JPS6185863A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6185863A
JPS6185863A JP59207458A JP20745884A JPS6185863A JP S6185863 A JPS6185863 A JP S6185863A JP 59207458 A JP59207458 A JP 59207458A JP 20745884 A JP20745884 A JP 20745884A JP S6185863 A JPS6185863 A JP S6185863A
Authority
JP
Japan
Prior art keywords
transistor
type
conductivity type
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59207458A
Other languages
Japanese (ja)
Inventor
Hiroaki Okizaki
沖崎 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59207458A priority Critical patent/JPS6185863A/en
Publication of JPS6185863A publication Critical patent/JPS6185863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0826Combination of vertical complementary transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To make an N-P-N transistor and a P-N-P transistor have the same characteristics by forming respectively a bipolar transistor in a reverse conduc tive type semiconductor layer of a low concentration and in one conductive type semiconductor layer of a low concentration isolated by a dielectric. CONSTITUTION:After N<+> type embedded layers 9a and 9b are formed in a P-type Si substrate 8 and a P<+> type embedded layer 10 is formed in a region for a collector of a P-N-P transistor, a N-type epitaxial layer 11 is formed. After an epitaxial layer in a region forming the P-N-P transistor is etched to reach the P<+> type embedded layer 10, and insulating materials 13a-13c are formed in a side of the N-type epitaxial layer, a P-type epitaxial layer 12 is formed only in a region forming the P-N-P transistor. After then, base, emitter and collector are formed with such as a conventional diffusion and an ion injection method, and an impurity concentration profile of emitter.base.collector is made duplicate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特にNPN)ランジス
タと同等の特性を有するPNP )ランジスタの構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and more particularly to the structure of a PNP transistor having characteristics similar to those of an NPN transistor.

〔従来の技術〕[Conventional technology]

従来NPNトランジスタと同一基板上に形成されたPN
P )ランジスタは、エピタキシャル領域をベース領域
として用いる方法であり、その構造上ラテラルPNP 
トランジスタとバーチカルPNPトランジスタがある。
PN formed on the same substrate as conventional NPN transistor
P) Transistor is a method that uses an epitaxial region as a base region, and due to its structure, lateral PNP
There are transistors and vertical PNP transistors.

従来のNPN トランジスタとPNP)ランジスタ(ラ
テラルPNP)の構造を薦1図に示すP形Si基板lに
lXl0”cm−3程度のN+形埋込層2a、2bt−
形成し、その上にlXl0” 〜lXl0”cm   
程度のN形エピタキシャル層3a、3b全形成する。そ
の後絶縁領域4a、4b、4c全形成する、絶縁領域は
P形の拡散の場合と誘電体を用いる場合等がある。
The structure of a conventional NPN transistor and a PNP transistor (lateral PNP) is recommended by adding N+ type buried layers 2a, 2bt- to a P-type Si substrate l shown in Fig.
1Xl0" to 1Xl0"cm
The N-type epitaxial layers 3a and 3b are completely formed. Thereafter, the insulating regions 4a, 4b, and 4c are all formed.The insulating regions may be made of P-type diffusion or may be made of dielectric material.

次に、NPN)ランジスタのベース5a、PNPトラン
ジスタのコレクタ5b、エミ、り5ct−形成、NPr
1ランジスタのエミッタ5a、 コレクタコンタクト領
域5b、PNP)ランジスタのベースコンタクト領域6
C′t−形成し、電極7形成全行なうことによりトラン
ジスタを構[−jる。
Next, the base 5a of the NPN transistor, the collector 5b of the PNP transistor, the emitter 5ct- are formed, and the NPr
1 transistor emitter 5a, collector contact region 5b, PNP) transistor base contact region 6
A transistor is constructed by forming C't- and completing all the electrode 7 formations.

