TW454332B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW454332B
TW454332B TW89111978A TW89111978A TW454332B TW 454332 B TW454332 B TW 454332B TW 89111978 A TW89111978 A TW 89111978A TW 89111978 A TW89111978 A TW 89111978A TW 454332 B TW454332 B TW 454332B
Authority
TW
Taiwan
Prior art keywords
unit
region
semiconductor
unit cell
conductivity type
Prior art date
Application number
TW89111978A
Other languages
Chinese (zh)
Inventor
Kyoko Hirata
Hiroshi Shimomura
Original Assignee
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd filed Critical Matsushita Electric Ind Co Ltd
Application granted granted Critical
Publication of TW454332B publication Critical patent/TW454332B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A kind of semiconductor device has the followings: a semiconductor layer 30, which has the first conduction type; the first unit module 10 with the first semiconductor region 12 and the contact region 14, in which both the first semiconductor region 12 and the contact region 14 have the first conduction type and are formed inside semiconductor layer 30; and the second unit module 20 with the second semiconductor region 22 and the contact region 24, in which both the second semiconductor region 22 and the contact region 24 have the second conduction type and are formed inside semiconductor layer 30. The first unit module 10 acts in coordination with the second unit module 20 so as to function as the diode device 100.

Description

454332 五、發明說明(!) 【發明所屬技術領域j 古本發明係有關聆 间且佔有面積小之二=體裝置。尤其係有關於含有 極發元件之半導體裝置。 难 【背景技術】 近年來’隨著翱a CMOS電路(互補型電°單晶解決之系統LSI之開發, 類比CM〇s電路之重 舶體電路)之製程製造類比電 LSi,因常由類比CM〇fj漲。在利用⑶08製程之系稣之 能之類比電路之設計電路之性能決定該1^1之性能,高极 路之情況,為了儘量报重要。在設計高性能之類比Ϊ 電塵之變動等之影缴梆除來自數位電路方塊之雜訊或電ί 電路。又,為了削t f要設置基準電壓電路或基準電流 部雜訊影響之電路ί耗電力,或為了保護内部電路不受外 也需要内部電路之間之不同之電壓相對應, 也萬要5又置電壓變換電路等。 ~ π凡,常湖·电淡>"『η- «a吩η I 生雜訊之問題。因而,在l s i内部,不是利用齊納二極體 之基準電壓電路’而且利用使用了帶隙參照電路之基準電 壓電路。在CMOS LSI之情況,由製造費用之觀點及可使用 和數位電路方塊相同之製程製造之觀點,使用含有利用了 M0S電晶體之PN接面之二極體之帶隙參照電路。為了令在 ,利用齊納二極體構成在設計高性能之類比電路上所 之準電壓電路之情況,電源電壓變高,有在電路内發 生雜訊之問題。因而,在l $ I内部,不是利用齊納二極體 需要提高利用了二極體 特性優異之二極體成為 系統LSI之類比電路之精度提高… 之帶隙參照電路之精度’因而開發 454332 五、發明說明(2) 不可欠缺。454332 V. Description of the invention (!) [Technical field to which the invention belongs] The present invention relates to a listening room with a small occupation area = body device. In particular, the present invention relates to a semiconductor device including a polarizing element. Difficulty [Background Technology] In recent years, with the development of 翱 a CMOS circuits (system complementary LSIs with single-chip solutions, the analog CMOS circuit is used to manufacture analog electrical LSi). CM〇fj rose. The performance of the design circuit of the analog circuit using the ability of the CU08 process determines the performance of the 1 ^ 1, and the situation of the high-pole circuit is important in order to report as much as possible. In the design of high-performance analogues, such as changes in electric dust, remove noise or electrical circuits from digital circuit blocks. In addition, in order to reduce tf, a reference voltage circuit or a circuit affected by noise of the reference current unit is required to consume power, or in order to protect the internal circuit from external and corresponding voltages between the internal circuits. Voltage conversion circuit and so on. ~ π Fan, Changhu · Dan > " "η-« aphenetaη I The problem of noise. Therefore, inside l s i, a reference voltage circuit using a Zener diode is used instead of a reference voltage circuit using a band gap reference circuit. In the case of a CMOS LSI, from the viewpoint of manufacturing cost and the viewpoint that it can be manufactured using the same process as a digital circuit block, a band gap reference circuit including a diode using a PN junction of a MOS transistor is used. In order to make use of Zener diodes to construct a quasi-voltage circuit designed for high-performance analog circuits, the power supply voltage becomes high and there is a problem that noise occurs in the circuit. Therefore, within l $ I, instead of using Zener diodes, it is necessary to improve the accuracy of using analog diodes with excellent diode characteristics to become system LSIs. The accuracy of band-gap reference circuits is therefore 454332. 2. Description of the invention (2) Indispensable.

而’在要求LSI之晶元面積縮小化中,^要求系統[si 之晶元面積縮小,進行類比•數位混载LSI之微細化,可 是’和微細化比較容易之數位電路部不同,類比電路部因 必須考慮變動或溫度相依性等,類比電路部之面積難縮 小。為了削減類比•數位混載LSI之晶元面積,可削減類 比電路部之面積多少成為重點。因此,縮小在類比電路部 所設置之二極體元件之佔有面精係重要的。And 'requires the reduction of the area of the LSI's crystal chip, ^ requires the system to reduce the area of the si's crystal element to perform analog / digital miniaturization of LSI, but' is different from the digital circuit part which is easier to reduce, the analog circuit It is difficult to reduce the area of the analog circuit part because of the variation or temperature dependence. In order to reduce the die area of analog / digital mixed LSI, it is important to reduce the area of the analog circuit. Therefore, it is important to reduce the occupation area of the diode element provided in the analog circuit section.

在本案發明人檢討了圖15所示二極體元件1〇 〇〇之構 造。圖15(a)在模式上表示二極體元件1〇〇〇之上面,圖 1 5(b)在模式上表示沿著圖1 5(a)之b-b’線之二極體元件 1 0 0 0之剖面。 〇 二極體元件1000具有使用CMOS製程可比較容易製作之 構造’包括在N井區域(NW) 130之中央部所形成之p+擴散區 域122、包園p+擴散區域122之外圍之元件分離區域氧化膜 (元件分離用氧化膜)132以及包圍元件分離區域氧化膜132 之外周.之擴散區域112。此外,在N井區域(ND〇130之周 圍形成P井區域(PW)136,在P丼區域(PWM36内如包圍位於 N +擴散區域112之周圍之元件分離區域氧化胰132般形成p + 擴散區域134。 P+擴散區域12 2及擴散區域112在N井區域130内形 成’因在P+擴散區域122和N井區域(Nff)13〇之接合面形成 Μ接面’籍著將p+擴散區域122作為陽極、將N+擴散區域 112作為陰極’可構成二極體。在二極體元件1〇〇〇,因用The inventor in this case reviewed the structure of the diode element 1000 shown in FIG. 15. Fig. 15 (a) schematically shows the diode element 1 above 1000, and Fig. 15 (b) schematically shows the diode element 1 along the line b-b 'of Fig. 15 (a). 0 0 0 section. 〇 Diode element 1000 has a structure that can be easily manufactured using a CMOS process. 'Includes the p + diffusion region 122 formed in the center of the N-well region (NW) 130, and the oxidation of the device isolation region on the periphery of the p + diffusion region 122. A film (an oxide film for element separation) 132 and a diffusion region 112 surrounding the outer periphery of the oxide film 132 for the element separation region. In addition, a P-well region (PW) 136 is formed around the N-well region (ND0130), and a p + -diffusion is formed in the P 丼 region (PWM36 as the element separation region surrounding the N + -diffusion region 112 oxidizes the pancreas 132) Region 134. The P + diffusion region 12 2 and the diffusion region 112 form a 'M junction at the junction between the P + diffusion region 122 and the N-well region (Nff) 13 ′ in the N-well region 130. The p + -diffusion region 122 is formed. As the anode and the N + diffusion region 112 as the cathode, a diode can be formed. In the diode element 1000,

454332 五、發明說明(3) 一對PN接面構成一個二極體,pn接面之面積(即,p+擴散 區域122之底面之面積)愈大,二極體元件1〇〇〇之電流容量 愈大。和電阻比較低之N+擴散區域11 2或P+擴散區域122不 同,因N井區域130之電阻比較高,在N井區域130存在寄生 電阻140。該寄生電阻140和由P+擴散區域122之底面和N井 區域1 3 0之PN接面構成之二極體串聯i因而,因N井區域 130之寄生電阻140在二極體造成壓降,結果,令二極體元' 件1 000之電流容量降低。因此,在為了得到所要之電流容 量設計二極體元件1 000之情況,決定規定P+擴散區域122 之底面面積之P+擴散區域尺寸1 24和規定?1井區域130之大 小之距離(P+擴散區域122和N+擴散區域112之間之距 離)114後,進行佈置設計。 可是,設計上想增大二極體元件1 000之電流容量時, 〇 因必須增大位於Ν井區域130之中央部之Ρ+擴散區域122之 尺寸,自Ρ+擴散區域122之中心部至Ν+擴散區域112為止之 距離變大。結果,Ν井區域130之寄生電阻140變大。因寄 生電阻140令二極體元件1000之電流容量降低,要得到所 要之電流容量時,需要更增大Ρ+擴散區域122之尺寸,結 果妨礙晶元面積之縮小化。又’二極體電流(ID)愈大,寄 生電阻140令二極體元件1000之電流容量降低之現象愈顯 著。因此,在比較多之電流流遍P+擴散區域尺寸124固定 之二極體元件1000之情況,此現象特別有問題。 本發明係鑑於上述各問題點而想出來的,其主要目的 在於提供含有性能高且佔有面積小之二極體元件之半導體454332 V. Description of the invention (3) A pair of PN junctions constitute a diode. The larger the area of the pn junction (ie, the area of the bottom surface of the p + diffusion region 122), the larger the current capacity of the diode element 1000. Bigger. Unlike the N + diffusion region 112 or P + diffusion region 122, which has a relatively low resistance, the N well region 130 has a relatively high resistance, and a parasitic resistance 140 exists in the N well region 130. The parasitic resistance 140 is connected in series with a diode formed by the bottom surface of the P + diffusion region 122 and the PN junction of the N well region 130. Therefore, the parasitic resistance 140 of the N well region 130 causes a voltage drop in the diode. As a result, , So that the current capacity of the diode element 1 000 is reduced. Therefore, in order to design the diode element 1000 in order to obtain the required current capacity, it is decided to define the distance between the P + diffusion region size 122 of the P + diffusion region 122 and the size of the well region 130 (P + diffusion region). 122 and the distance between the N + diffusion region 112) 114, the layout design is performed. However, when it is designed to increase the current capacity of the diode element 1000, it is necessary to increase the size of the P + diffusion region 122 located at the center of the N-well region 130 from the center of the P + diffusion region 122 to The distance up to the N + diffusion region 112 becomes larger. As a result, the parasitic resistance 140 of the N-well region 130 becomes large. Since the parasitic resistance 140 reduces the current capacity of the diode element 1000, in order to obtain the required current capacity, it is necessary to further increase the size of the P + diffusion region 122, which as a result prevents the reduction of the area of the wafer. The larger the diode current (ID), the more significant the parasitic resistance 140 reduces the current capacity of the diode element 1000. Therefore, this phenomenon is particularly problematic in the case where a relatively large amount of current flows through the diode element 1000 whose P + diffusion region size 124 is fixed. The present invention was conceived in view of the above problems, and its main object is to provide a semiconductor including a diode device with high performance and a small occupied area.

