JPS5812337A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5812337A
JPS5812337A JP11138881A JP11138881A JPS5812337A JP S5812337 A JPS5812337 A JP S5812337A JP 11138881 A JP11138881 A JP 11138881A JP 11138881 A JP11138881 A JP 11138881A JP S5812337 A JPS5812337 A JP S5812337A
Authority
JP
Japan
Prior art keywords
region
emitter
oxide film
type
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138881A
Other languages
Japanese (ja)
Inventor
Yasutaka Ikushima
生嶋 康孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11138881A priority Critical patent/JPS5812337A/en
Publication of JPS5812337A publication Critical patent/JPS5812337A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO

Abstract

PURPOSE:To obtain a walled emitter type semiconductor device generating no emitter-collector short-circuit in emitter formation by a method wherein a base region is newly formed by newly contacting the base region and an isolated oxide film after forming the base region. CONSTITUTION:As shown in drawing (c) the surface of a silicon oxide film 15 is covered with a photoresist and boron ions 22 are implanted into the photoresist and the second P type region 23 having impurity density which is almost equal to that of the above base region 20 is formed beneath a bird's beak 16. In order to form the P type region 23 meeting the above condition, implantation of the boron ions 22 is done with high acceleration energy or with much dose amount to form the P type region 23. As shown in drawings (e) and (f), an electrode 26 is formed on an emitter region 25 and electrodes 27, 28 are also formed on the base region 20 and a collector region 8 to obtain this inventive walled emitter type semiconductor device.

Description

【発明の詳細な説明】 本発明は素子間を酸化膜分離された半導体装置の製造方
法にかか〕、特に工叱ツタ領域端が上記分離酸化膜と接
する、いわゆるウォールドエζ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device in which elements are separated by an oxide film, and particularly relates to a so-called walled edge ζ in which the edges of the vine regions are in contact with the isolation oxide film.

/(walled emitter)構造を精度よく、
再現性よく形成する方法に関する。
/ (walled emitter) structure with high precision,
It relates to a method of forming with good reproducibility.

従来のウォールドエミッタ構造の半導体装置の場合、エ
ミッタ形成時に工電、タ周辺部、すなわち分離酸化膜近
傍で、工tvりとコレクタの短絡あるいは耐圧低下が多
発し、上記構造の半導体装置が再現性よく提供できない
と−う欠点があった。
In the case of a semiconductor device with a conventional walled emitter structure, when forming an emitter, short circuits or breakdown voltage drops in the collector frequently occur in the vicinity of the electrical conductor, in other words, near the isolation oxide film, and semiconductor devices with the above structure have problems with reproducibility. There was a drawback that it could not be provided well.

本発明によれば、ペース領域形成後、分離酸化膜側面部
と上記ペース領域KIIL、、て、且つ、上記ベース領
域と同程度の不純物濃度および接合深さを持つ、第2の
ベース領域を形成することにより、工電ツタ形成後のペ
ース幅が工tvタ中央部と周辺部で略等しくな9、これ
によりエミ、りとコレクタ間の短絡が紡止できるので、
ウォールドエ電tり置の半導体装置が再現性よく、精度
よく得られる。
According to the present invention, after forming the space region, a second base region is formed that includes the isolation oxide film side surface portion and the space region KIIL, and has the same impurity concentration and junction depth as the base region. By doing this, the width of the pace after the formation of the electric pipe is approximately equal between the central part and the peripheral part of the electric pipe9, which makes it possible to prevent short circuits between the emitter, the collector and the collector.
A wall-mounted semiconductor device can be obtained with good reproducibility and accuracy.