また、バーチカルPNP)ランジスタは p+形埋込領
域をコレクタとして用い、エミ、り[NPNトランジス
タとは別工程で形成し、電流増幅率tNPN )ランジ
スタと同等にしtものである。
Further, a vertical PNP transistor uses a p+ type buried region as a collector, is formed in a separate process from an NPN transistor, and has a current amplification rate tNPN equivalent to that of an emitter transistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のラテラルPNPトランジスタはエミ、り
・コレクタ1NPN)ランジスタのベース形成と同時に
形成されるため、プロセスが非常に簡便であるという長
所を有するが、上記した工うに、lXl0”〜1刈o 
16 crn−3程度のN形エピタキシャル層をベース
として用いており、耐圧、パターニングの精度の問題か
らベース幅が広くなυ、さらIcはエミッタから注入さ
れたキャリアが無効電流になる割合も高く、結局電流増
幅率が小さく、シゃ新局波数もNPN)ランジスタの1
7100程度という低いものとなってしまう。
The above-mentioned conventional lateral PNP transistor has the advantage that the process is very simple because the emitter, collector, and collector are formed simultaneously with the base formation of the transistor.
An N-type epitaxial layer of about 16 crn-3 is used as the base, and the base width is wide due to problems with breakdown voltage and patterning accuracy.Furthermore, Ic has a high proportion of carriers injected from the emitter becoming a reactive current. After all, the current amplification factor is small, and the new station wave number is also NPN).
It ends up being as low as around 7100.

一方、バーチカルPNP)ランジスタh、ta増幅率は
上昇したものの、し中断周波数はNPNトランジスタの
lXl0程度しか得られず、集積回路の高速化を非常に
困難なものとしていた。
On the other hand, although the amplification factors of vertical PNP transistors (h, ta) have increased, the interruption frequency can only be obtained on the order of lXl0 of an NPN transistor, making it extremely difficult to increase the speed of integrated circuits.

この発明は以上のような問題点に対処してなされたもの
で、電流増幅率の特性、耐圧、し中断周波数等において
、NPN)ランジスタとPNPトランジスタが同等の特
性が発揮できる構造のPNPトランジスタを有する半導
体集積回路装置を提供することを目的とする。
This invention was made in response to the above-mentioned problems, and it is a PNP transistor with a structure that allows NPN transistors and PNP transistors to exhibit equivalent characteristics in terms of current amplification characteristics, breakdown voltage, interruption frequency, etc. An object of the present invention is to provide a semiconductor integrated circuit device having the following features.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路装置は、−41X形半導体基板
上に形成された少なくともひとつの一4電形の高ra度
領域と、該一導電形高一度領域と+2離間して形成され
た少なくともひとつの反対導電形の高a度領域とを有し
、前記−41形高濃度領域上には、均一で低濃度の一導
電形半導体層を有し、前記反対4i形高a肛領域上ic
は均一で低濃度の反対導電形の半導体層を有し、前記−
導1形の半導体層と前記反対導電形の半導体層は誘電体
で分離され、前記低a度の一導電形半導体層お工び前記
低d度の反対4電形半導体Iaに各々バイポーラトラン
ジスタを形成することにより構成される。
The semiconductor integrated circuit device of the present invention includes at least one 14 conductivity type high degree region formed on a -41X type semiconductor substrate, and at least one conductivity type high degree region formed at a distance of +2 from the one conductivity type high degree region. on the -41 type high concentration region, a uniform low concentration semiconductor layer of one conductivity type on the opposite 41 type high concentration region;
has a uniform, low concentration semiconductor layer of opposite conductivity type, and the -
The conductivity type 1 semiconductor layer and the opposite conductivity type semiconductor layer are separated by a dielectric, and a bipolar transistor is formed in the low-a degree one-conductivity type semiconductor layer and the low-d degree opposite 4-conductivity type semiconductor layer Ia, respectively. Constructed by forming.

〔実施例〕〔Example〕

次に、本発明について、図rjrJを参照して説明する
Next, the present invention will be explained with reference to Figure rjrJ.

J1図は本発明の一実施例の断面図である。第1図にお
いて、P形8i基板8に1x10  cm程度のN 形
埋込層9a、9bを形成する。その後)’NP)ランジ
スタのコレクタとなる領域VcIXI019cm−3程
度のP+形埋込層10を形成し、lX1015〜lXl
0”cm−3程度のN形エピタギシャルR11を2〜3
μm程度形成する。次にPNPトランジスタ金形酸形成
領域のエピタキシャル層=iP+形埋込層10に達する
まで、リアクティブ・イオン・工、チング法等金用いて
工、チングを行ない、N形エピタキシャル層の側面に絶
縁物13鳥13b、13cを形成し、PNP)ランジス
タを形成する領域にのみ、lX1015〜lXl0  
cm程度のP形エピタキシャル層12を形成する。
Figure J1 is a sectional view of one embodiment of the present invention. In FIG. 1, N type buried layers 9a and 9b of about 1x10 cm are formed on a P type 8i substrate 8. After that, a P+ type buried layer 10 of about VcIXI019cm-3 is formed, which will become the collector of the transistor.
2 to 3 N-type epitaxial R11 of about 0"cm-3
It forms about μm. Next, until reaching the epitaxial layer of the PNP transistor die formation region = iP+ type buried layer 10, etching and etching are performed using metal such as reactive ion etching and ching method, and insulation is formed on the sides of the N type epitaxial layer. Only in the region forming object 13 birds 13b and 13c and forming a PNP) transistor, lX1015 to lXl0
A P-type epitaxial layer 12 having a thickness of about 1.0 cm is formed.