454332 五、發明說明(4) 裝置 【發明概要】 本發明之半導體裝置,具 第了導電型之半導體層;、 導體SC:匕單Η元:具有在該第-導電型之半 電氣上連接該J之第:半導體區域和用以在 以® S f ^ 牛導體&域和配線.之接觸區域; 3 之“二;::::單::元’具有在該第一導電型 以在電氣上連垃姑t第—導電型之第二半導體區域和用 該第-單位單體區域和配線之接觸區域; 上作為m件。'第—單位單元協同動作’在功能 且,ΐ f少:個之第一單位單元係多個第-單位單-且該2一個之第二單位單元儀多個第二單單而 規定該第一半導體區域及該第二半導:區::較好。 =尺寸係和纟該半㈣装置之設計各自之大 寸實質上相同較好。 m上奋許之最小尺 〇 自法線方向所看到該第一半導體區域及 區域各自之形狀係近似正方形較好。 *第一半導體 該第一單位單元及該第二單位單 半導體層内排列成方格花紋較好^ 〜導電型之 於一實施形態中: 該第一單位單元和該第二單位 早疋在該第~'導電型之454332 V. Description of the Invention (4) Device [Summary of Invention] The semiconductor device of the present invention has a semiconductor layer of the first conductivity type; and a conductor SC: a dagger unit: has a semi-electrical connection to the-conductivity type No. J: The semiconductor region and the contact region used to connect the semiconductor conductor & field and wiring. 3 of the "two" :::: single :: element 'has the first conductivity type in the It is electrically connected to the second semiconductor region of the first conductivity type and the contact region using the first unit single region and the wiring; it is used as m pieces. The 'first unit cell cooperative action' is functional and has less ΐf : The first unit unit is a plurality of -unit units- and the second unit unit of the two units defines a plurality of second units, and the first semiconductor region and the second semiconductor are defined: zone :: better. = The size and size of the design of the device are substantially the same. The minimum size allowed in m is 0. The first semiconductor region and the shape of each region are approximately square when viewed from the normal direction. OK. * First semiconductor, the first unit cell and the second unit It is better to arrange the checkered pattern in the semiconductor layer ^ ~ conductive type In one embodiment: the first unit cell and the second unit are already in the ~ 'conductive type

第7頁 454332 五、發明說明(5) 半導體層内排列成彼此間隔既定距離; 在位於該第一導電型之半導體層内之該第一單位單元 和該第二單位單元之間之單元間區域上形成至少具有在該 單元區域上形成之絕緣層和在該絕緣層上所形成之導電層 之閘極構造。 於一實施形態中:更包含和該閘極構造在電氣上連接 之閘極配線。 於一實施形態中:在一個該第一單位單元之該第一半 導體區域内形成多個該第二單位單元。 於一實施形態中:更包含第二導電型之半導體層,在 該第二導電型之半導體層上形成該第一導電型之半導體 ' 層。 於一實施形態中: 在該第一導電型之半導體層内所形成之該第一單位單 元作為基極,該第二單位單元作為射極; 該第二導電型之半導體層作為集極。 於一實施形態中: 該第二導電型之半導體層係半導體基板; 該第一導電型之半導體層係在該半導體基板内所形成 之井區域β 於—實施形態中,在絕緣層上形成該第一導電型之丰 導體層〇 於一實施形態中’更包含類比電路部和數位電路部, 在類比電路部形成該二極體元件,而且利用CMOS製程製作Page 7 454332 5. Description of the invention (5) The semiconductor layers are arranged at a predetermined distance from each other; the inter-cell area between the first unit cell and the second unit cell within the semiconductor layer of the first conductivity type A gate structure having at least an insulating layer formed on the cell region and a conductive layer formed on the insulating layer is formed thereon. In one embodiment, a gate wiring electrically connected to the gate structure is further included. In one embodiment, a plurality of the second unit cells are formed in the first semiconductor region of the first unit cell. In one embodiment, a semiconductor layer of the second conductivity type is further included, and the semiconductor layer of the first conductivity type is formed on the semiconductor layer of the second conductivity type. In one embodiment: the first unit cell formed in the semiconductor layer of the first conductivity type serves as a base, the second unit cell serves as an emitter, and the semiconductor layer of the second conductivity type serves as a collector. In one embodiment: the semiconductor layer of the second conductivity type is a semiconductor substrate; the semiconductor layer of the first conductivity type is a well region formed in the semiconductor substrate β. In an embodiment, the semiconductor layer is formed on an insulating layer. The first conductive type rich conductor layer. In one embodiment, the analog circuit portion and the digital circuit portion are further included. The diode element is formed in the analog circuit portion, and is manufactured by a CMOS process.

454332 五、發明說明(6) 該類比電路部及該數位電路部。 :本發明’具備第一單位單元和第二單位單元,利用 贫位單疋和第二單位單元構成二極體元件。因而,因 了7^一單位單元之第一導電型之第一半導體區域和第二 早位單之第二導電型之第二半導體區域靠近配置,可縮 紐陽極•陰極間之距離。結果,因可削減第一導電型之半 導體層之寄生電阻,可提供含有性能高且佔有面積小之二 極體,件,f導體裝置。在設置多個第一單位單元和多個 第一單位單.元之情況,增大PN接面面積,可增大二極.體元 件之電流容量。 又,在規定第一半導鳢區域及第二半導體區域各自之 大小之尺寸和在設計法則上容許之最小尺寸實質上相同之 情況’因可更有效的縮短陽極·陰極間之距離,可有效的 削減寄生電阻。還可使二極體元件之尺寸變成最小,結 果,可削減半導體裝置之晶元面積。第一半導體區域及第 二半導體區域各自之形狀係近似正方形時,在既定之設計 法則上可令第一單位單元和第二單位單元最高效率的排 列。又,第一單位單元及第二皁位單元排列成方格花紋 時,可更有效的削減第—導電型之半導體層之寄生電阻。 在位於第一單位單元和第二單位單元之間之單元間區 域上形成閘極構造之情況’因在第一單位單元和第二單位 單元之間不必設置元件分離區域氧化膜,第二單位單元之 外圍也可闬作PN接面。因而’可在不增加二極體元件之元 件面積下令PN接面面積更增加。在還形成和閘極構造在電454332 V. Description of the invention (6) The analog circuit section and the digital circuit section. : The present invention is provided with a first unit cell and a second unit cell, and a lean element and a second unit cell are used to form a diode element. Therefore, since the first semiconductor region of the first conductivity type and the second semiconductor region of the second conductivity type of the second early unit are arranged close to each other, the distance between the anode and the cathode can be reduced. As a result, since the parasitic resistance of the semiconductor layer of the first conductivity type can be reduced, it is possible to provide a diode, a device, and an f-conductor device having high performance and a small occupied area. In the case where a plurality of first unit units and a plurality of first unit units are provided, increasing the PN junction area can increase the current capacity of the diode. In addition, in the case where the size of each of the first semiconductor region and the second semiconductor region is substantially the same as the minimum size allowed by the design rule, 'the distance between the anode and the cathode can be shortened more effectively, which is effective. Cut the parasitic resistance. It is also possible to minimize the size of the diode element, and as a result, it is possible to reduce the wafer area of the semiconductor device. When the shape of each of the first semiconductor region and the second semiconductor region is approximately square, the first and second unit cells can be arranged with the highest efficiency according to a predetermined design rule. In addition, when the first unit cell and the second soap position unit are arranged in a checkered pattern, the parasitic resistance of the semiconductor layer of the first conductivity type can be more effectively reduced. When a gate structure is formed on an inter-cell region between a first unit cell and a second unit cell 'Since it is not necessary to provide an element separation region oxide film between the first unit cell and the second unit cell, the second unit cell The periphery can also be used as a PN interface. Therefore, 'the PN junction area can be further increased without increasing the element area of the diode element. In the formation and gate structure

454332 五、發明說明(7) 亂上連接之閘極配線之情況 電壓,可改變二極體元件之 _ 在一個第一單位單元之 二單位單元之構造之情況, 離’可削減第一導電型之半 型之半導體層例如在該第二 此構造之情況,若將第一單 元作為射極,而且將第二導 使用第一單位單元及第二單 件。在此構造,也因削減第 阻’可提供電流容量提高之 型之、半導體層可作為在半導 又’在絕緣層(或絕緣基板) 也可。利用第一單位單元和 件’例如在類比電路部形成 作之構造。 藉著施加和閘極配線獨立之 特性。 第一半 因可縮 導體廣 導電型 位單元 電型之 位單元 一導電 導體區域内形 短陽極•陰極 之寄生電阻。 之半導體層上 作為基極、第 半導體層作為 構成雙極性電 型之丰導體層 電晶體元件。 内所形成之井 雙極性 體基板 上形成第一導電型之 第二單 ,適合454332 V. Description of the invention (7) The voltage of the gate wiring connected randomly can change the structure of the diode element. In the case of the structure of a two-unit unit of a first unit, the first conductivity type can be reduced. In the case of the half-type semiconductor layer, for example, in the case of this second structure, if the first unit is used as the emitter, and the second unit is used as the first unit unit and the second unit. In this structure, it is also possible to increase the current capacity by reducing the resistance. The semiconductor layer can be used as a semiconductor or an insulating layer (or an insulating substrate). The structure using the first unit cell and element 'is, for example, formed in an analog circuit section. By applying and independent of the gate wiring. The first half is due to the shrinkable conductor, the conductive type potential unit, the electrical type potential unit, a conductive conductor area, and the short anode and cathode parasitic resistance. The semiconductor layer serves as a base, and the second semiconductor layer serves as a ferroelectric layer constituting a bipolar electric transistor. The second well of the first conductivity type is formed on the well formed in the bipolar substrate.