すなわち本発明は、−導電型の半導体基板と該半導体基
板上に形成された逆導電型の半導体層、典型的には単結
晶層を少なくとも有する構造において1該逆導電型単結
晶金環状に囲み、且つ該−導電型半導体基板まで延在す
る絶縁物層を形成し、該逆導電型単結晶層を島状に分離
する工程と、該島状に分離された単結晶層に少なくとも
一部分が該絶縁層と接する第1の一導電型領域を形成す
る工程と、該絶縁物層と該第−の−導電型領域との境界
近傍にイオンを打込み、該絶縁物層および該第1領域と
接する第2の一導電型領域を形成する工程と管束なくと
も含むことを特徴とする半導体装置の製造方法である。
That is, the present invention provides a structure including at least a semiconductor substrate of a conductivity type and a semiconductor layer of an opposite conductivity type formed on the semiconductor substrate, typically a single crystal layer, in which a single crystal gold ring of the opposite conductivity type is surrounded. , and a step of forming an insulating layer extending to the - conductivity type semiconductor substrate and separating the opposite conductivity type single crystal layer into islands, and at least a portion of the single crystal layer separated into islands. forming a first one-conductivity type region in contact with the insulating layer; and implanting ions near the boundary between the insulator layer and the second conductivity type region to contact the insulator layer and the first region; A method of manufacturing a semiconductor device, comprising at least a step of forming a second one-conductivity type region and a tube bundle.

第1図(a)ti上述した従来のウォールドエミ、り型
半導体装置の平面図であシ、分離酸化膜1とコレクタコ
ンタクト2.ベースコンタクト3およびエミ、り4とは
周辺部を互に接している。破線5の方向の断面図を示し
たのが第1図(blであプ%P型の半導体基板6および
N型埋込層7tで到達する分離酸化膜1によプN型のコ
レクタ領域8は互に島状に分離される。
FIG. 1(a) is a plan view of the conventional walled emitter type semiconductor device described above, showing an isolation oxide film 1, a collector contact 2. The base contact 3 and the emitter 4 are in contact with each other at their peripheral parts. A cross-sectional view taken in the direction of the broken line 5 is shown in FIG. are separated from each other into islands.

ベース領域9は分離酸化膜1と周辺部が接するように形
成され、ペース領域表面は酸化膜1oによシ覆われてい
る。
The base region 9 is formed so that its peripheral portion is in contact with the isolation oxide film 1, and the surface of the space region is covered with the oxide film 1o.

次に第1図(C)に示すように、酸化膜10に開孔In
設け、エミッタ領域12を形成する。上記エミッタを形
成すると、ベース幅はエミ、り周辺部が中央部より狭く
なる。この原因としては、ペース接合深さが周辺部で浅
いことや、周辺部で分離酸化による応力が大きく、エミ
、り不純物が中央部より深く拡散することが考えられて
いる。
Next, as shown in FIG. 1(C), an opening In is formed in the oxide film 10.
and form an emitter region 12. When the emitter is formed, the base width becomes narrower at the periphery than at the center. The reason for this is thought to be that the depth of the paste junction is shallow at the periphery, that the stress due to isolation oxidation is large at the periphery, and that the emitters and impurities are diffused deeper than in the center.

第1図(dl#i、第1図(C)の分離酸化膜近傍の拡
大断面図を示す。分離酸化膜1との境界部、すなわちエ
ミ、り12については周辺部で、エミッタ12のほうが
ペース9より接合深さが大きくなり、エミッタ12とコ
レクタ8の導通短絡が容易発生する。
FIG. 1 (dl#i) shows an enlarged cross-sectional view of the vicinity of the isolation oxide film in FIG. The junction depth is larger than that of PACE 9, and conduction short circuit between emitter 12 and collector 8 easily occurs.

本発明はこのような従来法の欠点を解消するものである
The present invention overcomes these drawbacks of the conventional method.

以下、製造工程に沿って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail along the manufacturing process.

