JPS60126864A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60126864A
JPS60126864A JP58234563A JP23456383A JPS60126864A JP S60126864 A JPS60126864 A JP S60126864A JP 58234563 A JP58234563 A JP 58234563A JP 23456383 A JP23456383 A JP 23456383A JP S60126864 A JPS60126864 A JP S60126864A
Authority
JP
Japan
Prior art keywords
layer
buried
epitaxial layer
layers
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58234563A
Other languages
Japanese (ja)
Inventor
Masaharu Ogura
小倉 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58234563A priority Critical patent/JPS60126864A/en
Publication of JPS60126864A publication Critical patent/JPS60126864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To set a resistance value between collectors to a fixed value, and to improve element characteristics by forming an impurity region having the same conduction type as a semiconductor substrate between buried layers. CONSTITUTION:An epitaxial layer 22 consisting of an N<-> semiconductor layer is formed on a P type semicondutor substrate 20 through N<+> buried layers 21 shaped at a regular interval. A control layer 23 for resistance between P type collectors takes the same conduction type as the substrate 21 and impurity concentration is set to a fixed value, thus setting a resistance (Rcc) value between the collectors to a fixed value. N<+> 24 is shaped to the epitaxial layer 22 so as to be connected to the N<+> buried layer 21 from the main surface of the epitaxial layer 22. A P type base layer 25 is formed in the epitaxial layer 22 surrounded by the layers 24 and 21 in predetermined diffusion depth from the main surface of the epitaxial layer 22. N type emitter layers 26 are shaped in the base layer 25 at a predetermined interval.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

従来、半導体層の同一島内にトランジスタを2個組込ん
だ所!II CFL回路(コレクター・ファンクション
・ロジ、り回路)がら表る半導体装置として、例えば第
1図(A)、に示す構造のものが使用されている。図中
1は、P導−形の半導体基板である。半導体基板1上に
は、所定間隔で設置したN+埋込層2,2を介して、N
−半導体層からなるエピタキシャル層3が形成すしてい
る。エピタキシャル層3には、その主面がらN+埋込層
2,2に接続するようにしてN土層4.4が形成されて
いる。耐層4,4とN+埋込層2,2で囲まれたエピタ
キシャル層3内には、その主面から所定の拡散深さでP
形のペース層5が形成されている。ペース層5内には、
N形のエミッタ層6,6が所定間隔で形成されてムる。
Conventionally, two transistors were built into the same island of a semiconductor layer! II As a semiconductor device representing a CFL circuit (collector function logic circuit), for example, one having the structure shown in FIG. 1(A) is used. In the figure, 1 is a P-type semiconductor substrate. On the semiconductor substrate 1, N+ buried layers 2, 2 are provided at predetermined intervals.
- An epitaxial layer 3 consisting of a semiconductor layer is being formed. An N soil layer 4.4 is formed on the epitaxial layer 3 so as to be connected to the N+ buried layers 2, 2 from its main surface. In the epitaxial layer 3 surrounded by the resistive layers 4, 4 and the N+ buried layers 2, 2, P is formed at a predetermined diffusion depth from its main surface.
A shaped paste layer 5 is formed. In the pace layer 5,
N-type emitter layers 6, 6 are formed at predetermined intervals.

エミッタ層6,6の表面には、第1、第2のエミッタ電
極7a 、7bが形成され、1層4.4の表面には、第
1、第2のコレクタ電極ah、8bが形成され、ペース
層50表面には、ペース電極9が形成されている。なお
、同図10は、エピタキシャル層3に半導体基板1に達
する拡散深さで形成されたアイソレーション層である。
First and second emitter electrodes 7a and 7b are formed on the surfaces of the emitter layers 6 and 6, and first and second collector electrodes ah and 8b are formed on the surface of the first layer 4.4, A pace electrode 9 is formed on the surface of the pace layer 50. Note that FIG. 10 shows an isolation layer formed in the epitaxial layer 3 with a diffusion depth reaching the semiconductor substrate 1.