位單元構成之 具有使用CMOS 成多個第 間之距 第一導電 形成。在 一早位單 集極’可 晶體元 之寄生電 第一導電 區域。 半導體層 二極體元 製程可製 【發明之最佳實施例】 以下邊參照圖面邊說明本發明之實施例。在以下之圖 面,為了簡化說明,用同一參照符號表示實質上具有同一 功能之構成要素。 ^The bit cell is formed by using CMOS to form a plurality of first conductive spaces. At an early stage, the single-collector 'crystallizable element's parasitic electrical first conductive region. Semiconductor layer Diode element manufacturing process [Best embodiment of the invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following drawings, for the sake of simplicity, the same reference numerals are used to denote constituent elements having substantially the same function. ^

(實施例1) 以下邊參照圖卜圖6邊說明本發明之實施例1。本實施 例之半導體裝置包含半導體積體電路之裝置,例如係^用(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. The semiconductor device of this embodiment includes a semiconductor integrated circuit device, for example,

^ 454332 五、發明說明(8) ——*· CMOS製程所製作之類比•數位混载LSI。在本實施例之半 導體裝置’在半導體積體電路中包含圖1所示二極體元件 100。圖1(a)在模式上表示二極體元件1〇〇之上面,圖 在模式上表示沿著圖1 (a)之b_b,線之二極體元件1〇〇之剖 面。.^ 454332 V. Description of the invention (8) —— * · Analog / digital mixed LSI produced by CMOS process. In the semiconductor device of this embodiment, a semiconductor integrated circuit includes a diode element 100 shown in Fig. 1. Fig. 1 (a) schematically shows the upper surface of the diode element 100, and Fig. 1 (a) schematically shows the cross section of the diode element 100 along line b_b of Fig. 1 (a). .

二極體元件100具有第一導電型之半導體層3〇和在第 一導電型之半導體層30内所形成之第一單位單元10及第二 單位單元20 ^第一導電型之半導體層3〇例如係在p型半導 體基板60内所形成之n井區域(NW)3〇。此外,第一導電型 之半導體層30不限第一導電型之井區域,係第一導電型之 半導體基板也可,係在第二導電型之半導體基板上所形成 之第一導電型之半導體層也可。又,在本實施例,在第一 導電型之半導體層上使用N井區域3〇,但是也可使用p井區 域替代^ 。The diode element 100 includes a semiconductor layer 30 of a first conductivity type and first and second unit cells 10 and 20 formed in the semiconductor layer 30 of the first conductivity type. For example, it is an n-well region (NW) 30 formed in the p-type semiconductor substrate 60. In addition, the semiconductor layer 30 of the first conductivity type is not limited to the well region of the first conductivity type. The semiconductor substrate of the first conductivity type may also be a semiconductor of the first conductivity type formed on the semiconductor substrate of the second conductivity type. Layers are also available. In this embodiment, the N-well region 30 is used on the semiconductor layer of the first conductivity type, but a p-well region may be used instead.

第一單位單元10具有在N井區域30内所形成之第一導 電型之第一半導區域12和用以在電氣上連接第一半導區域 12和配線50之接觸區域14。在本實施例,第一半導區域12 係N +擴散區域’N +擴散區域12經由和設於其表面之接觸區 域14接合之接觸部52在電氣上和配線5 0連接。而,第二單 位單元20具有在Ν丼區域30内所形成之第二導電型之第二 半導區域22和用以在電氣上連接第一半導區域12和配線 之接觸區域24。在本實施例’第二導電型之第二半導區域 22係Ρ+擴散區域’Ρ+擴散區域22經由和設於其表面之接觸 區域24接合之接觸部52在電氣上和配線50連接《此外,在The first unit cell 10 includes a first semiconducting region 12 of a first conductivity type formed in the N-well region 30 and a contact region 14 for electrically connecting the first semiconducting region 12 and the wiring 50. In this embodiment, the first semiconducting region 12 is an N + diffusion region 'and the N + diffusion region 12 is electrically connected to the wiring 50 via a contact portion 52 joined to a contact region 14 provided on a surface thereof. Further, the second unit cell 20 has a second semiconducting region 22 of a second conductivity type formed in the NZ region 30 and a contact region 24 for electrically connecting the first semiconducting region 12 and the wiring. In this embodiment, the “second semiconducting region 22 of the second conductivity type is a P + diffusion region” and the P + diffusion region 22 is electrically connected to the wiring 50 through a contact portion 52 joined to a contact region 24 provided on the surface thereof. In addition, in

第11頁 454332 五、發明說明(9) 第一等電型之半導體層上形成P井區域之情況,只要將第 一導電型之第一半導區域12作為p +擴散區域、將第二導電 型之第二半導區域22作為N +擴散區域即可β 在本實施例’第一單位單元1 〇和第二單位單元2 〇排列 成彼此間隔既定間隔(例如約2兑m )。為了分離第一單位翠 元10 (N+擴散區域12)和第二單位單元2〇 (p+擴散區域),在 N井區域30内之第一單位單元10和第二單乜單元2〇之間之 單元間區域(元件分離區域)形成元件分離區域氧化膜(場 氧化膜)32。又’在N井區域30之周圍形成p井區域(pff) 36,在P井區域36内如包圍分離第一單位單元ι〇和第二單 位單元20之元件分離區域氧彳fc膜32之外圍般形成p +擴散區 域34 » 第一單位單元10之N + .擴散區域12和第二單位單元2〇之 P +擴散區域22在N井區域30内形成’利用p +擴散區域22和N 井區域30形成PN接面。因而,藉著設第二單位單元2〇(p + 擴散區域22)為陽極、第一單位單元1〇(Ν +擴散區域12)為 陰極,可令在功能上作為二極體。 本實施例之二極體元件100和上述之二極體元件l〇Q〇 不同’因利用第一單位單元10和第二單位單元20構成二極 體,和二極體元件1 000相比’陽極·陰極間之距離縮短。 因而,比二極體元件1 000之構造可更削減存在井區域 30之寄生電阻40。即,因可靠近N井區域30内佈置第一單 位單元10和第二單位單元20,可縮短電流在有寄生電阻4〇 之N井區域30中流動之距離,結果,就削減寄生電阻4〇。Page 11 454332 V. Description of the invention (9) In the case of forming a P-well region on the semiconductor layer of the first isoelectric type, as long as the first semiconducting region 12 of the first conductivity type is used as the p + diffusion region, the second conductive type The second semiconducting region 22 of the type can be β as the N + diffusion region. In this embodiment, the first unit cell 10 and the second unit cell 20 are arranged at a predetermined interval (for example, about 2 m). In order to separate the first unit Cuiyuan 10 (N + diffusion region 12) and the second unit cell 20 (p + diffusion region), between the first unit cell 10 and the second unit unit 20 in the N-well region 30 The inter-cell region (element isolation region) forms an element isolation region oxide film (field oxide film) 32. Also, a p-well region (pff) 36 is formed around the N-well region 30. In the P-well region 36, for example, the periphery of the element separation region separating the first unit cell ι and the second unit cell 20 from the oxygen fc membrane 32 is surrounded. The p + diffusion region 34 is formed in general »N + of the first unit cell 10. The diffusion region 12 of the first unit cell 10 and the P + diffusion region 22 of the second unit cell 20 are formed in the N well region 30 using the p + diffusion region 22 and the N well. The region 30 forms a PN junction. Therefore, by setting the second unit cell 20 (p + diffusion region 22) as the anode and the first unit cell 10 (N + diffusion region 12) as the cathode, the diode can be functionally used as a diode. The diode element 100 of this embodiment is different from the above-mentioned diode element 10Q0 'because the first unit cell 10 and the second unit cell 20 are used to form a diode, compared with the diode element 1,000' The distance between the anode and the cathode is shortened. Therefore, the parasitic resistance 40 existing in the well region 30 can be reduced more than the structure of the diode element 1000. That is, since the first unit cell 10 and the second unit cell 20 can be arranged close to the N-well region 30, the distance that the current flows in the N-well region 30 having the parasitic resistance 40 can be shortened. As a result, the parasitic resistance 4 is reduced. .