以上の工程に工り、絶縁物で分離されたN形エビタチシ
ャルの島領域とP形エピタキシャルの島領域が形成さI
Lる。
Through the above process, an N-type epitaxial island region and a P-type epitaxial island region separated by an insulator are formed.
L.

その後は通常の拡散、イオン注入等の方法を用いること
にょ力、NPN)ランジスタのベース15゜エミッタ1
7a、コレクタ17bお工びPNP )ランジスタのベ
ース14.エミ、り16a、コレクタ16b’i形成す
る。この時イオン注入条件。
After that, the base 15° emitter 1 of the NPN transistor is
7a, Collector 17b PNP) Base of transistor 14. An emitter, a collector 16a, and a collector 16b'i are formed. At this time, the ion implantation conditions.

熱処理条件等を考慮し、NPN)ランジスタとPNPト
ランジスタが反対導電形の不純物にエフ構成されている
ことを除いては、エミ、り・ベース・コレクタの不純物
濃度プロファイル全同一になるようにする。
Considering the heat treatment conditions, etc., the impurity concentration profiles of the emitter, base, and collector are all made to be the same, except that the NPN transistor and the PNP transistor are configured with impurities of opposite conductivity types.

以上の結果、第1図に示す様にNPNトランジスタとP
NP )ランジスタを同じ構造にすることができ、電流
増幅率、しゃ新局波数共にNPN)ランジスタとPNP
)ランジスタとが同一特性を得ることができる。
As a result of the above, as shown in Figure 1, the NPN transistor and P
NP ) transistors can have the same structure, and both the current amplification factor and the new station wave number are NPN) transistors and PNP
) can obtain the same characteristics as a transistor.

また、以上の構造において、N形とP形を変えて構成し
てもさしつかえないことはいうまでもない。
Furthermore, in the above structure, it goes without saying that the N-type and P-type may be configured differently.

ま九本実施例ではN+形埋込層9aは使用目的にエフ省
略し、直接P+形埋込層を形成することも出来る。
In this embodiment, the N+ type buried layer 9a may be omitted depending on the purpose of use, and a P+ type buried layer may be directly formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明に工れば、゛tft増幅率
、し中断周波数共にNPN)ランジスタト同等の値を有
する高性能なPNP )ランジスタが得られ、半導体集
積回路の高速化高性能化金遣することができる。
As explained above, if the present invention is applied, a high-performance PNP transistor whose TFT amplification factor and interruption frequency are equivalent to that of an NPN transistor can be obtained, and it is possible to improve the speed and performance of semiconductor integrated circuits. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のバイポーラトランジスタの
構造を示す断面図、巣2図は従来のバイポーラトランジ
スタの構造を示す断面図である。 1.8・=・P形3i基板、2a、2b、9a。 9b・・・・・・N 形埋込層、3a、3b、11・・
・・・N形エピタキシャル層、4a、4b、4c・・・
・・・P形もシくハ酸化物分離領域、5a、5b、5C
,15、、−、、、P膨拡散層、6a、6b、6c、1
7a、17b・・・・・・N+形形成散層7.18・・
・・・・金属電極、1゜・・・・・・P+形埋込層、1
2・・・・・・P形エピタキシャル層、13a、13b
、13c・・・・・・酸化物もしくは窒化物による絶縁
分離領域、14・・・・・・N膨拡散層、16a、16
b・・・・・・P 膨拡散層。
FIG. 1 is a sectional view showing the structure of a bipolar transistor according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a conventional bipolar transistor. 1.8 = P-type 3i substrate, 2a, 2b, 9a. 9b...N type buried layer, 3a, 3b, 11...
...N type epitaxial layer, 4a, 4b, 4c...
... P-type halide isolation region, 5a, 5b, 5C
,15,,-,,,P swelling diffusion layer,6a,6b,6c,1
7a, 17b...N+ shape forming scattering layer 7.18...
...Metal electrode, 1゜...P+ type buried layer, 1
2...P type epitaxial layer, 13a, 13b
, 13c...Insulating isolation region made of oxide or nitride, 14...N swelling diffusion layer, 16a, 16
b...P Swelling diffusion layer.