最初に、第2図(1)に示すように、P型単結晶半導体
基板6の表面に選択的に高濃度N型領域7t−形成し、
ひき続いて基板6および高濃度N型領域7上に厚さ0.
5乃至3μmのN型エピタキシャル層8を形成し、ひき
続いてエピタキシャル層80表面に酸化珪素膜13およ
び窒化珪素膜141″堆積し、さらにひき続いて上記窒
化珪素膜14および酸化珪素膜13を選択的に除去し、
上記選択的に除去された領域に高濃度N型、領域7およ
びP型単結晶基板6まで到達する酸化珪素層151″形
成し、N型エピタキシャル層8を互に島状に分離する。
First, as shown in FIG. 2(1), a highly doped N-type region 7t is selectively formed on the surface of a P-type single crystal semiconductor substrate 6.
Subsequently, a layer with a thickness of 0.5 mm is deposited on the substrate 6 and the heavily doped N-type region 7.
An N-type epitaxial layer 8 with a thickness of 5 to 3 μm is formed, and then a silicon oxide film 13 and a silicon nitride film 141″ are deposited on the surface of the epitaxial layer 80, and then the silicon nitride film 14 and the silicon oxide film 13 are selected. to remove the
A highly doped N-type silicon oxide layer 151'' reaching the region 7 and the P-type single crystal substrate 6 is formed in the selectively removed region, and the N-type epitaxial layer 8 is separated from each other in an island shape.

上記酸化珪素層15の形成は900℃乃至1100℃で
、2乃至10気圧の高圧酸化により形成する。
The silicon oxide layer 15 is formed by high-pressure oxidation at 900° C. to 1100° C. and 2 to 10 atmospheres.

この酸化時に窒化珪素膜14の直下に、bird’5b
eak領域16が形成される。
At the time of this oxidation, bird'5b is formed directly under the silicon nitride film 14.
An eak region 16 is formed.

次に第2図(b)に示す如く、窒化珪素膜14を除去し
、N型エピタキシャル層80表面に500乃至5000
λの酸化珪素膜17t−形成する。上記酸化珪素膜17
の形成時にbird’s be’ak領域16も当然酸
化され、領域16の酸化珪素膜厚も増加する。ひき続い
てbird’s beak領域16および酸化珪素膜1
7の表面以外の領域金フォトレジスト18で覆い、ホウ
素イオン19を打込み、bird’s beak  l
 6および酸化珪素膜17直下にP型ベース領域20t
−形成する。
Next, as shown in FIG. 2(b), the silicon nitride film 14 is removed and the N-type epitaxial layer 80 has a 500 to 5000
A silicon oxide film 17t of λ is formed. The silicon oxide film 17
Naturally, the bird's be'ak region 16 is also oxidized during the formation of the silicon oxide film, and the silicon oxide film thickness in the region 16 also increases. Subsequently, bird's beak region 16 and silicon oxide film 1 are formed.
Areas other than the surface of 7 are covered with gold photoresist 18, boron ions 19 are implanted, and bird's beak l
6 and a P-type base region 20t directly under the silicon oxide film 17.
- form.

bird’s beak  l 5の酸化珪素膜厚が連
込分離酸化膜15へ接近するほど厚くなることと相伴っ
て、P型ベース領域20の接合深さも浅くなる。
As the silicon oxide film of the bird's beak 1 5 becomes thicker as it approaches the interconnection isolation oxide film 15, the junction depth of the P-type base region 20 also becomes shallower.

次に第2図(C)に示す如く、酸化珪素膜15および1
70表面を、フォトレジスト21で覆い、ホウ素イオン
22を打込み、bird’s beak 16直下に、
上記ベース領域20とほぼ等しい不純物濃度を持つ第2
のPIJ領域23を形成する。上記条件を満たすP型領
域23を形成するために、ホウ素イオン22の打込みは
前述のホウ素イオン190打込みよりも大きな加速エネ
ルギーで行うかあるいはより多量のドーズ量で行って形
成される。
Next, as shown in FIG. 2(C), silicon oxide films 15 and 1
70 surface is covered with a photoresist 21, boron ions 22 are implanted, and directly below the bird's beak 16,
A second region having substantially the same impurity concentration as the base region 20
A PIJ region 23 is formed. In order to form the P-type region 23 that satisfies the above conditions, the boron ions 22 are implanted with a higher acceleration energy or with a larger dose than the boron ion 190 implantation described above.

このP型領域23の形成により、P型ベース領域はbi
rd’s  beak l 5のより分離酸化[115
方向まで延在する。
By forming this P type region 23, the P type base region becomes bi
Separate oxidation of rd's beak l 5 [115
extends in the direction.

