 and collector connection layer 10 for the transistor T and the diode connection layer 11 for the substrate diode D are all simultaneously diffused with strong n-type, and their impurity concentration is, for example, 1020 atoms/cJ and the depth is 2IIfn. It is considered to be a degree.
以上の各拡散層が作り込まれたウェハの表面は通例のよ
うに酸化膜21で覆われているが、この例では集積回路
装置の高耐圧化のため表面分離層5と半導体領域4tお
よび4dとの間の接合表面の酸化膜21上に、いわゆる
フィールドプレート30を多結晶シリコン等で形成して
この接合表面での耐圧低下を予防している。このフィー
ルドプレート30上にいわゆる眉間絶縁膜である酸化膜
22を被着した後に、それに明けた窓を介してアルミ等
の接続膜40を所定の半導体層に導電接触させて、トラ
ンジスタTのコレクタC,ベースBおよびエミッタE用
の端子等とする。なお、フィールドプレート30は、接
地接続層8に導電接触する接地端子G用の接続膜40と
図のように接続されて、通例のように接地電位に置かれ
る。The surface of the wafer on which each of the above diffusion layers is formed is covered with an oxide film 21 as usual, but in this example, the surface isolation layer 5 and the semiconductor regions 4t and 4d are used to increase the breakdown voltage of the integrated circuit device. A so-called field plate 30 is formed of polycrystalline silicon or the like on the oxide film 21 on the bonding surface between the two to prevent a drop in breakdown voltage at the bonding surface. After depositing an oxide film 22, which is a so-called glabellar insulating film, on the field plate 30, a connecting film 40 made of aluminum or the like is brought into conductive contact with a predetermined semiconductor layer through a window opened in the oxide film 22, and the collector C of the transistor T is , terminals for base B and emitter E, etc. Note that the field plate 30 is connected as shown to a connection film 40 for the ground terminal G that is in conductive contact with the ground connection layer 8, and is placed at the ground potential as usual.
この例での基板ダイオードD用の半導体領域4dは、第
2図と比較すればわかるように従来よりかなり広幅に形
成されており、その上を利用して接続バッドPを作り込
むため、上述の接続膜40を所望の大きさに形成し、か
つその下のダイオード接続層11と導電接触させて第2
図のダイオードTの負側端子Nと共用とする。次に通例
のように接続膜40を覆って窒化シリコン等の保護膜2
3が被着されるが、それに明けた窓23aに露出する接
続膜40により接続バッドPが図示のように形成されて
ふつうは負荷端子として用いられる。As can be seen from a comparison with FIG. 2, the semiconductor region 4d for the substrate diode D in this example is formed to be considerably wider than the conventional one, and since the connection pad P is formed using the top of the semiconductor region 4d, the above-mentioned A connecting film 40 is formed to a desired size and brought into conductive contact with the underlying diode connecting layer 11 to form a second connection film 40.
It is shared with the negative terminal N of the diode T in the figure. Next, as usual, the connection film 40 is covered with a protective film 2 such as silicon nitride.
A connection pad P is formed as shown in the figure by the connection film 40 exposed through the window 23a, which is normally used as a load terminal.
以上のように構成されたこの実施例での接合分離構造で
も、n形の両生導体領域4tおよび4dとp形の基板1
.埋込分離層3および表面分離層5との間に寄生トラン
ジスタtが図示のように形成されるが、埋込分離層3の
幅が表面分離層5よりも半導体領域4dの方に広げられ
ているので、そのベース幅を実質上火める基板1内の図
の左右方向の長さが第2図と比べて大きくなり、従って
その電流増幅率が従来よりも格段に減少する。Even in the junction isolation structure of this embodiment configured as described above, the n-type amphibic conductor regions 4t and 4d and the p-type substrate 1
.. A parasitic transistor t is formed between the buried isolation layer 3 and the surface isolation layer 5 as shown in the figure, but the width of the buried isolation layer 3 is wider toward the semiconductor region 4d than the surface isolation layer 5. Therefore, the length of the substrate 1 in the left-right direction in the figure, which substantially increases the base width, becomes larger than that in FIG. 2, and therefore the current amplification factor is significantly reduced compared to the conventional one.