Claims (2)

【特許請求の範囲】[Claims] (1)一導電形半導体基板上に形成された少なくともひ
とつの一導電形の高濃度領域と、該一導電形高濃度領域
とは離間して形成された少なくともひとつの反対導電形
の高濃度領域とを有し、前記一導電形高濃度領域上には
、均一で低濃度の一導電形半導体層を有し、前記反対導
電形高濃度領域上には均一で低濃度の反対導電形の半導
体層を有し、前記一導電形の半導体層と前記反対導電形
の半導体層は誘電体で分離され、前記低濃度の一導電形
半導体層および前記低濃度の反対導電形半導体層に各々
バイポーラトランジスタを構成してなることを特徴とす
る半導体集積回路装置。
(1) At least one high concentration region of one conductivity type formed on a semiconductor substrate of one conductivity type, and at least one high concentration region of the opposite conductivity type formed apart from the high concentration region of one conductivity type. a uniform, low concentration semiconductor layer of one conductivity type on the high concentration region of one conductivity type, and a uniform, low concentration semiconductor layer of the opposite conductivity type on the high concentration region of the opposite conductivity type. the one conductivity type semiconductor layer and the opposite conductivity type semiconductor layer are separated by a dielectric, and a bipolar transistor is provided in the low concentration one conductivity type semiconductor layer and the low concentration opposite conductivity type semiconductor layer, respectively. A semiconductor integrated circuit device comprising:
(2)一導電形半導体基板と、一導電形高濃度領域との
間に反対導電形領域を有し、たがいに分離されている特
許請求の範囲第(1)項記載の半導体集積回路装置。
(2) The semiconductor integrated circuit device according to claim (1), wherein the semiconductor substrate of one conductivity type and the high concentration region of one conductivity type have an opposite conductivity type region and are separated from each other.
JP59207458A 1984-10-03 1984-10-03 Semiconductor integrated circuit device Pending JPS6185863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59207458A JPS6185863A (en) 1984-10-03 1984-10-03 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207458A JPS6185863A (en) 1984-10-03 1984-10-03 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6185863A true JPS6185863A (en) 1986-05-01

Family

ID=16540100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207458A Pending JPS6185863A (en) 1984-10-03 1984-10-03 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6185863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164067A (en) * 1987-07-29 1989-06-28 Fairchild Semiconductor Corp Manufacture of complementary contactless vertical bipolar transistor
US6768183B2 (en) * 2001-04-20 2004-07-27 Denso Corporation Semiconductor device having bipolar transistors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164067A (en) * 1987-07-29 1989-06-28 Fairchild Semiconductor Corp Manufacture of complementary contactless vertical bipolar transistor
US6768183B2 (en) * 2001-04-20 2004-07-27 Denso Corporation Semiconductor device having bipolar transistors

Similar Documents

Publication Publication Date Title
US4072974A (en) Silicon resistive device for integrated circuits
JPS589366A (en) Transistor
KR930001460A (en) Semiconductor integrated circuit device and manufacturing method thereof
US3518750A (en) Method of manufacturing a misfet
US4109273A (en) Contact electrode for semiconductor component
JPS6185863A (en) Semiconductor integrated circuit device
US3936862A (en) MISFET and method of manufacture
JPS63194367A (en) Semiconductor device
JP3746306B2 (en) Semiconductor electronic component capable of negative operating resistance and method of using the same
KR100247281B1 (en) Junction capacitor using bipolar transistor structure and manufacturing method thereof
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
KR0161869B1 (en) A semiconductor device
JPH01155651A (en) Semiconductor integrated circuit device
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
KR100262802B1 (en) Integrated injection logic device application of a lateral bipolar transistor
JP3120441B2 (en) Semiconductor device and manufacturing method thereof
JPS6032353A (en) Semiconductor integrated circuit and manufacture thereof
JPS58108765A (en) Manufacture of semiconductor device
JPH0574790A (en) Semiconductor device and manufacture thereof
JPS63164356A (en) Manufacture of semiconductor integrated circuit
JPH0366157A (en) Semiconductor integrated circuit device
JPH0157506B2 (en)
JPS6084873A (en) Semiconductor device
JPS59182563A (en) Semiconductor device
JPS5939902B2 (en) Complementary insulated gate field effect semiconductor device