第12頁 454332 五、發明說明(10) 削減寄生電阻40後,因增大二極體電流(ID)也可使得二極 體元件100之電流容量不會大為降低,可提供每單位面積 之電流容量大之高性能之二極體元件100。又,二極體元 件100因每單位面積之電流容量比二極體元件1〇〇〇的大, 在構造上可縮小1占有.面積。 在本實施例,在N井區域30内形成多個第一單位單元 10及多個第二單位單元2〇 »因而,可增加pn接面面積,増 大二極體元件之電流容量。在圖1所示例子,4個第一單位 單元10和5個第二單位單元20成二次先(陣列狀)排列,但 是未限定如此’也可設置更多個第一單位單元1〇和第二單 位單元20。又,在多個第一單位單元10和多個第二單位單 元20未全部連接配線5〇也可,按照所需二極體元件之特 性’可在所需個數之單位單元(1〇或2〇)連接配線50。於 是’因可使用任意個數之單位單元設為所要之二極體特 性,也可得到二極體元件之設計變得容易之優點。 用儘量小之尺寸構成第一單位單元10之N +擴散區域1 2 及第二單位單元2〇之p+擴散區域22時,可更縮短陽極•陰 極間之距離,結果,可有效的削減寄生電阻4〇。又,二極 體兀件100之尺寸也可變小,也可令半導體裝置之晶元面 積縮小。因而,規定N+擴散區域12及?+擴散區域22各自之 大小=尺寸(例如正方形之邊長)實質上和在設計法則上容 許之最小尺寸相同較好。 ,本實施例,在製作}^+擴散區域12及?+擴散區域以 ,备在設計法則上容許之最小尺寸係約1.4从m時,使得 4 5 4 3 3 ^] 玉、發明說明(11) ~·~ ---- 規定Ν+擴散區域12及Ρ+擴散區域22各自之大小之尺寸和其 實質上相同’例如設為約2 μ m。即’考慮在製程之蠻動簟 後設為最佳(最小)之大小。 自第一單位單元10之N+擴散區域12及第二單位單元2〇 之P+擴散區域22之基板法線方向看到之形狀例如係正方 形。因為N+擴散區域12及{^擴散區域22之形狀為正方形 時’可令在既定之設計法則内最高效率的排列第一單位單 元1〇及第二單位單元2〇。但,N+擴散區域^及卜擴散區域 22之形狀不必係在幾何學上之意義之嚴密之正方形,只要 實質上具有正方形之形狀即可。例如,角變圓也可,各邊 長未嚴密的相等也可。又,未限定為正方形,例如如蜂窩 構造般將擴散區域12及p+擴散區域22各自之形狀設為正 六角形也可。此外,也可將豺擴散區域12及?+擴散區域22 之形狀為圓形或橢圓形。 〇 又’在本實施例,第一單位單元1〇和第二單位單元2〇 排列成彼此交互’例如排列成方格花紋(或例如西洋棋花 樣)》將第一單位單岑10和第二單位單元2〇排列成方格花 紋時’因可縮短各第一單位單元1〇和各第二單位單元2〇之 間之距離,在設置了多個第一單位單元1〇和多個第二單位 單元2f之情況,也有可使寄生電阻40變小之優點。 右利用二極體元件100之構造,可使寄生電阻4〇所引 起之壓降變小,可令大為提高每單位面積之電流容量。 又,因,成二極體之肘擴散區域及p+擴散區域各自使用第 一單位單7〇10及第二單位單元2〇構成,可利用單位單元設Page 12 454332 V. Description of the invention (10) After reducing the parasitic resistance 40, increasing the diode current (ID) can also prevent the current capacity of the diode element 100 from being greatly reduced. A high performance diode device 100 with a large current capacity. In addition, the diode element 100 has a larger current capacity per unit area than that of the diode element 1000, and can be reduced in structure by 1 area. In this embodiment, a plurality of first unit cells 10 and a plurality of second unit cells 20 are formed in the N-well region 30. Therefore, the pn junction area can be increased, and the current capacity of the diode element can be increased. In the example shown in FIG. 1, four first unit units 10 and five second unit units 20 are arranged in a two-first (array) manner, but this is not limited. More first unit units 10 and 10 may also be provided. Second unit cell 20. In addition, the plurality of first unit cells 10 and the plurality of second unit cells 20 may not be all connected to the wiring 50. According to the characteristics of the required diode element, 'the number of unit cells (10 or 2) Connect the wiring 50. Therefore, since any number of unit cells can be used to set the desired diode characteristics, the advantage that the design of the diode element becomes easy can also be obtained. When the N + diffusion region 1 2 of the first unit cell 10 and the p + diffusion region 22 of the second unit cell 20 are formed with the smallest possible size, the distance between the anode and the cathode can be further shortened. As a result, the parasitic resistance can be effectively reduced. 40%. In addition, the size of the diode element 100 can also be reduced, which can also reduce the area of the wafer of the semiconductor device. Therefore, the N + diffusion region 12 and? The respective size of the + diffusion region 22 = size (for example, the length of the side of a square) is substantially the same as the minimum size allowed in the design rules. In this embodiment, ^ + diffusion region 12 and? + Diffusion area, the minimum size allowed in design rules is about 1.4 from m, so that 4 5 4 3 3 ^] Jade, invention description (11) ~ · ~ ---- stipulate N + diffusion area 12 and The size of each of the P + diffusion regions 22 is substantially the same as that of the P + diffusion regions 22, for example, about 2 μm. That is, it is considered to be set to the optimal (minimum) size after the rough process. The shapes seen from the substrate normal direction of the N + diffusion region 12 of the first unit cell 10 and the P + diffusion region 22 of the second unit cell 20 are, for example, squares. Because the shape of the N + diffusion region 12 and {^ diffusion region 22 is square ”, the first unit cell 10 and the second unit cell 20 can be arranged with the highest efficiency within a predetermined design rule. However, the shapes of the N + diffusion region ^ and the Bu diffusion region 22 need not be geometrically exact squares, as long as they have a substantially square shape. For example, the corners may be rounded or the lengths of the sides may not be exactly equal. The shape is not limited to a square. For example, the shape of each of the diffusion region 12 and the p + diffusion region 22 may be a regular hexagon like a honeycomb structure. In addition, the radon diffusion region 12 and? The shape of the + diffusion region 22 is circular or oval. 〇 'In this embodiment, the first unit unit 10 and the second unit unit 20 are arranged to interact with each other', for example, arranged in a checkered pattern (or, for example, chess pattern). When the unit cells 20 are arranged in a checkered pattern, since the distance between each of the first unit cells 10 and each of the second unit cells 20 can be shortened, a plurality of first unit cells 10 and a plurality of second unit cells are provided. In the case of the unit cell 2f, there is also an advantage that the parasitic resistance 40 can be made small. The right use of the structure of the diode element 100 can reduce the voltage drop caused by the parasitic resistance 40, which can greatly increase the current capacity per unit area. In addition, since the elbow diffusion region and the p + diffusion region, which are diodes, are each composed of the first unit cell 7010 and the second unit cell 20, the unit cell design can be used.

第14頁 454332 五、發明說明(12) --- 計電路。因而,也可得到設計按照需要之特性(所要之特 性)之二極體時之簡便性提高之優點。因此,二極體元件 100例如可適合用作在類比電路部内之帶隙參照電路之一 元件。 其次,邊參照圖2(a)至(e)邊舉例說明在本實施例之 一極體το件100之製作方法。二極體元件1〇〇例如可使用典 型之CMOS製程製作,使用和半導體積體電路之數位電路部 一樣之製程製作。 首先,如圖2(a)所示,例如準備p型半導體基板(例如 P型矽基板)60後,如圖2(b)所示,在基板6〇之一部分選擇 性的自表面至既定之深度為止形成元件分離區域氧化膜 32 » 其次’如圖2(c)所示,在第一導電型之半導體層上利 用例如離子注入法形成N井區域^在此階段,也形 成位於N井區域30之周圍之p井區域36 β 其次’如圖2(d)所示,在Ν井區域3 〇之一部分選擇性 的形成Ν+擴散區域12(第一單位單元1〇)及ρ+擴散區域 22(第二單位單元20)。擴散區域12及ρ+擴散區域22利用 例如離子注入法形成即可^ 其次’如圖2(e)所示’在基板6〇堆積了絕緣膜54後, 在絕緣膜54選擇性的形成接觸孔,接著形成配線5〇(包含 接觸部52)。配線50之接觸部52因和第一單位單元】〇之接 觸區域12及第二單位單元2〇之接觸區域2 2各自接合,第一 單位單tgIO及第二單位單元2〇各自和配線5〇在電氣上相連 '45433i 五、發明說明(13) 接。照這樣可得到二極體元件1 ο ο α 在二極體元件100,在第一單位單元10和第二單位單 元20之單元間區域形成元件分離區域氧化膜32,但是不形 成該元件分離區域氧化膜32,而如圖3(a)及(b)所示,採 用在單元間區域上形成了閘極構造7〇之二極體元件2〇〇也 _ 可。閘極構造70由絕緣膜(例如閘極氧化膜)了2和在其上所 形成之導電層(例如多矽層)74構成,具有可使用典&之 CMOS製程製作之構造。 ^ 在圖3所示二極體元件200,因在單元間區域上設置閑 極構造70 ’不形成元件分離區域氧化膜32,而可採用將n+ 擴散區域12及P +擴散區域22分離之構造。因.此,因除了? + 擴散區域22之底面之面積以外’也令p+擴散區域22之外周 面之面積有助於PN接面面積,可增大pn接面面積。又,因 可使用CMOS製程形成閘極構造70,使用和類比電路部一樣 之製程可形成二極體元件200之閘極構造70之優點大。 又,在二極體元件200 ’也可將閘極配線(圖上未示) 和位於N井區域30上之閘極構造70在電氣上連接。在閘極 構造7 0設置閘極配線後,若以獨立之電位對閛極配線施加 高電位侧之電壓(Vdd),可使得在二極體動作時逆向偏壓 難作用。因而,可防止形成空乏層,結果’可抑制PN接面 〇 面積之減少。 二極體元件200例如可使用可使用典型之CMOS製程如 圖4(a)至(f)所示製作。此外,在本例,製作在閘極構造 70上形成了閘極配線5 6之構造之二極體元件200。Page 14 454332 V. Description of the invention (12) --- Design circuit. Therefore, it is also possible to obtain the advantage of improving the simplicity when designing a diode having a desired characteristic (a desired characteristic). Therefore, the diode element 100 can be suitably used as an element of a band gap reference circuit in an analog circuit section, for example. Next, referring to Figs. 2 (a) to (e), a description will be given of a method of manufacturing a polar body το member 100 in this embodiment. The diode device 100 can be manufactured, for example, using a typical CMOS process, and using the same process as the digital circuit portion of a semiconductor integrated circuit. First, as shown in FIG. 2 (a), for example, after a p-type semiconductor substrate (such as a P-type silicon substrate) 60 is prepared, as shown in FIG. 2 (b), a part of the substrate 60 is selectively moved from the surface to a predetermined one. An oxide film 32 of the element isolation region is formed up to the depth »Next, as shown in FIG. 2 (c), an N-well region is formed on the semiconductor layer of the first conductivity type by, for example, an ion implantation method. At this stage, an N-well region is also formed. The p-well region 36 around 30 β is next. As shown in FIG. 2 (d), an N + diffusion region 12 (first unit cell 10) and a ρ + diffusion region are selectively formed in one of the N well regions 30. 22 (second unit unit 20). The diffusion region 12 and the ρ + diffusion region 22 may be formed by, for example, an ion implantation method. Next, as shown in FIG. 2 (e), after the insulating film 54 is deposited on the substrate 60, a contact hole is selectively formed in the insulating film 54. Next, wiring 50 (including the contact portion 52) is formed. The contact portion 52 of the wiring 50 is respectively connected to the contact area 12 of the first unit unit 2 and the contact area 22 of the second unit unit 20, and the first unit unit tgIO and the second unit unit 20 are each connected to the wiring unit 5. Electrically connected '45433i V. Description of the invention (13) Connected. In this way, a diode element 1 can be obtained. In the diode element 100, an element separation region oxide film 32 is formed in the region between the first unit cell 10 and the second unit cell 20, but the element separation region is not formed. As shown in FIGS. 3 (a) and 3 (b), the oxide film 32 may be a bipolar element 200 in which a gate structure 70 is formed on the inter-cell region. The gate structure 70 is composed of an insulating film (for example, a gate oxide film) 2 and a conductive layer (for example, a polysilicon layer) 74 formed thereon, and has a structure that can be manufactured using a typical CMOS process. ^ In the diode element 200 shown in FIG. 3, since the free-electrode structure 70 is provided on the inter-cell region, the element separation region oxide film 32 is not formed, and a structure in which the n + diffusion region 12 and the P + diffusion region 22 are separated can be adopted. . So. In addition to this? + In addition to the area of the bottom surface of the diffusion region 22 ', the area of the peripheral surface of the p + diffusion region 22 also contributes to the area of the PN junction, which can increase the area of the pn junction. In addition, since the gate structure 70 can be formed using a CMOS process, the gate structure 70 of the diode element 200 can be formed by using the same process as the analog circuit portion. In addition, a gate wiring (not shown in the figure) and a gate structure 70 located in the N-well region 30 may be electrically connected to the diode element 200 '. After the gate wiring is provided in the gate structure 70, if a high potential voltage (Vdd) is applied to the 配线 wiring with an independent potential, the reverse bias during the operation of the diode is difficult to function. Therefore, formation of a depleted layer can be prevented, and as a result, a reduction in the area of the PN junction can be suppressed. The diode device 200 can be fabricated using, for example, a typical CMOS process as shown in Figs. 4 (a) to (f). Further, in this example, a diode element 200 having a structure in which a gate wiring 56 is formed on the gate structure 70 is fabricated.