次に第2図(d)に示す如く、珪素酸化膜17を除去し
、開孔2411F−形成し、ヒ素あるいはリンイオンを
注入し、ひき続いて熱処理を行い、エミ、り領域25を
形成する。エミ、り領域25はb i r Wsbea
kl 6直下にも形成されるが、その直下にはP型領域
23が形成されているので、ベース幅はエミ、り中央部
より狭くなることはないので、エミッターコレクタ間の
短絡は発生しない。
Next, as shown in FIG. 2(d), the silicon oxide film 17 is removed, an opening 2411F is formed, arsenic or phosphorus ions are implanted, and then heat treatment is performed to form an emitter region 25. Emily, area 25 is bi r Wsbea
However, since the P-type region 23 is formed directly under it, the base width will not be narrower than the emitter and central portions, so no short circuit between the emitter and collector will occur.

さらに、P型領域23は前述のように、P型ベース領域
20と不純物濃度を略等しく形成しであるので、ベース
−コレクタ間容量の増加は少なく、孝子の高周波特性を
低下させない。
Furthermore, as described above, since the P type region 23 is formed to have substantially the same impurity concentration as the P type base region 20, the increase in base-collector capacitance is small and the high frequency characteristics of the filter are not degraded.

最後に第2図(e)および(f)に示すように、エミ。Finally, as shown in Figures 2(e) and (f), Emi.

夕領域25上に電極26′ft形成し、ベース領域20
およびコレクタ領域8上にも電極27,281−形成し
、本発明のウォールドエミッタ型半導体装置が得られる
。ここで第2図(f)は第2図(elに垂直な方向の断
面図である。
An electrode 26'ft is formed on the base region 25.
Electrodes 27 and 281 are also formed on the collector region 8 to obtain a walled emitter type semiconductor device of the present invention. Here, FIG. 2(f) is a sectional view in a direction perpendicular to FIG. 2 (el).

以上、詳細に説明こたよりに、本発明によれば、ベース
領域形成後、新たに分離酸化膜と上記ペース領域に接触
して新たにペース領域を形成することによりbird’
s  beak直下でのベース深さをベース領域中央部
のベース深さと略等しくすることができるので、ひき続
いて行うエミ、り形成でエミッターコレクタ短絡が発生
しないウォールドエミッタ型半導体装置を得ることがで
きる。
As described above in detail, according to the present invention, after forming the base region, a new space region is formed by contacting the isolation oxide film with the above-mentioned space region, thereby creating a bird'
Since the base depth directly below the s peak can be made approximately equal to the base depth at the center of the base region, it is possible to obtain a walled emitter type semiconductor device in which no emitter-collector short circuit occurs during subsequent emitter and oxide formation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(d)は従来技術の半導体装置の製造
方法を示す平面図および製造工程を示す断面図である。 第2図(a)乃至(flは本発明の実施例t−m造工程
順に示す断面図である。 尚、図において、 1.15・・・・・・分離酸化膜、4.12.25・・
・・・・エミッタ領域、6・・・・・・P型単結晶基板
、7・・・・・・高濃度N型領斌、8・・・・・・N型
エピタキシャル層、9゜20・・・・・・P型ベース領
域% 10,13.17・・・・・・酸化珪素膜、23
・・・・・・P型領域、26,27.28自へ 1 υ
ヨ とa) @ I 図rメ9 躬1図(C) 第1図(d) @Z図(ρ) ぷデシ 2rZJtぎノ $ 7 図 とCノ 第2図(d) 第  2 図 (C) 87!図(ナク
FIGS. 1(a) to 1(d) are a plan view showing a conventional method for manufacturing a semiconductor device and a cross-sectional view showing the manufacturing process. FIGS. 2(a) to (fl are cross-sectional views shown in the order of manufacturing steps t-m of the embodiment of the present invention. In the figures, 1.15... isolation oxide film, 4.12.25・・・
... Emitter region, 6 ... P-type single crystal substrate, 7 ... High concentration N-type region, 8 ... N-type epitaxial layer, 9°20. ...P-type base region% 10,13.17...Silicon oxide film, 23
...P-type region, 26, 27.28 to self 1 υ
YO and a) @I Figure rMe9 躬1Figure (C) Figure 1 (d) @Z diagram (ρ) Pudeshi 2rZJtGino$ 7 Figure and C's Figure 2 (d) Figure 2 (C ) 87! Figure (Naku