このように構成された半導体装置15は、同図(B)に
示す如く、エピタキシャル層3の同一島内に2個トラン
ジスタ11.12を組込んだ回路を形成している。
The semiconductor device 15 configured in this manner forms a circuit in which two transistors 11 and 12 are incorporated in the same island of the epitaxial layer 3, as shown in FIG. 3B.

〔背景技術の問題点〕[Problems with background technology]

而して、このような半導体装置15の製造は、第2図に
示す如く、半導体基板1の所定領域に耐埋込層2,2及
びP+埋込層10a、10aを形成した後、その表面に
エピタキシャル成長によってエピタキシャル層3を積層
する。このため、エピタキシャル成長を行う際にN+埋
込層2.2中の不純物が外部拡散によって飛散する。
As shown in FIG. 2, manufacturing of such a semiconductor device 15 involves forming anti-buried layers 2, 2 and P+ buried layers 10a, 10a in predetermined regions of a semiconductor substrate 1, and then depositing the surface Then, an epitaxial layer 3 is laminated by epitaxial growth. Therefore, during epitaxial growth, impurities in the N+ buried layer 2.2 are scattered by external diffusion.

このため、N+埋込層2,2間にできる所謂コレクタ抵
抗(Rcc )の値が低下する。その結果、所定の素子
!!4f性が得られかい問題があった。
Therefore, the value of the so-called collector resistance (Rcc) formed between the N+ buried layers 2 is reduced. As a result, a given element! ! There was a problem that 4f properties could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、コレクタ間の抵抗を所定値に設定することに
より、素子特性の向上を達成した半導体装置を提供する
ことをその目的とするものである。
An object of the present invention is to provide a semiconductor device in which device characteristics are improved by setting the resistance between the collectors to a predetermined value.

〔発明の概要〕[Summary of the invention]

本発明は、埋込層間に半導体基板と反対導電形の不純物
領域を設けたことによシ、コレクタ間の抵抗値を所定値
に設定して素子特性の向上を達成した半導体装置である
The present invention is a semiconductor device in which the resistance value between collectors is set to a predetermined value by providing an impurity region of a conductivity type opposite to that of the semiconductor substrate between buried layers, thereby achieving improvement in device characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第3図は、本発明の一実施例の概略構成を示す説明図で
おる。図中20は、P導電形の半導体基板である。半導
体基板20上には、所定間隔で設置したN+埋込層21
.21−を介してN−半導体層からなるエピタキシャル
層22が形成されている。耐埋込層21.21間の半導
体基板20の領域には、P導電形のコレクタ間抵抗制御
層23が形成されている。コーレクタ間抵抗制御層23
は、半導体基板20と同じ導電形に設定されておシ、そ
の不純物濃度を第5図中特性!(B)、(C)のように
所定の値に設定することによシ、後述する所謂コレクタ
間抵抗(Rce )の値を所定値に設定するものである
FIG. 3 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention. In the figure, 20 is a P conductivity type semiconductor substrate. On the semiconductor substrate 20, N+ buried layers 21 are provided at predetermined intervals.
.. An epitaxial layer 22 made of an N-semiconductor layer is formed via a layer 21-. A P conductivity type inter-collector resistance control layer 23 is formed in a region of the semiconductor substrate 20 between the buried-proof layers 21 and 21. Inter-collector resistance control layer 23
is set to have the same conductivity type as the semiconductor substrate 20, and its impurity concentration is shown in FIG. By setting the resistor to a predetermined value as shown in (B) and (C), the value of the so-called collector-to-collector resistance (Rce), which will be described later, is set to a predetermined value.