第16頁 454-332 五、發明說明(14) 首先,如圖4(a)所示,例如準備P型半導體基板(例如 P塑發基板)60後,如圖4(b)所示,在基板60之一部分選擇 性的自表面至既定之深度為止形成元件分離區域氧化膜 32。此外,和圖2所示例子不同,因在後製程(參照圖 4(d))形成閘極構造70,在成為N井區域(Nff)30之部分未形 成元件分離區域氧化膜32也可。 其次,如圖4(c)所示,在第一導電型之半導體層上利 用例如離子注入法形成N丼區域(NW) 30。在此階段,也形 成位於N井區域30之周圍之P井區域36。 其次,如圖4(d)所示,在第一單位單元1〇和第二單位 單元2 0之間之成為單元間區域之部分形成閘極構造7 〇。閘 極構造70例如照如下所示形成也可。首先,在基板60上堆 積了氧化膜(例如氧化矽(Si02))後,在其上例如堆積多 矽。接著,選擇性的蝕刻兩者,形成間極氧化膜(厚度: 數毫微米)72和導電層(多矽閘極,厚度:笨百毫微 米)74。照這樣做,在單元間區域形成閘極構造7 〇 ^ 其次,如圖4(e)所示,將閘極構造70用作罩之一部 分’在N井區域30之一部分選擇性的形成N+擴散區域12(第 一單位單元10)及P+擴散區域22(第一單位單元20)。因在 單元間區域設置閘極構造70,在N井區域30内未形成元件 分離區域氧化膜32,也不會損害二極體特性的形成N+擴散 區域12及P+擴散區域22。 其次,如圖4(ί)所示,在基板60堆積了絕緣膜54後, 在絕緣膜54選擇性的形成接觸孔,接著形成配線50(包含Page 16 454-332 V. Description of the invention (14) First, as shown in FIG. 4 (a), for example, after preparing a P-type semiconductor substrate (such as a P-shaped substrate) 60, as shown in FIG. 4 (b), A part of the substrate 60 selectively forms the element isolation region oxide film 32 from the surface to a predetermined depth. In addition, unlike the example shown in FIG. 2, since the gate structure 70 is formed in a later process (refer to FIG. 4 (d)), the oxide film 32 of the element separation region may not be formed in a portion that becomes the N-well region (Nff) 30. Next, as shown in FIG. 4 (c), an N 丼 region (NW) 30 is formed on the semiconductor layer of the first conductivity type by, for example, an ion implantation method. At this stage, a P-well region 36 located around the N-well region 30 is also formed. Next, as shown in FIG. 4 (d), a gate structure 7 is formed in a portion between the first unit cell 10 and the second unit cell 20 that becomes an inter-cell region. The gate structure 70 may be formed as follows, for example. First, an oxide film (e.g., silicon oxide (SiO2)) is deposited on the substrate 60, and then, for example, polysilicon is deposited thereon. Next, the two are selectively etched to form an interlayer oxide film (thickness: several nanometers) 72 and a conductive layer (multi-silicon gate, thickness: one hundred nanometers) 74. In this way, a gate structure 7 is formed in the inter-cell region. Secondly, as shown in FIG. 4 (e), the gate structure 70 is used as a part of the mask. 'N + diffusion is selectively formed in a part of the N-well region 30. Region 12 (first unit cell 10) and P + diffusion region 22 (first unit cell 20). Since the gate structure 70 is provided in the inter-cell region, the element isolation region oxide film 32 is not formed in the N-well region 30, and the N + diffusion region 12 and the P + diffusion region 22 are formed without damaging the diode characteristics. Next, as shown in FIG. 4 (), after the insulating film 54 is deposited on the substrate 60, a contact hole is selectively formed in the insulating film 54, and then a wiring 50 (including

第17頁 454332 五、發明說明(15) 接觸部52)及閘極配線56。配線50之接觸部52和第一單位 單元10之接觸區域14及第二單位單元之接觸區域24各自 接合。又,閘極配線5 6和閘極構造70之導電層74在電氣上 相連接D照這樣可得到二極體元件2 0 0。 圖5係用以得到二極體之電壓-電流特性之電路,圖6 係表示使用圖5所示電路量測之二極體之電壓-電流特性之 結果。圖6中之縱軸表示每單位面積之電流(對數刻度), 橫轴表示施加之電壓。此外,圖6中冬實線表示使用了本 實施例之二極體元件200時之結果,在此情況,對二極體 兀*件2 _00之閘極構造70未施加電壓〇而.,圖6中之虛線表示 在使用了圖15所示二極體元件1〇〇〇(比較例)之情況之結 果》 ' 由圖6得知’在二極體之動作範圍之之任一施加電壓 Vd之情況’都表示本實施例二極體元件2〇〇之特性比二極 體元件1000的優異。 一 ,7將在圖6之圖形之施加電壓為〇-7V附近之部分放力 後表示。如圖7所示,在施加電壓為〇71?時,本實施例之 二極體元件200和二極體元件1〇〇〇(比較例)相比,每單位 電ΛΥ2.3倍。即’可理解本實施例之二極體元 件200具有優異之特性。 t^係表示在十進位刻度之縱軸表示在圖6之圖形之狗 =壓0.6VM.0V之範圍之圖形。由圖8可 愈;2,:井區域之寄生電阻之影響,本實施例之二體 70 之電流谷量和二極體元件1 000(比較例)之電流容 454332Page 17 454332 V. Description of the invention (15) Contact portion 52) and gate wiring 56. The contact portion 52 of the wiring 50 is connected to the contact area 14 of the first unit cell 10 and the contact area 24 of the second unit cell, respectively. Further, the gate wiring 56 and the conductive layer 74 of the gate structure 70 are electrically connected to each other, and a diode element 200 can be obtained in this manner. Fig. 5 is a circuit for obtaining a voltage-current characteristic of the diode, and Fig. 6 shows a result of measuring the voltage-current characteristic of the diode using the circuit shown in Fig. 5. The vertical axis in FIG. 6 represents the current per unit area (logarithmic scale), and the horizontal axis represents the applied voltage. In addition, the solid winter line in FIG. 6 shows the result when the diode element 200 of this embodiment is used. In this case, no voltage is applied to the gate structure 70 of the diode 2 * 00. The dotted line in FIG. 6 indicates the result when the diode element 1000 (comparative example) shown in FIG. 15 is used. "'It is known from Fig. 6' that the applied voltage Vd is within any one of the operating ranges of the diode. In both cases, the characteristics of the diode element 2000 of this embodiment are superior to those of the diode element 1000. 1, 7 will be shown after the part of the graph in Figure 6 with an applied voltage of 0-7V or more. As shown in FIG. 7, when the applied voltage is 071, the diode element 200 of this embodiment is 2.3 times larger than the diode element 10000 (comparative example) per unit of electricity. That is, it can be understood that the diode element 200 of this embodiment has excellent characteristics. t ^ is a graph in which the vertical axis on the decimal scale is represented in the graph of FIG. 6 = pressure 0.6VM.0V. It can be cured by Figure 8; 2: the influence of the parasitic resistance in the well area, the current valley of the second body 70 and the current capacity of the diode element 1 000 (comparative example) 454332

之差&愈胃大。由此結果可理解,在本實施例之二極體元件 量抑制N井區域30之寄生電阻4〇之影響,可令每單 =面積之電流(二極體電流Ιβ)增加。此外,在圖7中及圖8 之縱軸之「E-X」意指ι〇~χ,例如1〇 E〇5表示j 〇χ 1〇 (實施例2 ) ι邊參照圖9及圖1 〇邊說明本發明冬實施例2 ^圖9 ( a )在 模式上表示實施例3之半導體裝置所含二極體元件3〇〇之上The difference & more stomach. From this result, it can be understood that suppressing the influence of the parasitic resistance 40 of the N-well region 30 in the amount of the diode element in this embodiment can increase the current per diode = area (diode current Iβ). In addition, the "EX" in the vertical axis in Fig. 7 and Fig. 8 means ι〇 ~ χ, for example, 10E〇5 means j 〇χ 1〇 (Example 2), while referring to Fig. 9 and Fig. 10 Description of Winter Embodiment 2 of the present invention ^ FIG. 9 (a) schematically shows a diode element 300 included in the semiconductor device of Embodiment 3

面’圖9(b)在模式上表示沿著圖9(a) 2b_b,線之二極體’ 元件300之剖面。FIG. 9 (b) schematically shows a cross section of the diode 300 along the line 2 (b) -b in FIG. 9 (a).