これを数値例で説明すると、第2図の従来構造では、埋
込分離層3と表面分離層5の幅はフォトマスクのパター
ン上ではふつう10上1m程度とされ、不純物の熱拡散
後では30I!m程度の幅になる。これに対して、第1
図の実施例構造では表面分離層5の幅は従来と同じとさ
れるが、埋込分離層3の幅は接続バッドPの下側スペー
スを利用してこれよりも100 pa程度は容易に広げ
得る。To explain this using a numerical example, in the conventional structure shown in FIG. ! It will be about m wide. On the other hand, the first
In the example structure shown in the figure, the width of the surface isolation layer 5 is the same as the conventional one, but the width of the buried isolation layer 3 can be easily increased by about 100 pa using the space below the connection pad P. obtain.
従って、寄生トランジスタのベース幅は従来は3〇−程
度で、その電流増幅率はふつう約0.2であったが、こ
の実施例の場合はベース幅を130Im程度つまり従来
の4〜5倍に広げることができ、電流増幅率は前述のよ
うにベース幅の二乗にほぼ反比例するので、約0.01
にすなわち従来の20分の1程度にまで下がる。これに
よって、接地端子Gから第1図の例では接続バッドPに
向けて注入される前述のフリーホイーリング電流等によ
る寄生トランジスタもの導通に対して、従来の約20倍
の余裕、すなわち強制注入電流に対する耐量を持たせる
ことができる。Therefore, the base width of the parasitic transistor was conventionally about 30 mm, and its current amplification factor was usually about 0.2, but in this embodiment, the base width is about 130 Im, or 4 to 5 times that of the conventional one. As mentioned above, the current amplification factor is approximately inversely proportional to the square of the base width, so it is approximately 0.01
In other words, it is reduced to about one-twentieth of the conventional level. As a result, with respect to the conduction of the parasitic transistor due to the above-mentioned freewheeling current injected from the ground terminal G toward the connection pad P in the example of FIG. It can be made resistant to
また、この実施例では表面分離層5の幅を従来と全く同
じに保ちながら、埋込分離層3の幅だけを広げることが
できるから、集積回路装置のチ・ノブサイズを増すこと
なく上述の強制注入電流耐量を向上し得る利点を有する
。In addition, in this embodiment, only the width of the buried isolation layer 3 can be increased while keeping the width of the surface isolation layer 5 exactly the same as in the conventional one, so that the above-mentioned forced isolation layer 3 can be increased without increasing the chi/knob size of the integrated circuit device. This has the advantage that the injection current withstand capacity can be improved.
さらに、上述の説明かられかるように、本発明構造では
基板1の不純物濃度を高める要がなく、集積回路装置の
耐圧を高める上で有利である。例えば第1図の実施例構
造では100 V以上の耐圧値を容易にもたせることが
できる。Furthermore, as can be seen from the above description, the structure of the present invention does not require increasing the impurity concentration of the substrate 1, which is advantageous in increasing the withstand voltage of the integrated circuit device. For example, the structure of the embodiment shown in FIG. 1 can easily provide a breakdown voltage of 100 V or more.
以上の実施例に限らず本発明は種々の態様で実施をする
ことができる。実施例ではトランジスタ用の半導体領域
と基板ダイオード用半導体領域との間の干渉防止に限っ
て説明したが、他の回路要素用の半導体領域相互間につ
いても本発明をその要旨内で適宜実施して上述の効果を
得ることができる。この際、埋込分離層の幅を広げるた
めに半導体領域間の相互距離を若干大きく取る要がある
が、チップサイズをとくに増すことなく強制注入電流耐
量を1桁程度は向上できる。The present invention is not limited to the above embodiments, and the present invention can be implemented in various embodiments. In the embodiments, the explanation has been limited to preventing interference between the semiconductor region for a transistor and the semiconductor region for a substrate diode, but the present invention can also be practiced between semiconductor regions for other circuit elements as appropriate within the scope of the invention. The above-mentioned effects can be obtained. At this time, it is necessary to increase the mutual distance between the semiconductor regions to widen the width of the buried isolation layer, but the forced injection current withstand capability can be improved by about one order of magnitude without particularly increasing the chip size.