よって、コレクタ間抵抗制御層23の不純物濃度は、製
造しようとする半導体装置の仕′JrMK応じて、特に
N十埋込層21.21の製造時の濃度低下を考慮して設
定するのが望ましい。エピタキシャル層22には、その
主面からN+埋込層j 1 a 21に接続するように
して耐層24.24が形成されている。1層24.24
とN+埋込層xl 、21で囲まれたエピタキシャル層
22内には、その主面から所定の拡散探さでP形のペー
ス層25が形成されている。ペース層25内には、N形
のエミッタ層26.26が所定間隔で形成されている。
Therefore, it is desirable to set the impurity concentration of the inter-collector resistance control layer 23 according to the specifications of the semiconductor device to be manufactured, especially taking into account the concentration drop during the manufacture of the N buried layers 21 and 21. . A breakdown layer 24.24 is formed in the epitaxial layer 22 so as to be connected to the N+ buried layer j 1 a 21 from its main surface. 1 layer 24.24
In the epitaxial layer 22 surrounded by the N+ buried layer xl and 21, a P-type space layer 25 is formed with a predetermined diffusion distance from its main surface. Within the space layer 25, N-type emitter layers 26, 26 are formed at predetermined intervals.

エミッタNl26,26、ペース層25.1層34.2
4の表面には、エミッタ電極27m、27b、、ぺ・−
スミ極28、コレクタ電極29m、29bが夫々形成さ
れている。なお、同図中30は、半導体基板20に達す
る拡散深さでエピタキシャル層22に形成されたアイソ
レーション層である。
Emitter Nl26, 26, pace layer 25.1 layer 34.2
4, emitter electrodes 27m, 27b, pe-
A sum pole 28 and collector electrodes 29m and 29b are formed, respectively. Note that 30 in the figure is an isolation layer formed in the epitaxial layer 22 with a diffusion depth reaching the semiconductor substrate 20.

このように構成された半導体装置Qによれば、第5図に
特性線(B )、(C)で示す如く、コレクタ間抵抗制
御層23を設けているので、コレクタ間の半導体基板2
0とエピタキシャル層22の界面の地点(X)における
不純物濃度を、特性線(A)にて示す従来の半導体装置
の場合よシも高く設定することができる。このため、半
導体装置40−の製造工程でN−1−=埋込層21の不
純物濃度が外部拡散によって低下しても、コレクタ間の
抵抗(Ree )の値を常に所定のものに設定すること
ができる。これは、耐埋込層2ノの形成後にエピタキシ
ャル成長を行った際に、コレクタ間抵抗制御層23中の
不純物がエピタキシャル層22中に再分布するためであ
兎。
According to the semiconductor device Q configured in this way, as shown by characteristic lines (B) and (C) in FIG. 5, since the inter-collector resistance control layer 23 is provided, the semiconductor substrate 2 between the collectors
The impurity concentration at the point (X) at the interface between the epitaxial layer 22 and the epitaxial layer 22 can be set higher than that in the conventional semiconductor device shown by the characteristic line (A). Therefore, even if the impurity concentration of the N-1-=buried layer 21 decreases due to external diffusion in the manufacturing process of the semiconductor device 40-, the value of the resistance (Ree) between the collectors must always be set to a predetermined value. I can do it. This is because impurities in the inter-collector resistance control layer 23 are redistributed into the epitaxial layer 22 when epitaxial growth is performed after the formation of the anti-buried layer 2.

その結果、素子特性の向上を達成するこ゛とができる。As a result, it is possible to improve device characteristics.

なお、コレクタ間抵抗制御層23の形成は、例えば次の
ようにして行う。先ず、第4図(A)に示す如く、P形
半導体基板20の所定領域に、耐埋込層21,21及び
アイソレーション層30となるP+層30aを所定間隔
で形成する。
Note that the inter-collector resistance control layer 23 is formed, for example, as follows. First, as shown in FIG. 4(A), P+ layers 30a, which will become the anti-buried layers 21 and 21 and the isolation layer 30, are formed in predetermined regions of the P-type semiconductor substrate 20 at predetermined intervals.