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板と該半導体基板上に形成された逆
導電型の半導体層を有する構造において、該逆導電型の
半導体層を環状に囲み、且り該−導電型の半導体基板ま
で延在する絶縁物層を形成することによって、該逆導電
型半導体層を島状に分離する工程と、該島状に分離され
た半導体層に少なくとも一部分が該絶縁層と接する第1
の一導電型領域を形成する工程と、皺絶縁物層と皺第1
の一導電型領域との境界近傍にイオンを打込み、該絶縁
物層および該第1領域とに接する第2の一導電型領域を
形成する工程とを含むことを特徴とする半導体装置の製
造方法。
In a structure having a semiconductor substrate of one conductivity type and a semiconductor layer of an opposite conductivity type formed on the semiconductor substrate, the semiconductor layer of the opposite conductivity type is surrounded in an annular shape and extends to the semiconductor substrate of the − conductivity type. a step of separating the opposite conductivity type semiconductor layer into islands by forming an insulating layer that is separated into islands;
a step of forming a first conductivity type region, a wrinkled insulator layer and a wrinkled first region;
A method for manufacturing a semiconductor device, comprising the step of implanting ions near a boundary with a region of one conductivity type to form a second region of one conductivity type in contact with the insulating layer and the first region. .
JP11138881A 1981-07-16 1981-07-16 Manufacture of semiconductor device Pending JPS5812337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138881A JPS5812337A (en) 1981-07-16 1981-07-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138881A JPS5812337A (en) 1981-07-16 1981-07-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5812337A true JPS5812337A (en) 1983-01-24

Family

ID=14559904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138881A Pending JPS5812337A (en) 1981-07-16 1981-07-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5812337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600596A2 (en) * 1992-11-24 1994-06-08 National Semiconductor Corporation Improved bipolar transistor
JPH0784666B2 (en) * 1984-08-21 1995-09-13 エイ・ティ・アンド・ティ・コーポレーション Interferometry for device fabrication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784666B2 (en) * 1984-08-21 1995-09-13 エイ・ティ・アンド・ティ・コーポレーション Interferometry for device fabrication
EP0600596A2 (en) * 1992-11-24 1994-06-08 National Semiconductor Corporation Improved bipolar transistor
EP0600596A3 (en) * 1992-11-24 1995-04-19 Nat Semiconductor Corp Improved bipolar transistor.

Similar Documents

Publication Publication Date Title
US4980305A (en) Method of manufacturing bipolar transistor
JPS6140146B2 (en)
US3959039A (en) Method of manufacturing vertical complementary bipolar transistors each with epitaxial base zones
JPS5812337A (en) Manufacture of semiconductor device
US4762804A (en) Method of manufacturing a bipolar transistor having emitter series resistors
US4127864A (en) Semiconductor device
US3585465A (en) Microwave power transistor with a base region having low-and-high-conductivity portions
JPH0450747B2 (en)
JPH0523054B2 (en)
US6448125B1 (en) Electronic power device integrated on a semiconductor material and related manufacturing process
GB1224802A (en) Semiconductor device and a method of manufacturing the same
JPH04323832A (en) Semiconductor device and manufacture thereof
JPS6158981B2 (en)
JPS5919374A (en) Manufacture of semiconductor device
JPS61150231A (en) Semiconductor device
JPS61129868A (en) Semiconductor device
JPH0713969B2 (en) Vertical PNP transistor
JPH0499387A (en) Semiconductor integrated circuit
JPS60123050A (en) Semiconductor integrated circuit
JPS5854503B2 (en) Manufacturing method of semiconductor device
JPH01225155A (en) Bipolar semiconductor integrated circuit device and manufacture thereof
JPS58142575A (en) Preparation of semiconductor device
JPS6262063B2 (en)
JPS59175766A (en) Semiconductor device and manufacture thereof
JP2001257212A (en) Semiconductor device and method of manufacturing it