以上述べたとおり本発明による集積回路装置の接合分離
構造では、一方の導電形の基板上に成長された他方の導
電形のエピタキシャル層を一方の導電形の分離層により
それぞれ集積回路用の回路要素を作り込むべき複数個の
半導体領域に基板から接合分離するに際して、分離層を
エピタキシャル層の下側に拡散された埋込分離層とエピ
タキシャル層の表面から拡散された表面分離層で構成し
た上で、隣合う2個の半導体領域相互間の埋込分離層の
拡散幅を表面分離層の拡散幅よりも少なくとも一方の半
導体領域の下側に向けて広げることにより、隣合う2個
の半導体領域とその間に介在する分離層とにより形成さ
れる寄生トランジスタの実効ベース幅を増加させてその
電流増幅率を格段に減少させ、この寄生トランジスタが
導通する強制注入電流に対する耐量を1桁以上向上して
、両生導体領域内に作り込まれる集積回路装置の回路要
素ないしは回路要素群間の干渉を有効に防止することが
できる。As described above, in the junction separation structure of the integrated circuit device according to the present invention, the epitaxial layer of one conductivity type grown on the substrate of the other conductivity type is separated by the separation layer of one conductivity type to form circuit elements for the integrated circuit. When separating junctions from the substrate into multiple semiconductor regions to be fabricated, the separation layer is composed of a buried separation layer diffused under the epitaxial layer and a surface separation layer diffused from the surface of the epitaxial layer. , by widening the diffusion width of the buried isolation layer between the two adjacent semiconductor regions toward the bottom of at least one of the semiconductor regions than the diffusion width of the surface isolation layer. By increasing the effective base width of the parasitic transistor formed by the isolation layer interposed therebetween, the current amplification factor thereof is significantly reduced, and the withstand capability against the forced injection current caused by this parasitic transistor to conduct is improved by more than one order of magnitude. Interference between circuit elements or circuit element groups of an integrated circuit device built in the bidirectional conductor region can be effectively prevented.
また、かかる干渉が生しるに至らないまでも、寄生トラ
ンジスタの導通により集積回路装置のチップ内で無用な
電流消費が発生ずるおそれを本発明により減少させるこ
とができる。Further, even if such interference does not occur, the present invention can reduce the possibility that unnecessary current consumption will occur within the chip of the integrated circuit device due to conduction of the parasitic transistor.
さらに、埋込分離層を基板ダイオード用半導体領域の下
側に広げ、かくこの半導体領域の上に集積回路の外部と
の接続パッドを配設する本発明の有利な実施態様によれ
ば、チップサイズを全く増すことな(かかる干渉防止と
電流消費減少の効果を上げることができる。Furthermore, according to an advantageous embodiment of the invention, the buried isolation layer extends below the semiconductor area for the substrate diode, and the connection pads to the outside of the integrated circuit are arranged on this semiconductor area. (It is possible to improve the effects of preventing interference and reducing current consumption without increasing the current consumption at all.
本発明は、容量性や誘導性の負荷を直接に駆動する高耐
圧集積回路装置やBiMO3集積回路装置への適用にと
くに有利で、その動作信顛性を格段に向上する著効を奏
することができる。The present invention is particularly advantageous in application to high-voltage integrated circuit devices and BiMO3 integrated circuit devices that directly drive capacitive or inductive loads, and has the remarkable effect of significantly improving the operational reliability thereof. can.
第1図が本発明に関し、本発明による接合分離構造を例
示する集積回路装置チップの要部拡大断面図である。第
2図は従来の接合分離構造例を示す第1図に対応する集
積回路装置チップの要部拡大断面図である。図において
、
1:基板、2:埋込層、3:埋込分離層、4:エピタキ
シャル層、4d:基板ダイオード用の半導体領域、4t
:トランジスタ用の半導体領域、5:表面分離層、6:
コレクタウオール層、7:ベース層、8:接地接続層、
9:エミツタ層、10:コレクタ接続層、11:ダイオ
ード接続層、21:酸化膜、22二酸化膜ないし眉間絶
縁膜、23:保護膜、23a:保護膜の接続パッド用窓
、30:フィールドプレート、40:接続膜、B:ベー
ス端子、C:コレクタ端子、D:ダイオードないし基板
ダイオード、E:エミッタ端子、G:接地端子、N:ダ
イオードの負側端子、P:接続パッド、T:トランジス
タ、t:寄生トランジスタ、である。FIG. 1 is an enlarged cross-sectional view of a main part of an integrated circuit device chip illustrating a junction isolation structure according to the present invention. FIG. 2 is an enlarged sectional view of a main part of an integrated circuit device chip corresponding to FIG. 1 showing an example of a conventional junction isolation structure. In the figure, 1: substrate, 2: buried layer, 3: buried isolation layer, 4: epitaxial layer, 4d: semiconductor region for substrate diode, 4t
: semiconductor region for transistor, 5: surface isolation layer, 6:
Collector all layer, 7: base layer, 8: ground connection layer,
9: Emitter layer, 10: Collector connection layer, 11: Diode connection layer, 21: Oxide film, 22 Dioxide film or glabellar insulating film, 23: Protective film, 23a: Window for connection pad in protective film, 30: Field plate, 40: Connection film, B: Base terminal, C: Collector terminal, D: Diode or substrate diode, E: Emitter terminal, G: Ground terminal, N: Negative side terminal of diode, P: Connection pad, T: Transistor, t : A parasitic transistor.