本實施例之二極體元件3〇〇拣在s〇i(silicon On Insulator)基板之半導體區域内形成之點和在N井區域3〇 内形成之實施例1之二極體元件1〇〇或2〇〇不同。即,在本 實施例,在第一導電型之半導體層上使用在絕緣膜(或絕 緣基板)62上所形成之第一導電型之半導體層(半導體區 域)30。第一導電型之半導體層30係N型半導體層,係P型 半導體層也可。為了使得本實施例之說明簡單明暸,在以 下(也包含後述之實施例)’主要說明和實施例1之不同 點’和實施例1相同之點則省略或簡化說明。 二極體元件300在絕緣膜(例如埋入氧化膜,厚度:例 如約10 0nm)62上所形成之第一導電型之半導體層3〇(厚 度:例如約5 Onm )内具有第一單位單元1 〇及第二單位單元 20。在第一單位單元10和第二單位單元20之間之單元間區The diode element 300 of this embodiment picks a point formed in a semiconductor region of a soi (silicon on insulator) substrate and the diode element 100 of Example 1 formed in a N-well region 30. Or 200 different. That is, in this embodiment, a semiconductor layer (semiconductor region) 30 of a first conductivity type formed on an insulating film (or an insulating substrate) 62 is used as the semiconductor layer of the first conductivity type. The semiconductor layer 30 of the first conductivity type may be an N-type semiconductor layer or a P-type semiconductor layer. In order to make the description of this embodiment simple and clear, in the following (also including the embodiments described later), 'the main differences from the first embodiment' and the same points as the first embodiment are omitted or simplified. The diode element 300 has a first unit cell of a first conductivity type semiconductor layer 30 (thickness: for example, about 5 Onm) formed on an insulating film (eg, a buried oxide film, thickness: for example, about 100 nm) 62. 10 and second unit unit 20. Inter-unit area between the first unit unit 10 and the second unit unit 20

第19頁 454332 五、發明說明(17) 域形成閘極橼造70。在閘極構造70也可設置閘極配線(圖 上未示)。在本實施例,在半導體層3〇之周園形成元件分 離用之氧化臈64,Ρ型半導體基板60位於絕緣膜(埋入氧化 膜)62之下。此外,第一單位單元1〇及第二單位單元2〇和 上述實施例1之情況一樣,在半導體層3 〇内排列成方格花 紋。 在二極體元件300,在未設置ν井區域或ρ井區域之s〇I 基板之半導體區域(半導體層30)内形成第一單位單元1〇之 N+擴散區域12和第二單位單元2〇之p+擴散區域22。因而, 因N +擴散區域12及P+擴散區域2 2各自之外周面之面積有助 於PN接面面積’可增加pN接面面積,結果,可令提高二極 體元件之電流容量。又,在二極體元件3〇()之構造也和上 述實施例之情況一樣,因可令第一單位單元1〇和第二單位 單元20靠近配置’可令降低半導體層3〇之寄生電阻4〇。 二極體元件300你丨如可如圖1〇(3)至(6)所示製作。此 外’在本例,製作在閘極構造7〇上形成了閘極配線56之構 造之二極體元件300。 首先,如圖10(a)所示,例如準備在ρ型半導體基板(ρ 型珍基板)60上形成了埋入氧化層(^〇2膜)62和在其上形 半導體區域(半導體層)3〇之SOI基板。 其次,如圖10(b)所示,在S0I基板之半導體區域30之 一部分選擇性的形成元件分離用之氧化膜64,接著,如圖 10(c)所示,在成為第—單位單元1〇和第二單位單元2 〇之 間之單元間區域之部分形成閘極構造。 454332 、發明說明(18) 其次’如圖10(d)所示’將閘極構造70用作罩之一部 分’在半導體層30之一部分選擇性的形成N+擴散區域 12(第一單位單元1〇)及p+擴散區域22(第二單位單元“)。 此外’在如本實施例般使用SO〗基板之情況,和如上述實 施例1之二極體元件100般形成元件分離區域氧化膜32之方 法相比,形成閘極構造7〇而不形成元件分離區域氧化膜之 方法在製程上較好。 / 其次,如圖10(e)所示,在SOI基.板堆積了絕緣膜54 後’在絕緣膜54選擇性的形成接觸孔,接著形成配線Page 19 454332 V. Description of the invention (17) The domain is formed by gate fabrication 70. The gate structure 70 may be provided with a gate wiring (not shown). In this embodiment, yttrium oxide 64 for element separation is formed around the semiconductor layer 30, and the P-type semiconductor substrate 60 is located under the insulating film (buried oxide film) 62. The first and second unit cells 10 and 20 are arranged in a checkered pattern in the semiconductor layer 30 as in the case of the first embodiment. In the diode element 300, an N + diffusion region 12 of a first unit cell 10 and a second unit cell 2 are formed in a semiconductor region (semiconductor layer 30) of a so substrate having no ν well region or ρ well region. Of p + diffusion region 22. Therefore, the area of the outer peripheral surface of each of the N + diffusion region 12 and the P + diffusion region 22 contributes to the PN junction area, which can increase the pN junction area. As a result, the current capacity of the diode device can be increased. In addition, the structure of the diode element 30 () is also the same as that of the above-mentioned embodiment. Since the first unit cell 10 and the second unit cell 20 can be arranged close to each other, the parasitic resistance of the semiconductor layer 30 can be reduced. 40%. The diode element 300 can be fabricated as shown in FIGS. 10 (3) to (6). In addition, in this example, a bipolar element 300 having a structure in which a gate wiring 56 is formed on the gate structure 70 is fabricated. First, as shown in FIG. 10 (a), for example, a buried oxide layer (^ 02 film) 62 and a semiconductor region (semiconductor layer) formed thereon are formed on a p-type semiconductor substrate (p-type rare substrate) 60. 30% of the SOI substrate. Next, as shown in FIG. 10 (b), an oxide film 64 for element separation is selectively formed on a part of the semiconductor region 30 of the SOI substrate. Next, as shown in FIG. 10 (c), the first unit cell 1 is formed. A part of the inter-cell area between 0 and the second unit cell 20 forms a gate structure. 454332. Description of the invention (18) Next, as shown in FIG. 10 (d), the gate structure 70 is used as a part of the cover. The N + diffusion region 12 is selectively formed in a part of the semiconductor layer 30 (the first unit cell 1). ) And p + diffusion region 22 (second unit cell). In addition, in the case where an SO substrate is used as in this embodiment, and the element separation region oxide film 32 is formed as in the diode element 100 of the above-mentioned embodiment 1. Compared with the method, the method of forming the gate structure 70 without forming an oxide film in the element separation region is better in the manufacturing process. / Second, as shown in FIG. 10 (e), after the insulating film 54 is deposited on the SOI substrate. Selectively forming a contact hole in the insulating film 54 and then forming a wiring

5〇(包含接觸部52)及閘極配線56,照這樣可得到二極體元 件300 〇 (實施例3 ) 邊參照圖11至圖13,邊說明本發明之實施例3。在上 述實施例,使用第一單位單元1〇和第二單位單元2〇構成二 極體7L件’但是利用該構造也可構成雙極性電晶體元件。 圖11 (a)在模式上表示實施例3之半導體裝置所含雙極性電 晶體元件400之上面,圖11(b)在模式上表示沿著圖H(a) 之b-b’線之雙極性電晶體元件4〇〇之剖面。 如圖11(a)及(b)所示,若以在實施例}之二極鱧元件 100之構造之情況之第一單位單元1〇為基極、第二單位單 元20為射極、而以P型半導體基板(第二導電型之丰導體 層)60為集極,可構成雙極性電晶體元件4〇(}。為了使得基 極(B)、射極(E)以及集極(c)之關係更明瞭,在圖12進一50 (including the contact portion 52) and the gate wiring 56. In this way, a diode element 300 can be obtained. (Embodiment 3) A third embodiment of the present invention will be described with reference to Figs. 11 to 13. In the above-mentioned embodiment, the first unit cell 10 and the second unit cell 20 are used to form a 7L diode ', but a bipolar transistor element can also be formed using this structure. FIG. 11 (a) schematically shows the upper surface of the bipolar transistor element 400 included in the semiconductor device of Example 3, and FIG. 11 (b) schematically shows the double electrode along the line b-b 'in FIG. H (a). Cross section of a polar transistor element 400. As shown in FIGS. 11 (a) and (b), if the first unit cell 10 is the base, the second unit cell 20 is the emitter, and A P-type semiconductor substrate (a second-conductivity-rich conductor layer) 60 is used as a collector to form a bipolar transistor element 40 (). In order to make the base (B), the emitter (E), and the collector (c The relationship between) is more clear.

454332 五、發明說明(19) 步在模式上表示雙極性電晶體元件400之構造。454332 5. Description of the invention Step (19) shows the structure of the bipolar transistor element 400 in the mode.

在圖Π所示雙極性電晶體元件400,將射極用之配線 50a和第二單位單元2〇之接觸區域24在電氣上連接,將基 極用之配線50b和第一單位單元10之接觸區域14在電氣上 連接。集極用之配線50c和在與N井區域30接鄰之P井區域 3 6内所形成之p+擴散區域3 4在電氣上連接,因而,集極用 之配線50c和P型半導體基板60彼此在電氣上連接。In the bipolar transistor element 400 shown in FIG. Π, the wiring 50a for the emitter and the contact area 24 of the second unit cell 20 are electrically connected, and the wiring 50b for the base is in contact with the first unit cell 10. The area 14 is electrically connected. The collector wiring 50c and the p + diffusion region 34 formed in the P-well region 36 adjacent to the N-well region 30 are electrically connected. Therefore, the collector wiring 50c and the P-type semiconductor substrate 60 are connected to each other. Connect electrically.