次いで、同図(B)に示す如く、耐埋込層21゜21.
2層30aを含む半導体基板20の表面に1酸化膜31
を形成する。次いで、酸化膜31上に計理込層zl、2
1間の領域に対応する部分に、窓32を有するレジスト
膜33を形成し、このレジスト膜33をマスクにして例
えばはロン34を半導体基板20中に注入する。
Next, as shown in FIG.
A single oxide film 31 is formed on the surface of the semiconductor substrate 20 including the second layer 30a.
form. Next, a calculation layer zl, 2 is formed on the oxide film 31.
A resist film 33 having a window 32 is formed in a portion corresponding to the region between 1 and 1, and using this resist film 33 as a mask, for example, ions 34 are implanted into the semiconductor substrate 20.

次いで、レジスト膜33を除去した後、熱処理を施して
同図(C)に示す如く、耐埋込層21゜21間の半導体
基板20内にコレクタ間抵抗制御層23を形成する。然
る後、酸化膜31を除去してから同図(D)に示す如く
、エピタキシャル成長により半導体基板20上にエピタ
キシャル層22を形成する。この後、エピタキシャル層
22内にづ−ス層25等を形成して上述の半導体装置Q
が組立てられる。
Next, after removing the resist film 33, a heat treatment is performed to form an inter-collector resistance control layer 23 in the semiconductor substrate 20 between the buried resistant layers 21 and 21, as shown in FIG. Thereafter, the oxide film 31 is removed, and then an epitaxial layer 22 is formed on the semiconductor substrate 20 by epitaxial growth, as shown in FIG. 3(D). Thereafter, a base layer 25 and the like are formed in the epitaxial layer 22 to form the semiconductor device Q described above.
is assembled.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る半導体装置によれば、
コレクタ間の抵抗値を所定値に設定して、素子特性を向
上させることができるものである。
As explained above, according to the semiconductor device according to the present invention,
By setting the resistance value between the collectors to a predetermined value, the device characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、従来の半導体装置の概略構成を示す説
明図、同図(B)は、同半導体装置の回路図、第2図は
、従来の半導体装置の問題点を示す説明図、第3図は、
本発明の一実施例の概略構成を示す説明図、第4図(A
)乃至同図(D)は、同実施例の半導体装置の製造工程
の主な部分を示す説明図、第5図は、基板の深さとバル
ク濃度の関係を示す説明図である。 20・・・半導体基板、21・・・耐埋込層、22・・
・エピタキシャル層、23・・・コレクタ間抵抗制御層
、24・・・耐層、25・・・ペース層、26・・・エ
ミ゛ツタ層、27h、27b・・・エミッタ電極、28
・・・へ” ’flL’FM、29 a y 29 b
・・・コレクタを極、30・・・アイソレーション層、
4o・・・半導体装置。 出願人代理人 弁理士 鈴 江 武 彦第4図 第5図 〔crrr 3: 林碌3(Xj)”“2
FIG. 1(A) is an explanatory diagram showing the schematic structure of a conventional semiconductor device, FIG. 1(B) is a circuit diagram of the same semiconductor device, and FIG. 2 is an explanatory diagram showing problems of the conventional semiconductor device. , Figure 3 is
An explanatory diagram showing a schematic configuration of an embodiment of the present invention, FIG.
) to (D) are explanatory diagrams showing the main parts of the manufacturing process of the semiconductor device of the same example, and FIG. 5 is an explanatory diagram showing the relationship between the depth of the substrate and the bulk concentration. 20... Semiconductor substrate, 21... Burying resistant layer, 22...
・Epitaxial layer, 23... Inter-collector resistance control layer, 24... Resistance layer, 25... Space layer, 26... Emitter layer, 27h, 27b... Emitter electrode, 28
...” 'flL'FM, 29 a y 29 b
...Collector as pole, 30...Isolation layer,
4o...Semiconductor device. Applicant's representative Patent attorney Takehiko Suzue Figure 4 Figure 5 [crrr 3: Lin Roku 3 (Xj)'' 2