Claims (1)
タキシャル層を一方の導電形の分離層によりそれぞれ集
積回路用の回路要素を作り込むべき複数個の半導体領域
に基板から接合分離する構造であって、分離層をエピタ
キシャル層の下側に拡散された埋込分離層とエピタキシ
ャル層の表面から拡散された表面分離層で構成し、隣合
う2個の半導体領域相互間の埋込分離層の拡散幅を表面
分離層の拡散幅よりも少なくとも一方の半導体領域の下
側に向けて広げるようにしたことを特徴とする集積回路
装置の接合分離構造。A structure in which an epitaxial layer of one conductivity type grown on a substrate of one conductivity type is bonded and separated from the substrate by a separation layer of one conductivity type into a plurality of semiconductor regions in which circuit elements for an integrated circuit are to be fabricated, respectively. The isolation layer is composed of a buried isolation layer diffused under the epitaxial layer and a surface isolation layer diffused from the surface of the epitaxial layer, and the buried isolation layer is formed between two adjacent semiconductor regions. A junction isolation structure for an integrated circuit device, characterized in that the diffusion width of the surface isolation layer is made wider toward the lower side of at least one semiconductor region than the diffusion width of the surface isolation layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10854989A JPH02285655A (en) | 1989-04-27 | 1989-04-27 | Junction isolated structure of integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10854989A JPH02285655A (en) | 1989-04-27 | 1989-04-27 | Junction isolated structure of integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02285655A true JPH02285655A (en) | 1990-11-22 |
Family
ID=14487653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10854989A Pending JPH02285655A (en) | 1989-04-27 | 1989-04-27 | Junction isolated structure of integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02285655A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0346335A (en) * | 1989-07-14 | 1991-02-27 | Nec Ic Microcomput Syst Ltd | Bipolar-type semiconductor integrated circuit |
-
1989
- 1989-04-27 JP JP10854989A patent/JPH02285655A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0346335A (en) * | 1989-07-14 | 1991-02-27 | Nec Ic Microcomput Syst Ltd | Bipolar-type semiconductor integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK157468B (en) | Diode for monolithic integrated circuit | |
US4125853A (en) | Integrated circuit transistor | |
US6388851B1 (en) | Electronic discharge protection of integrated circuits | |
US4829361A (en) | Semiconductor device | |
JPH02285655A (en) | Junction isolated structure of integrated circuit device | |
US6225676B1 (en) | Semiconductor device with improved inter-element isolation | |
JPS6118344B2 (en) | ||
JP2664911B2 (en) | Semiconductor device | |
JP2627369B2 (en) | Semiconductor integrated circuit | |
JPS601843A (en) | Semiconductor integrated circuit | |
EP0120529A1 (en) | Integrated logic circuit | |
JPH07321307A (en) | Semiconductor device | |
JP2538384B2 (en) | Semiconductor integrated circuit | |
JPH02283070A (en) | Semiconductor integrated circuit device using input protecting circuit | |
JPH0629466A (en) | Semiconductor integrated circuit | |
JPS61296760A (en) | Semiconductor device | |
JPS6031105B2 (en) | semiconductor equipment | |
JPS5931061A (en) | Semiconductor device of high withstand voltage | |
JPH06209093A (en) | Semiconductor integrated circuit | |
JPS5931051A (en) | High-withstand voltage semiconductor device | |
JPH05347356A (en) | Semiconductor integrated circuit | |
JPH0629518A (en) | Semiconductor device | |
JPH03270078A (en) | Electrostatic protective element | |
JPS59130454A (en) | Semiconductor integrated circuit device | |
JPS59168663A (en) | Semiconductor integrated circuit |