在雙極性電晶體元件400,第一旱位單元1〇及第二單 位單元20之其中之一設為基極(B)或射極。如在上述之 實施例之說明所示,因第一單位單元1〇及第二單位單元2〇 可靠近配置’可令N井區域30之寄生電阻4〇降低,結果, 可提供電流特性優異之雙極性電晶體元件。此外,在圖i丄 所示之構造’在第一單位單元1〇和第二單位單元2〇之間設 置元件分離區域氧化膜32 ’但是不設置元件分離區域氧化 膜32 ’而在單元間區域設置了閘極構造7〇之構造當然也In the bipolar transistor element 400, one of the first dry level cell 10 and the second dry position cell 20 is set as a base (B) or an emitter. As shown in the description of the above embodiment, since the first unit cell 10 and the second unit cell 20 can be disposed close to each other, the parasitic resistance 40 of the N-well region 30 can be reduced, and as a result, excellent current characteristics can be provided. Bipolar transistor element. In addition, in the structure shown in FIG. 1 ', an element separation region oxide film 32' is provided between the first unit cell 10 and the second unit cell 20, but the element separation region oxide film 32 'is not provided, and the inter-cell region is provided. Structure with gate structure 70 installed

可 Q 〇 又’如圖13所示’也可使用雙重井型之構造構成雙極 性電晶體元件450 ^即,在p型丰導體基板6〇内,形成作為 第二導電型之半導體層之N丼區域31後,在該N井區域31内 形成作為第一導電型之半導體層之p井區域3〇。在這種雙 井構造,在作為第一導電型之半導體層之p井區域3〇内設 置第一單位單元(基極Η 〇及第二單位單元(射極)2〇,若將 Ν井區域31作為集極,可構成雙極性電晶體元件。在本構 造之情況,也和雙極性電晶體元件4〇〇 一樣,因可令ρ井區However, as shown in FIG. 13, the bipolar transistor element 450 can also be formed using a dual-well structure. That is, in the p-type conductor substrate 60, N is formed as a semiconductor layer of the second conductivity type. After the pluton region 31, a p-well region 30 is formed in the N-well region 31 as a semiconductor layer of the first conductivity type. In this dual-well structure, a first unit cell (base unit Η 0 and a second unit unit (emitter) 20) are provided in a p-well region 30 which is a semiconductor layer of a first conductivity type. 31 as a collector can constitute a bipolar transistor element. In the case of this structure, it is also the same as the bipolar transistor element 400, because it can make the ρ well area

第22頁 45433kPage 45

可提供電流特性優異之雙極性電 域30之寄生電阻降低, 晶體元件。 (實施例4) 邊參照圖14邊本發明之眘她加^ , τ . ^ ^ ^ ΛΙ| 月之實施例4。在上述實施例,為 第 電型之半導體層30内使得第—單位單元和第 :單位單疋20交互排列,採用了令第一單位單元1〇及第二 成方格花紋之構造(例如參照圓!),但是 在本實施例’採用在第一漆雷刑少f拔锄&ηΛ 〜 - ιλΓ 導電型之+導體層30形成比較大 70後,在該第一單位單元10内形成第單 位單元20之構造。 π取卑早 圖14(a)在模式上表示本實施例之半導體裝置所含二 極體元件500之上面,圖14(b)在模式上表示沿著圖14(^) 之b-b’線之二極體元件500之剖面。二極體元件5〇〇在第一 導電型之半導體層(N井區域)3〇内具有第一單位單元1〇和 在第一單位單元1〇内所形成之多個第二單位單元2〇。在本 實施例,自基板法線方向看到第一單位單元1〇之形狀例如 係正方形(邊長:約5私in),第二單位單元2〇之形狀也一樣 係正方形(邊長:約25/£m)。第二單位單元2〇在第一單位 單元10内形成例如4個。第一單位單元1〇和第二單位單元 2 0之間隔15例如係約2仁m。 在二極體元件500之構造也可比圖15所示二極體元件 1000之構造之情況更縮短自成為陰極之N+擴散區域12之中 心部至成為陽極之P+擴散區域22為止之距離口因此’因可It is possible to provide a bipolar electric field 30 with excellent current characteristics, which has reduced parasitic resistance and a crystal element. (Embodiment 4) Referring to FIG. 14, the embodiment 4 of the present invention ^, τ. ^ ^ ^ ΛI | month. In the above-mentioned embodiment, the first unit cell and the second unit cell 20 are arranged alternately in the semiconductor layer 30 of the electrical type, and a structure in which the first unit cell 10 and the second are in a checkered pattern (for example, refer to Round!), But in the present embodiment, the first conductive layer + conductive layer 30 of the conductive type 30 is formed at a relatively large 70, and a first conductive layer 30 is formed in the first unit 10 Structure of the unit cell 20. 14 (a) schematically shows the top of the diode element 500 included in the semiconductor device of this embodiment, and FIG. 14 (b) schematically shows b-b 'along FIG. 14 (^). A cross-section of a line diode device 500. The diode element 500 has a first unit cell 10 in a semiconductor layer (N-well region) 30 of a first conductivity type and a plurality of second unit cells 2 formed in the first unit cell 10. . In this embodiment, the shape of the first unit cell 10 seen from the direction of the substrate normal is, for example, a square (side length: about 5 inches), and the shape of the second unit cell 20 is also a square (side length: about 25 / £ m). The second unit cell 20 is formed, for example, in the first unit cell 10. The interval 15 between the first unit cell 10 and the second unit cell 20 is, for example, about 2 m. In the structure of the diode element 500, the distance from the center portion of the N + diffusion region 12 which becomes the cathode to the P + diffusion region 22 which becomes the anode can be shortened compared to the case of the structure of the diode element 1000 shown in FIG. Inco

五、發明說明(21) 令第一導電型之半導體層(N井區域)30之寄生電阻降低 可提供令每單位面積之電流容量提高之二極體元件。 【產業上利用性】 若依據本發明,提供含有性能高且佔有面積小之二極 體元件之半導體裝置。性能高且佔有面積小之二極體元件 例如因可適合闬作利用CMOS製程實現之類比•數位混載 LSI之類比電路部之一元件,可提供性能高更且晶元面積 小之二極體元件。 〇V. Description of the invention (21) Reducing the parasitic resistance of the semiconductor layer (N-well region) 30 of the first conductivity type can provide a diode element that can increase the current capacity per unit area. [Industrial Applicability] According to the present invention, a semiconductor device including a diode device with high performance and a small occupied area is provided. A diode device with high performance and a small occupied area, for example, can be used as one of the analog / digital analog LSI analog circuit parts realized by CMOS process. It can provide a diode device with higher performance and smaller die area. . 〇

d54332 圖式簡單說明 圖1(a)在模式上表示實施例2之半導體裝置所 體元件1〇〇之上面,圖1(b)在模式上表示沿著圖1(a一極 b-b’線之二極體元件1〇〇之剖面。 圖2(a)至(e)係用以說明二極體元件1〇〇之製 製程剖面圖: 万法之 圖3 (a)在模式上表示實施例!之半導體裝置所含二 體元件200之上面,圖3(b)在模式上表示沿著圖3( 一 b-b’線之二極體元件200之剖面。 圖4(a)至(f)係用以說明二極體元件2〇〇之製法 製程剖面圖。 ^ 圖5係用以得到二極體之電壓-電流特性之電路圖。 圖6係表示使用圖5所示電路量測之二極體之電壓— 流特性之結果之圖形。 圖7係將在圖6之圖形之施加電壓為〇7v附近之部分放 大後之圖形。 圖8係表示在圖6之圖形之施加電壓之範圍 之圖形。 ' 圖9(a)在模式上表示實施例3之半導體裝置所含二極 體元件300之上面,圖9(b)在模式上表示沿著圖9(&)之 b-b’線之二極體元件3〇〇之剖面。 圖10(a)至(e)係用以說明二極體元件3qq之製作方法 之製程剖面圖。 圖11(a)在模式上表示實施例3之半導體裝置所含雙極 性電晶體元件400之上面,囷11(b)在模式上表示沿著囷d54332 Brief description of the diagram FIG. 1 (a) schematically shows the top of the semiconductor device body 100 of the second embodiment, and FIG. 1 (b) schematically shows the diagram along FIG. 1 (a-pole b-b ' The cross section of the diode device 100 is shown in the figure. Figures 2 (a) to (e) are cross-sectional views illustrating the manufacturing process of the diode device 100: Figure 3 (a) of the method Example! Above the two-body element 200 included in the semiconductor device, FIG. 3 (b) schematically shows a cross-section of the diode element 200 along the line of FIG. 3 (a-b '. FIG. 4 (a) to (F) is a cross-sectional view for explaining the manufacturing process of the diode device 2000. ^ Figure 5 is a circuit diagram for obtaining the voltage-current characteristics of the diode. Figure 6 shows the measurement using the circuit shown in Figure 5 The graph of the results of the voltage-current characteristics of the diode. Figure 7 is an enlarged view of a part in which the applied voltage of the figure of FIG. 6 is about 0 7v. Figure 8 shows the applied voltage of the figure of FIG. 6. A graph of the range. 'Fig. 9 (a) schematically shows the upper surface of the diode element 300 included in the semiconductor device of Example 3, and Fig. 9 (b) schematically shows along & Cross section of the diode element 300 of the b-b 'line. Figs. 10 (a) to (e) are cross-sectional views illustrating the manufacturing process of the diode element 3qq. Fig. 11 (a) is in the mode Shows the upper surface of the bipolar transistor element 400 included in the semiconductor device of Example 3. 囷 11 (b) shows the mode along 囷

第25頁 454332 圖式簡單說明 11(8)之卜1)’.線之雙極性電晶體元件4〇〇之剖面。 圖12係at步在模式上表示雙極性電晶體元件4〇。之 剖面圖。 圈13係在模式上表示雙極性電晶體元件4〇〇之剖面 圖。 圖14(a)在模式上表示實施例4之半導體裝置所含二極 體元件500之上面,圖14(b)在模式上表示沿著圖14(&)之 b-b線之二極體元件5〇〇之剖面。 圖15(a)在模式上表示二極體元件1〇〇〇之上面,圖 15(b)在模式上表示沿著圖15(a)ib_b,線之二極體元件 1000之剖面。Page 25 454332 A brief description of the drawing of 11 (8) 1) ′. The cross section of the bipolar transistor element 400. FIG. 12 shows the bipolar transistor element 40 at a step. The sectional view. Circle 13 is a cross-sectional view of a bipolar transistor element 400 in a pattern. Fig. 14 (a) schematically shows the upper surface of the diode element 500 included in the semiconductor device of the fourth embodiment, and Fig. 14 (b) schematically shows the diode element along the bb line of Fig. 14 (&). Section of 500. FIG. 15 (a) schematically shows the top of the diode element 1000, and FIG. 15 (b) schematically shows the cross section of the diode element 1000 along the line ib_b of FIG. 15 (a).