Claims (1)

【特許請求の範囲】[Claims] 一導電形の半導体基板上に所定間隔で設けた反対導電形
の埋込層を介して形成された半導体層と、該埋込層間の
前・起生導体基板に同導電形で形成されたコレクタ間抵
抗制御層と、前記半導体層の主面から前記埋込層と同導
電形で前記埋込層に接続、するよう□に延出する不純物
領域と、該不純物領域で囲まれた前記半導体層内に反対
導電形で形成されたペース層と、該ペース層内に反対導
電形で所間隔で形成されたエミツタ層とを具備すること
を特徴とする半導体装置。
A semiconductor layer formed on a semiconductor substrate of one conductivity type through buried layers of the opposite conductivity type provided at predetermined intervals, and a collector formed of the same conductivity type on a previous conductive substrate between the buried layers. an impurity region extending from the main surface of the semiconductor layer in a square shape so as to be connected to the buried layer with the same conductivity type as the buried layer; and the semiconductor layer surrounded by the impurity region. 1. A semiconductor device comprising: a paste layer formed therein with an opposite conductivity type; and an emitter layer formed with an opposite conductivity type at a predetermined interval within the paste layer.
JP58234563A 1983-12-13 1983-12-13 Semiconductor device Pending JPS60126864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234563A JPS60126864A (en) 1983-12-13 1983-12-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234563A JPS60126864A (en) 1983-12-13 1983-12-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60126864A true JPS60126864A (en) 1985-07-06

Family

ID=16972971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234563A Pending JPS60126864A (en) 1983-12-13 1983-12-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60126864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962913A (en) * 1996-01-19 1999-10-05 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor having a particular contact structure
JP2009021313A (en) * 2007-07-11 2009-01-29 Hitachi Ltd Semiconductor device
CN102496626A (en) * 2011-12-30 2012-06-13 清华大学 Silicon germanium heterojunction bipolar transistor structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962913A (en) * 1996-01-19 1999-10-05 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor having a particular contact structure
JP2009021313A (en) * 2007-07-11 2009-01-29 Hitachi Ltd Semiconductor device
CN102496626A (en) * 2011-12-30 2012-06-13 清华大学 Silicon germanium heterojunction bipolar transistor structure

Similar Documents

Publication Publication Date Title
US3274461A (en) High frequency and power field effect transistor with mesh-like gate structure
JPS60126864A (en) Semiconductor device
JP3253611B2 (en) Circuit structure having bipolar transistor and method of manufacturing the same
JPH02229437A (en) Manufacture of high performance bipolar structure
EP0182400A1 (en) Method of manufacturing a bipolar transistor having emitter series resistors
JPS5969943A (en) Manufacture of semiconductor device
JPS61284961A (en) Semiconductor device
JPH07221116A (en) Transistor
JPH07169771A (en) Semiconductor device and its manufacture
US3298082A (en) Method of making semiconductors and diffusion thereof
JPS6174361A (en) Buried resistance semiconductor device
JPS5832455A (en) Manufacture of semiconductor integrated circuit device
JPH01225155A (en) Bipolar semiconductor integrated circuit device and manufacture thereof
JPH0312782B2 (en)
JPS63136668A (en) Manufacture of semiconductor device
JPS61284960A (en) Semiconductor device
JPS59111364A (en) Semiconductor device
JPH0587974B2 (en)
JPH01273353A (en) Bipolar transistor and manufacture thereof
JPS60229373A (en) Semiconductor device
JPH05243243A (en) Semiconductor device and manufacture thereof
JPS6014465A (en) Manufacture or semiconductor integrated circuit
JPS63152170A (en) Manufacture of semiconductor device
JPS6095939A (en) Manufacture of semiconductor integrated circuit
JPS58135669A (en) Manufacture of semiconductor device