Claims (1)

454332 六、申請專利範園 1. 一種半導體裴置,具備·· 第一導電型之半導艘層; 至少一個之第一單位單元,具有在該第一導電型之半 導趙層内所形成之第一導電塑之第一半導體區域和用以在 電氣上連接該第一半導體區域和配線之接觸區域;及 至少一個之第二單位單元,具有在該第一導電型之半 導體層内所形成之第二導電盤之第二半導體區域和用以在 電氣上連接該第二半導體區域和配線..之接觸區域; 該第一單位單元和該第二單位單元協同動作,而產生 二極體元件的功能。 2. 如申請專利範圍第1項之半導體裝置’其中,該至 少一個之第一單位單元係多個第一單位單元,而且該至少 —個之第二單位單元係多個第二單位單元。 3. 如申請專利範圍第1項或第2項之半導體裝置,其 中,規定該第一半導體區域及該第二半導體區域各自之大 小之尺寸係和在該半導雜裝置之設計法則上容許之最小尺 寸實質上相同。 4.如申請專利範圍第1項或第2項之半導體裝置,其 中’自法線方向所看到該第一半導體區域及該第二半導體 區域各自之形狀係近似正方形。 5.如申請專利範圍第1項或第2項之半導體裝置, 中,該第一單位單元及該第二單位單元在該第一型 半導體層内排列成方格花故。 守电i之 6,如申請專利範園筮! ° 第1項或第2項之半導體裝置,其454332 VI. Application for patent Fanyuan 1. A semiconductor device with a semiconducting layer of the first conductivity type; at least one first unit unit having a semiconductor layer formed in the semiconducting layer of the first conductivity type A first semiconductor region of the first conductive plastic and a contact region for electrically connecting the first semiconductor region and the wiring; and at least one second unit cell having a semiconductor layer formed in the first conductivity type semiconductor layer A second semiconductor region of a second conductive pad and a contact region for electrically connecting the second semiconductor region and wiring; the first unit cell and the second unit cell cooperate to generate a diode element Functions. 2. For the semiconductor device according to item 1 of the patent application, wherein the at least one first unit cell is a plurality of first unit cells, and the at least one second unit cell is a plurality of second unit cells. 3. For the semiconductor device in the first or second scope of the application for a patent, wherein the size stipulating the respective sizes of the first semiconductor region and the second semiconductor region is in accordance with the design rules of the semiconductor device The minimum dimensions are substantially the same. 4. The semiconductor device according to item 1 or item 2 of the scope of patent application, wherein the shape of each of the first semiconductor region and the second semiconductor region seen from the normal direction is approximately square. 5. In the semiconductor device of claim 1 or 2, the first unit cell and the second unit cell are arranged in a grid pattern in the first type semiconductor layer. If you apply for a patent, please refer to 6 for the patent application. ° The semiconductor device of item 1 or item 2, which 454332 六、 申請專利範圍 中 * f 該 第一 單位 單元和 該第 二單位 單元 在該第一導電型 之 半導 體層内 排列 成彼此 間隔 既定距 離; 在 位於 該第一 導電 型之半 導體層内之該第一單 位 單兀 和 該第 二單 位單元 之間 之單元 間區 域上形成至少具 有 在該 單 元區 域上 形成之 絕緣層和在 該絕 緣層上所形成之 導 電層 之 閘極構造 0 • 7. 如申 請專利 範圍 第6項之半導蹀裝置,其中 更包 含 和該 閘極 構造在 電氣 上連接 之閘 極配線。 8. 如申 請專利 範圍 第1項之半導體裝置,其中 在' 個 該第 一單 位單元 之該 第一半 導體 區域内形成多個 該 第二 單 位單 元。 9. 如申 請專利 範圍 第1項或第2 項之半導體裝置 其 中 ,更 包含 第二導 電型 之半導 體層 ,在該第二導電 型 之半 導體層 上形 成該第 一導 電型之 半導 艘層。 10 .如申請專利範圍第9項 之半 導體裝置,其中 ♦ 在 該第 一導 電型之 半導 體層内 所形 成之該第一單位 單 元作 為 基極 ,該 第二單 位單 元作為 射極 • f 該 第二 導電型 之半 導體層 作為 集極。 11 .如申請專利範圍第9項 之半 導體裝置,其中 * « 該 第二 導電型 之半 導體層 係半 導體基板; 該 第一 導電型 之半 導體層 係在 該半導體基板内所 形成 之 井區 域0 12 .如申請專利範圍第1項 或第2項之半導體裝置 ’其 〇 MU 第28頁 d6A332 六、申請專利範圍 中,在絕緣層上形成該第一導電型之半導體層。 13.如申請專利範圍第1項或第2項之半導體裝置,其 中,更包含類比電路部和數位電路部,在類比電路部形成 該二極體元件,而且利用CMOS製程製作該類比電路部及該 數位電路部。454332 6. In the scope of patent application * f The first unit unit and the second unit unit are arranged at a predetermined distance from each other in the semiconductor layer of the first conductivity type; A gate structure having at least an insulating layer formed on the unit region and a conductive layer formed on the insulating layer is formed on an inter-unit region between the first unit unit and the second unit unit. The semiconducting chirp device of the scope of patent application No. 6 further includes a gate wiring electrically connected to the gate structure. 8. If a semiconductor device according to item 1 of the patent application is filed, a plurality of the second unit cells are formed in the first half-conductor area of the first unit cells. 9. If the semiconductor device in the scope of the patent application item 1 or item 2 further includes a semiconductor layer of the second conductivity type, a semiconductor layer of the first conductivity type is formed on the semiconductor layer of the second conductivity type. 10. The semiconductor device according to item 9 of the scope of patent application, wherein the first unit cell formed in the semiconductor layer of the first conductivity type is used as a base, and the second unit cell is used as an emitter. F The second The conductive type semiconductor layer functions as a collector. 11. The semiconductor device according to item 9 of the patent application scope, wherein * «the semiconductor layer of the second conductivity type is a semiconductor substrate; the semiconductor layer of the first conductivity type is a well region formed in the semiconductor substrate 0 12. For example, for a semiconductor device with the scope of the first or second patent application, its MU Page 28 d6A332 6. In the scope of the patent application, the semiconductor layer of the first conductivity type is formed on the insulating layer. 13. The semiconductor device according to item 1 or item 2 of the patent application scope, further comprising an analog circuit portion and a digital circuit portion, forming the diode element in the analog circuit portion, and manufacturing the analog circuit portion and This digital circuit section. 第29頁Page 29
TW89111978A 1999-06-16 2000-06-16 Semiconductor device TW454332B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16925199 1999-06-16

Publications (1)

Publication Number Publication Date
TW454332B true TW454332B (en) 2001-09-11

Family

ID=15883056

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89111978A TW454332B (en) 1999-06-16 2000-06-16 Semiconductor device

Country Status (2)

Country Link
TW (1) TW454332B (en)
WO (1) WO2000077859A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281259A (en) * 2006-04-07 2007-10-25 Mitsumi Electric Co Ltd Electrostatic protective element and electrostatic protective circuit
JP2008244265A (en) * 2007-03-28 2008-10-09 Ishizuka Electronics Corp Multi-cell version constant-current diode
CN109219874A (en) * 2016-06-10 2019-01-15 株式会社索思未来 Semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746301B2 (en) * 1988-10-20 1998-05-06 キヤノン株式会社 Semiconductor rectifier
JPH05218056A (en) * 1992-02-07 1993-08-27 Sharp Corp Power transistor
JPH07130895A (en) * 1993-11-01 1995-05-19 Toshiba Corp Semiconductor integrated circuit device and manufacture thereof
JP3309606B2 (en) * 1994-12-13 2002-07-29 富士電機株式会社 Method for manufacturing semiconductor device
US5936265A (en) * 1996-03-25 1999-08-10 Kabushiki Kaisha Toshiba Semiconductor device including a tunnel effect element
JP3968603B2 (en) * 1997-05-29 2007-08-29 ソニー株式会社 Diode and contactless IC card

Also Published As

Publication number Publication date
WO2000077859A1 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
JP2974211B2 (en) SOI semiconductor device
TW405229B (en) Reliable diffusion resistor and diffusion capacitor
JP2003037254A (en) Soi substrate having etching blocking film, manufacturing method therefor, soi integrated circuit produced on the same and method for producing the soi integrated circuit by using the same
JPH11135794A (en) Semiconductor device and its manufacture
TW454332B (en) Semiconductor device
JP2012238741A (en) Semiconductor device and manufacturing method for the same
JPH05121664A (en) Semiconductor device
TW201332121A (en) Semiconductor device and method for manufacturing semiconductor device
JP2004134666A (en) Semiconductor integrated circuit device and its manufacturing method
JPH08298322A (en) Manufacture of semiconductor device
JPH02148852A (en) Semiconductor device and manufacture thereof
JP3211871B2 (en) I / O protection circuit
JPH06132477A (en) Semiconductor device having mos capacitor
US20230268405A1 (en) Trench power semiconductor device
JPS6118344B2 (en)
JP3693321B2 (en) Semiconductor device and manufacturing method thereof
US6838709B2 (en) Bipolar transistor
JP2774220B2 (en) Semiconductor device
JP3157187B2 (en) Semiconductor integrated circuit
JP4211084B2 (en) Manufacturing method of semiconductor device
JP2003092415A (en) Soi structure diode
JPS5810834A (en) Semiconductor device
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP2940203B2 (en) Semi-custom semiconductor integrated circuits
JPS58107645A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees