JPS60100479A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPS60100479A
JPS60100479A JP58207150A JP20715083A JPS60100479A JP S60100479 A JPS60100479 A JP S60100479A JP 58207150 A JP58207150 A JP 58207150A JP 20715083 A JP20715083 A JP 20715083A JP S60100479 A JPS60100479 A JP S60100479A
Authority
JP
Japan
Prior art keywords
conductive film
electrode
groove
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58207150A
Other languages
Japanese (ja)
Other versions
JPH0566755B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58207150A priority Critical patent/JPS60100479A/en
Publication of JPS60100479A publication Critical patent/JPS60100479A/en
Publication of JPH0566755B2 publication Critical patent/JPH0566755B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent a photovoltaic power from decreasing due to the shortcircuit of a peripheral end by electrically coupling the first electrode via a lead extended from the second electrode at the side of the first electrode, thereby providing a redundancy at the position of the opened groove of a scribing line. CONSTITUTION:The fourth opened groove 56 is formed on the first conductive film 2 along the side end 33 of a substrate. Further, a semiconductor 4 is formed over the fourth groove. Then, the second conductive film is formed above or inside the groove 56 at the end 57 on the semiconductor. Even if the first electrodes of adjacent elements are shortcircuited by the separated groove 62, the shortcircuit can be prevented by the groove 56. A conductor 34 is pressurized by a carbon fiber frame 60, and even if shortcircuited, elements 31, 11 are not deteriorated in the characteristics.

Description

【発明の詳細な説明】 この発明は、光熱’IJにより光起電力を発生するアモ
ルファス半導体を含む非単結晶半導体が絶縁表面を有す
る基板」二に設けられた光電変換素子(単に素子ともい
う)を複数個電気的に直列接続した、高い電圧の発生が
可能な光?IIS変換装置における連結部のパネル側端
部の電極の構造に関する。
Detailed Description of the Invention The present invention relates to a photoelectric conversion element (also simply referred to as an element) provided on a substrate having an insulating surface and a non-single crystal semiconductor including an amorphous semiconductor that generates photovoltaic force by photothermal IJ. A light that can generate high voltage by electrically connecting multiple pieces in series? The present invention relates to the structure of an electrode at the panel side end of a connecting portion in an IIS converter.

この発明は、レーザ・スクライブ(以下LSという)に
より光電変換装置を作製せんとした場合、それぞれの素
子を直列に接続する連結部において、基板上の第1の導
電膜と、半導体上の第2の導電膜とがその大きさにより
<(1いにショートしてしまい、電気的に直列接続がさ
れなくな、でしまうことを防ぐため、基板上の第1の導
電膜に比べて半導体上の第2の導電膜を同じまたは小さ
くしたことを特徴としている。
In the present invention, when a photoelectric conversion device is manufactured by laser scribing (hereinafter referred to as LS), a first conductive film on a substrate and a second conductive film on a semiconductor are connected to each other in a connecting portion connecting each element in series. Due to the size of the first conductive film on the semiconductor substrate, the first conductive film on the semiconductor substrate is It is characterized in that the second conductive film is the same or smaller.

この発明は、光電変換装置パネル(以下単にパネルとい
う)の周辺部、特にこのパネルを矩形または長方形とし
た時、外部取り出し7h極の形成されていない2側部に
おいても、その連結rH+ !IJち1つの素子の下側
電極(第1の4電股により作られた第1の電極)と隣の
素子の上側電極(第2の導電膜により作られた第2の電
極)とが導体で連結されている。一般にパネルはその側
端部においては、基板が1μ〜0.1mmの凹面または
凸面のそりを有している。かかる側端部ではレーザ光の
焦点がぼけるため、第1の導電膜を所定の素子に必要な
第1の電極の形状に完全に電気的に分離できない。
This invention provides a method for connecting rH+! to the peripheral portion of a photoelectric conversion device panel (hereinafter simply referred to as the panel), especially when the panel is rectangular or rectangular, even at the two side portions where the external extraction 7h pole is not formed. The lower electrode of one IJ element (the first electrode made by the first 4-electrode) and the upper electrode of the adjacent element (the second electrode made by the second conductive film) are conductors. are connected. Generally, at the side edges of the panel, the substrate has a concave or convex warp of 1 μm to 0.1 mm. Since the laser beam is out of focus at such side ends, the first conductive film cannot be completely electrically separated into the shape of the first electrode required for a predetermined element.

またこの第1の電極が酸化スズ、酸化インジュームを主
成分とするCTFとすると、基板の側面に電子ビーム蒸
着法等で形成する際、CTFがまわりこみ、その側面で
の導通性をLSでは除去することができない。
Furthermore, if this first electrode is made of CTF whose main component is tin oxide or indium oxide, when it is formed on the side of the substrate by electron beam evaporation, the CTF wraps around and the conductivity on that side is removed by LS. Can not do it.

このため第1の導電膜を電気的に開溝(以下節1の開講
という)のみにより分離してそれぞれの素子用の第1の
電極を形成させることができない。
For this reason, it is not possible to electrically separate the first conductive film only by an opening groove (hereinafter referred to as opening in Section 1) to form a first electrode for each element.

本発明はかかる欠点を除去するため、この基板端より内
部(一般には0.3〜5mm )にレーザ光を用いて開
溝(以下節4の開溝という)を形成させることにより、
それぞれの素子用の第1の電極を4本の開溝により回り
を取り囲む構成とせしめた。
In order to eliminate this drawback, the present invention uses a laser beam to form an open groove (hereinafter referred to as the open groove of Node 4) inside (generally 0.3 to 5 mm) from the edge of the substrate.
The first electrode for each element was surrounded by four grooves.

かくして前記したごとき基板6111部の基板のそり等
によるレーザ加工のばらつきによる電極間の電気ショー
トを除去することができた。
In this way, it was possible to eliminate the electric short between the electrodes due to variations in laser processing due to substrate warping of the substrate 6111 portion as described above.

しかしこの第4の開溝のみでは第2の導電膜により電極
を半導体に形成した場合、それぞれの素子を直列に連結
する連結部においてショー1−シてしまう場合があるこ
とが判明した。即ち、もし第1の導電膜より大きく外側
にはみ出た第2の導電膜が形成されている場合、この連
結部にて第2の電極はその隣の素子の開l+liより外
側の第1の導電膜と電気的に連結する。♂らにこの導電
膜はリークにより前記した第2の電極下の第1の導電膜
とショートしているため、素子の上下の電極間が周辺部
でショートしてしまい、光起電力を発生さゼることがで
きなくなってしまう。このためこの周端部のショートに
よる光起電力の低]・を防くごとは工業上きわめて重要
であった。
However, it has been found that with only this fourth groove, when an electrode is formed on a semiconductor using the second conductive film, there is a possibility that the connection portion connecting each element in series may be shortened. That is, if a second conductive film is formed that protrudes outward to a greater extent than the first conductive film, the second electrode at this connecting portion is connected to the first conductive film outside of the opening l+li of the adjacent element. electrically connects to the membrane. Moreover, this conductive film is short-circuited with the first conductive film under the second electrode mentioned above due to leakage, resulting in a short-circuit between the upper and lower electrodes of the device at the periphery, and photovoltaic force is generated. I can't stand it anymore. Therefore, it is extremely important industrially to prevent the photovoltaic force from decreasing due to short circuits at the peripheral edge.

即ち、本発明はかかる問題を解決し、第4の開溝上方ま
たはこの開溝よりも小さく内側に第2の導電膜を設ける
ことにより、初めて1つのパネルにおいて隣あってそれ
ぞれの素子を直列に側端部にてショートさせることなく
連結できることが判明した。
That is, the present invention solves this problem, and by providing the second conductive film above the fourth groove or inside the fourth groove, it is possible to arrange the adjacent elements in series for the first time in one panel. It was found that the connection could be made without causing a short circuit at the side ends.

本発明はかかる集積化構造をマスクを用いずに成就する
ものであるが、この集積化の際、余分の工程がかかりや
すい基板の側端部を集積化工程と同−LSI程で成就す
るものである。
The present invention achieves such an integrated structure without using a mask, but during this integration, the side edges of the substrate, which tend to require extra steps, can be achieved in the same integration process as the LSI. It is.

一般にLS方式においては、10〜100μ例えば50
μの巾の線状の開溝により2つの領域を分離することが
可能である。しかしこのLS方式においては、面として
の選択的な除去がきわめて困難であり、製造価格を上昇
させてしまう。さらにLS方式においては、直線状の線
または点を有せしめることは生産性を大きくして好まし
いが、曲線を複雑に走査すると走査スピードが遅くなり
、価格の上昇をもたらす。このことによりLS方式にお
けるパネルの周辺部および集積化構造を作る際に、直線
状でかつ線状の開溝によって成就することが工業的に生
産性を高め、きわめて重要である。本発明はがかる特長
を十分用いることによる、光電変換装置の周辺部即ちパ
ット部、側端部の構造に関する。
Generally, in the LS method, 10 to 100μ, for example, 50μ
It is possible to separate the two regions by a linear groove with a width of μ. However, in this LS method, it is extremely difficult to selectively remove surfaces, which increases the manufacturing cost. Furthermore, in the LS method, it is preferable to have straight lines or points because it increases productivity, but if a curved line is scanned in a complicated manner, the scanning speed becomes slow and the price increases. Therefore, when creating the peripheral part of the panel and the integrated structure in the LS method, it is extremely important to achieve industrial productivity by using straight and linear open grooves. The present invention relates to a structure of a peripheral portion, that is, a pad portion, and a side end portion of a photoelectric conversion device by making full use of the above-mentioned features.

さらに本発明においては、このレーザスクライブ工程を
用いるに加えて、そのスクライブラインの合わせ精度に
冗長(余裕)度をもだ七たことが重要である。そのため
隣合った素子間の第1の電極(下側)と他の素子の第2
の電極(上側型4f2)とが第2の電極より延在したリ
ードにより第1の電極とその側面において電気的に連結
させることにより、スクライブラインの開溝の位置に冗
長度を持たせることができた。
Furthermore, in the present invention, in addition to using this laser scribing process, it is important to provide a degree of redundancy (margin) in the alignment accuracy of the scribe lines. Therefore, the first electrode (lower side) between adjacent elements and the second electrode of other elements
By electrically connecting the electrode (upper type 4f2) to the first electrode on its side surface by a lead extending from the second electrode, redundancy can be provided in the position of the open groove of the scribe line. did it.

第1図は本発明を用いた光電変換装置のパネル(50)
を上面より示したものである。即ち、図面において、光
電変換素子(31)、<11)は連結部(]2)を経て
直列に連結して集積化させて光電変換装置(50)を設
けている。外部引出し電極は(5)、<45)が両端部
に設けられている。 パネルの上端、下端に枠と電気的
にショートしないように、分前溝(62)が設けられて
いる。
Figure 1 shows a panel (50) of a photoelectric conversion device using the present invention.
is shown from the top. That is, in the drawing, the photoelectric conversion elements (31), <11) are connected in series through the connection part (]2) and integrated to provide the photoelectric conversion device (50). The external extraction electrodes (5), <45) are provided at both ends. Minute grooves (62) are provided at the upper and lower ends of the panel to prevent electrical short-circuiting with the frame.

第1図のパネルにおいて、その大きさは20cm X6
0cm、 40cm x 120cm、 40cm X
 60c+n等の任意の大きさを設計によって得ること
ができる。
In the panel shown in Figure 1, its size is 20cm x 6
0cm, 40cm x 120cm, 40cm
Any size such as 60c+n can be obtained by design.

第1図における(A−A’)の縦断面図を第2図に示し
ている。さらに(B−B’)の縦断面図を第3図(B)
に、(C)を第3図(A)に拡大して示している。番号
はそれぞれに対応させている。
FIG. 2 shows a vertical cross-sectional view taken along the line (AA') in FIG. 1. Furthermore, the vertical cross-sectional view of (B-B') is shown in Figure 3 (B).
3(C) is shown enlarged in FIG. 3(A). The numbers correspond to each other.

第2図は第1図A−A“の縦断面図を示す。即ち、本発
明の製造工程を示す縦断面図である。
FIG. 2 shows a longitudinal sectional view of FIG.

第2図(A)において、絶縁表面を存する基板例えば透
光性基板(1)即ちガラス板(例えば厚さ1.2 mm
、長さく図面では左右方向) 60cm、中20cm)
または透光性有機樹脂を用いた。さらにこの上面に全面
にわたって、透光性導電膜例えばITO(約1500人
) + 5n02 (200〜400人)またはハロゲ
ン元素が添加された酸化スズを主成分とする透光性導電
膜(1500〜2000人)を真空蒸着法、LP CV
D法、プラズマCVD法またはスプレー法により形成さ
せた。
In FIG. 2(A), a substrate having an insulating surface, for example, a transparent substrate (1), that is, a glass plate (for example, 1.2 mm thick)
, the length is 60cm (in the left and right direction in the drawing), 20cm in the middle)
Alternatively, a translucent organic resin was used. Further, over the entire upper surface, a light-transmitting conductive film such as ITO (approximately 1,500 people) + 5N02 (200-400 people) or a light-transmitting conductive film whose main component is tin oxide doped with a halogen element (approximately 1,500-2,000 people) is applied. vacuum evaporation method, LP CV
It was formed by D method, plasma CVD method, or spray method.

この第1の導電膜は外部引出し電極部においては不要で
あるが、マスクを用いた製造価格の上昇を避けた。かく
して7′li極領域(5)上にもCTFが形成される。
Although this first conductive film is not necessary in the external lead electrode section, an increase in manufacturing cost due to the use of a mask was avoided. In this way, a CTF is also formed on the 7'li polar region (5).

この後、この基板の上側より、YAGレーザ加工機(日
本レーザ!v)により0.5〜3W出力を加え、スボソ
11!30〜70μφ例えば50μφ、周波数7xnz
、パルス中10μ秒をマイクロコンピュータを制御して
照射し、その走査によりスクライブライン用開溝(13
>、< 13つを形成させ、各素子領域間および外部引
出し電極領域(5)を分割した。
After that, 0.5~3W output is applied from the upper side of this substrate using a YAG laser processing machine (Nippon Laser!v),
, irradiation is performed for 10 μs during the pulse by controlling the microcomputer, and the opening groove for the scribe line (13
>, < 13 were formed, and each element region and external extraction electrode region (5) were divided.

そして第1の電極(37)、(39)を作製した。Then, first electrodes (37) and (39) were produced.

この第1のLSにより形成された開溝(13)、(13
’)は巾約50μ長さ20crnとし、深さは第1の電
極それぞれを完全に切断分ヌ1[シた。この長さは第1
図における図面の上端から下α111まで通り抜けさせ
、開溝の形成の走査スピードを2m/分と速くさせた。
Open grooves (13), (13) formed by this first LS
) was approximately 50 μm in width and 20 crn in length, and the depth was approximately 1 mm to completely cut each of the first electrodes. This length is the first
The scanning speed for forming the open groove was increased to 2 m/min.

かくして外部引出し電極領域(5)、第1の素子領域(
31)および第2の素子領域(11)を構成させた。こ
れらの素子の中は10〜20mmとした。
In this way, the external extraction electrode region (5), the first element region (
31) and the second element region (11) were constructed. The inside of these elements was 10 to 20 mm.

加えて第3図に示すごとく、基板の側部における分離溝
用の第4の開溝(56)も同様のLSプロセスにより作
製した。その結果、パネルにおける素子領域(31)を
周辺1ijJ5の不均質な導電膜(33)即ち側端部で
の凹部凸部の基板のそりでレーザ光の焦点がぼけ、開溝
(13)、<13’)の形成できない領域(34)と電
気的に分離した。か(して素子が作られる活性領域(3
2)において開溝(13)により素子(31)、< 1
1 )の第1の電極を電気的に分離した。
In addition, as shown in FIG. 3, a fourth opening groove (56) for a separation groove on the side of the substrate was also fabricated by the same LS process. As a result, the focus of the laser beam is blurred when the element region (31) in the panel is defocused due to the non-uniform conductive film (33) around the periphery 1ijJ5, that is, the warp of the substrate in the concave and convex portions at the side edges, and the opening groove (13) is It was electrically isolated from the region (34) where the region (13') could not be formed. active region (3
2), the open groove (13) allows the element (31), < 1
1) The first electrode was electrically isolated.

この後、この導電膜、第1の開溝および第4の開溝を覆
い上面にプラズマCVD法またはLP CVD法、光C
VD法、光プラグ7 CVD法、LT CVD法(HO
MOCVD法ともいう)により光照射により光起電力を
発生させる非単結晶半導体特にPNまたはPIN接合を
有する非単結晶半導体層(3)を0.2〜1.0μ代表
的には0.4〜0.6μの厚さに形成させた。その代表
例は、P型半導体(SixC+−x x =0.850
〜150人X42) −1型アモルファスまたはセミア
モルファスのシリコン半導体(0,4〜0.6μバ43
)−N型の微結晶(100〜200人)または5ixC
1x(0<x<l 例えばx=0.9)の半導体(44
)よりなる1つのPIN接合を有する非単結晶半導体(
3)とした。さらにこの半導体としてP型半導体(Si
xC1,X) I型S3半導体−N型Si半導体−P型
St半導体−■型5ixGe l−X半導体−N型半導
体よりなる2つのPIN接合と1つのPN接合を有する
タンデム型のPINPIN・・・IIIN接合の半導体
(3)としてもよい。
After that, this conductive film, the first groove and the fourth groove are covered and the upper surface is coated with plasma CVD or LP CVD, or with light C.
VD method, optical plug 7 CVD method, LT CVD method (HO
A non-single-crystal semiconductor layer (3) that generates photovoltaic force by light irradiation (also called MOCVD method), especially a non-single-crystal semiconductor layer (3) having a PN or PIN junction, is 0.2 to 1.0μ, typically 0.4 to It was formed to have a thickness of 0.6μ. A typical example is a P-type semiconductor (SixC+-x x =0.850
~150 people x 42) - Type 1 amorphous or semi-amorphous silicon semiconductor (0.4-0.6μ bar43)
)-N type microcrystals (100-200 people) or 5ixC
1x (0<x<l e.g. x=0.9) semiconductor (44
) with one PIN junction consisting of a non-single crystal semiconductor (
3). Furthermore, this semiconductor is a P-type semiconductor (Si
xC1, It may also be a IIIN junction semiconductor (3).

かかる非単結晶半導体(3)をCTF (2)および開
溝(13)、(13’)上の全面にわたって均一の膜厚
で形成させた。さらに第2図(B)に示されるごとく、
第1の開溝(13)の左側に第2の開溝(18)を50
μの巾に100〜200μの距離(17)をわたらせて
第2のLSI程により形成させた。
Such a non-single crystal semiconductor (3) was formed to have a uniform thickness over the entire surface of the CTF (2) and the open grooves (13) and (13'). Furthermore, as shown in Figure 2 (B),
A second open groove (18) is placed on the left side of the first open groove (13).
It was formed by the second LSI process over a distance (17) of 100 to 200 μ over a width of μ.

かくして第2の開溝(18)は第1の電極の側面(8)
、(9)を露出さ・lた。この開溝において、CTFは
そのコンタクトを構成する部分として側面のめではなく
上面または上面と側面とを露呈させてもよい。
The second open groove (18) thus forms a side surface (8) of the first electrode.
, (9) was exposed. In this open groove, the CTF may have its top surface exposed or its top surface and side surface exposed as a part constituting the contact, instead of the side surface.

この第2の開溝により形成された第1の電極の右側の側
面(9)の存在は、第1の電極(37)の側面(16)
より左側の第1の素子の第1の電極位置上にわたって設
けられている。
The presence of the right side surface (9) of the first electrode formed by this second open groove causes the side surface (16) of the first electrode (37) to
It is provided over the first electrode position of the first element on the left side.

そして第2図(B)に示されるごとく、第1の電極(3
1)の内部に入ってしまうことにより、第1の電極の側
面を(8>、(9)と露出せしめている。
Then, as shown in FIG. 2(B), the first electrode (3
By entering the inside of 1), the side surfaces of the first electrode are exposed as (8>, (9)).

かくすることにより、第1の素子の第1の電極(37)
の一部が第2の開溝の右側に残存している。
By doing so, the first electrode (37) of the first element
A part of it remains on the right side of the second open groove.

かかる残存領域がない場合、レーザ光の高熱(〜200
0℃)によりこの開溝の近傍がレーザアニールされ多結
晶性となり絶縁性に劣化が起きてしまう。この多結晶は
基板のガラス基板表面上に著しく発生しやすいため、こ
の凸部(9)によりこの結晶化を防ぎ、側面(9)とく
16)とが電気的にショートしてしまうことを防いでい
る。即ち、第2図(C)における第1の電極(39)と
同じ素子の第2の電極(38)とがショートしてしまう
ことを防ぐことができた。
If there is no such residual area, the high heat of the laser beam (~200
0° C.), the vicinity of this open groove is laser annealed and becomes polycrystalline, resulting in deterioration of insulation properties. Since this polycrystal is extremely likely to occur on the surface of the glass substrate, the convex portion (9) prevents this crystallization and prevents electrical short-circuiting between the side surface (9) and 16). There is. That is, it was possible to prevent short-circuiting between the first electrode (39) and the second electrode (38) of the same element in FIG. 2(C).

この(9)の部分に残存するCTFは20〜200μの
巾を有せしめた。このレーザ光が0.5〜3Wで多少強
すぎてこのCTF (37)の深さ方向のすべてを除去
してしまい、その結果、側面(8)に第2図(C)で第
2の電極(38)を密接させても実用上何等問題はない
。即らレーザ光の出力パルスの強さに余裕を与えること
ができることが本発明の工業的応用の際きわめて重要で
ある。
The CTF remaining in this portion (9) was made to have a width of 20 to 200 μ. This laser beam was a little too strong at 0.5 to 3 W and removed the entire CTF (37) in the depth direction, and as a result, a second electrode was formed on the side surface (8) as shown in Figure 2 (C). There is no practical problem even if (38) is placed closely together. That is, it is extremely important for the industrial application of the present invention to be able to provide a margin for the intensity of the output pulse of the laser beam.

第2図において、さらにこの上面に第2図(C)に示さ
れるごとく、裏面の第2の導電膜(4)を形成し、さら
に第3のLS法により、切断分離用の第3の開溝(20
)を設けた。
In FIG. 2, as shown in FIG. 2(C), a second conductive film (4) on the back side is further formed on this top surface, and a third opening for cutting and separation is formed by a third LS method. Groove (20
) was established.

この第2の導電膜(4)は透光性導電膜を100〜14
00人の厚さにITOl化インジュームスス)により形
成し、さらにその上面にチタン(10〜50人)、銀(
100〜500人入クロムを300〜3000六の厚さ
に形成した。またはITOJ:にクロムを300〜30
00人の厚さに形成した。例えばITOを1050人、
クロムを1500人の2Jt!j構造とした。
This second conductive film (4) has a translucent conductive film of 100 to 14
It is formed with ITOl-based indium suth) to a thickness of 0.00 mm, and further coated with titanium (10 to 50 mm) and silver (
100 to 500 pieces of chromium were formed to a thickness of 300 to 3,000 mm. Or ITOJ: 300 to 30 chromium
It was formed to a thickness of 0.00 people. For example, 1050 ITOs,
Chrome for 1500 people 2Jt! j structure.

このクロム上にニッケルその他の金属を形成してもまた
クロムの代わりにニクロムを用いることも可能である。
It is also possible to form nickel or other metal on the chromium, or to use nichrome instead of chromium.

この第2の導電膜の大きさは、側部において第3図(A
)に示されるごとく、第4の開溝上方またはこの開溝よ
りも素子領域(活性領域)側(32)(内部側)にその
端部(57)が設けられている。
The size of this second conductive film is as shown in FIG.
), the end portion (57) is provided above the fourth trench or on the element region (active region) side (32) (inner side) of the fourth trench.

この第2の導電膜の端部の作製は、第2の導電膜を電子
ビーム蒸着法にて作製の際、基板ホルダ(枠)により周
辺部をマスクして作製した。
The end portion of the second conductive film was manufactured by masking the peripheral portion with a substrate holder (frame) when the second conductive film was manufactured by electron beam evaporation.

かくのごとく第2の導電膜の端部を第1の導電膜の第4
の開溝の上方または内側(好ましくは開溝の内部端(3
5)の内側)に設けたため、第2の素子(11)の第2
の電極が連結部(12)を介し同じ素子の第1の電極と
側端部(34)の第1の導電膜のショートにより短絡す
ることを防ぐことができた。
In this way, the end of the second conductive film is connected to the fourth end of the first conductive film.
above or inside the open groove (preferably at the inner end of the open groove (3
5)), the second element (11)
It was possible to prevent the electrode from being short-circuited via the connecting portion (12) due to a short between the first electrode of the same element and the first conductive film at the side end portion (34).

かくのごとき裏面電極をレーザ光を上方より照射して第
2の電極を切断分離して第3の開i (20)(中50
μ)を形成した場合を示している。このレーザ光の照射
により、昇華性導体のITOおよびクロムを選択し除去
することが可能となった。この時、レーザ光の焦点をこ
の第2の導電膜に対して合わせ込んでいるため、パネル
の側部(34)(第3図)において、その下の半導体が
実質的に開講(68)が形成されに(いことがわがった
The back electrode is irradiated with a laser beam from above to cut and separate the second electrode to form a third opening (20) (middle 50
The figure shows the case where μ) is formed. Irradiation with this laser light made it possible to selectively remove ITO and chromium, which are sublimable conductors. At this time, since the laser beam is focused on this second conductive film, at the side part (34) of the panel (Fig. 3), the semiconductor underneath is substantially exposed (68). I realized that it was not formed.

さらに、この第3の開溝下の半導体」二部を酸化(40
) してそれぞれの電極間のクロストーク(リーク電流
)の発生を防止した。
Furthermore, the second part of the semiconductor under this third trench is oxidized (40
) to prevent crosstalk (leakage current) between the respective electrodes.

かくして第2図(C)に示されるごとく、複数の素子(
31)、<11)を連結部(12)で直列接続した。
Thus, as shown in FIG. 2(C), a plurality of elements (
31) and <11) were connected in series at the connecting portion (12).

第2図(D)はさらに本発明を光電変換装置として完成
させんとしたものであり、即ちバンシヘイション膜とし
てプラズマ気相法により窒化珪素膜(21)を500〜
5000人の厚さに形成させ、各素子間のリーク電流の
発生を防いだ。さらに外部引き出し端子(23)を周辺
部(5)にて設けた。これらにポリイミド、ポリアミド
、カプトンまたはエポキシ等の有機樹脂(22)を充填
した。
FIG. 2(D) shows the attempt to further complete the present invention as a photoelectric conversion device, that is, a silicon nitride film (21) with a thickness of 500 to
It was formed to a thickness of 5,000 mm to prevent leakage current between each element. Furthermore, an external lead-out terminal (23) was provided at the peripheral portion (5). These were filled with an organic resin (22) such as polyimide, polyamide, Kapton or epoxy.

かくして照射光(10)に対し、この実施例のごとき基
板(60cm X 20にl11)において各素子を1
lJI4.35mm、連結部の中15077、外部引出
し電極部のrjjlQmm、周辺部4mmにより、自助
面積(192mm X 14.35mm X 40段 
1102cTA即ち91.8%)を得ることができた。
Thus, for the irradiation light (10), each element is
lJI 4.35mm, connecting part middle 15077, external extraction electrode part rjjlQmm, peripheral part 4mm, self-help area (192mm x 14.35mm x 40 steps)
1102cTA, or 91.8%).

その結果、セグメン1−が9.3%の変換効率を有する
場合、パネルにて7.6%(八Ml (100mW /
cIA) )にて9.3Wの出力電力を有せしめること
ができた。
As a result, if segment 1- has a conversion efficiency of 9.3%, the panel has a conversion efficiency of 7.6% (8 Ml (100 mW/
cIA) ) was able to provide an output power of 9.3W.

さらに金属マスクをまったく用いないため、大面積パネ
ルの製造工程において何等の工業上の支障がなく、大電
力発生用の大面積低価格大量生産用にきわめて適してい
る。
Furthermore, since no metal mask is used at all, there is no industrial problem in the manufacturing process of large-area panels, making it extremely suitable for large-area, low-cost mass production for generating large amounts of power.

この結果、パネルの有効面積の向上に役立つことができ
た。
As a result, the effective area of the panel could be improved.

第3図は第1図における(B−B’)および(C)の拡
大図である。
FIG. 3 is an enlarged view of (BB') and (C) in FIG. 1.

第3図(A)において、2つの素子(31)、< 11
 )および連結部(12)を有している。側端部(34
)においても、第3図(B)に示すとと<、CTF(5
9)が残存してしまう。このため、これらの導体が残存
しても、素子(31)、< 11 )が動作不能を起こ
さないようにするため、さらにこの導体(59)が残存
しても、ここの部分でパネルを外枠(60)に固定する
ことが可能な構造を有せしめている。
In FIG. 3(A), two elements (31), < 11
) and a connecting portion (12). Side edge (34
), as shown in Figure 3(B), <, CTF(5
9) will remain. Therefore, even if these conductors remain, in order to prevent the element (31), It has a structure that can be fixed to the frame (60).

即ち、基板の側端部(33)にそって、第1の導電膜(
2)は第4の開溝(56)を形成している。
That is, the first conductive film (
2) forms a fourth open groove (56).

さらにこの第4の開l+X+iを覆って、半導体(3)
を形成する。その後、この半導体上に第2の導電IIQ
をその端部(57)が第4の開溝(FMJ )の上方ま
たはその内側に設けている。
Further, covering this fourth opening l+X+i, a semiconductor (3) is formed.
form. Thereafter, a second conductive IIQ is applied on this semiconductor.
The end portion (57) is provided above or inside the fourth open groove (FMJ).

この分離m (62)により隣合った素子の第1の電極
同志がショートしても、第4の開溝(5G)によりショ
ートを防ぐことができた。また炭素繊維枠(60)によ
り、導体(34)が加圧され、ショートしても素子(3
1)、< 11 )は何等の特性劣化がない。
Even if the first electrodes of adjacent elements were short-circuited due to this separation m (62), the fourth open groove (5G) could prevent the short-circuit. Furthermore, the conductor (34) is pressurized by the carbon fiber frame (60), so even if a short circuit occurs, the element (34)
1) and <11), there is no characteristic deterioration of any kind.

即ち、側端部は開溝(56)、側端(57)による分離
溝(62)により初めて安定に外枠(60)等と固定が
可能となった。さらに、樹脂(63)で枠と光電変換装
置と固定しても、十分信頼性の高い装置とすることが可
能となった。
That is, the side end portion can be stably fixed to the outer frame (60) etc. for the first time due to the open groove (56) and the separation groove (62) formed by the side end (57). Furthermore, even if the frame and the photoelectric conversion device are fixed with resin (63), it is possible to obtain a device with sufficiently high reliability.

またさらにこのパネル例えば40cm X 20cmま
たは60c+n X 20cmを6ケまたは4ヶ直列に
アルミザソ7枠内に組み合わせることによりバソゲージ
さ一ロ、120cm X 40cmのN[!DO規格の
大電力用のパネルを設けることが可能である。
Furthermore, by combining 6 or 4 of these panels in series, for example, 40cm x 20cm or 60c+n x 20cm in an aluminum slat 7 frame, you can create a basso gauge size of 120cm x 40cm. It is possible to provide DO standard high power panels.

またこのNHDO規格のパネルはシーフレックス等の合
わせ接着剤により他のガラス板その他の機械的基板体を
本発明の光電変換装置の反射面側(図面では上側)には
りあわせて複合体とし、風圧、雨等に対し#R械強度の
増加を図ることも有効である。
In addition, this NHDO standard panel is made into a composite body by laminating another glass plate or other mechanical substrate to the reflective surface side (upper side in the drawing) of the photoelectric conversion device of the present invention using a laminating adhesive such as Seaflex. It is also effective to increase #R mechanical strength against rain, etc.

第1図〜第3図において光入射は下側のガラス板よりと
した。しかし本発明はその光の入射側を下側に限定する
ものではない。
In FIGS. 1 to 3, light was incident from the lower glass plate. However, the present invention does not limit the light incident side to the lower side.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光電変換装置のパネルである。 第2図は本発明の光電変換装置の製造工程を示す縦断面
図である。 第3図は本発明の第1図の光電変換装置を拡大して示し
た縦断面図である。 特許出願人 3ノ+2 1t (Bン 、y、 3 Fl
FIG. 1 shows a panel of a photoelectric conversion device of the present invention. FIG. 2 is a longitudinal sectional view showing the manufacturing process of the photoelectric conversion device of the present invention. FIG. 3 is an enlarged longitudinal sectional view of the photoelectric conversion device of FIG. 1 according to the present invention. Patent applicant 3 no + 2 1t (Bn, y, 3 Fl

Claims (1)

【特許請求の範囲】 1、絶縁表面を有する基板上に第1の導電膜と、光照射
により光起電力を発生する非単結晶半導体と、該半導体
上の第2の導電膜とを存し、前記基板上の側部において
、前記基板端より内側に設けられた前記第1の導電膜の
開溝と、該開溝を覆って設けられた非単結晶半導体上の
前記第2の導電膜の側端が前記開溝の上方または内部側
に設けられたことを特徴とする光電変換装置。 2、特許請求の範囲第1項において、基板は透光性を有
するガラスまたは有機樹脂膜よりなり、前記基板上の絶
縁表面上に酸化インジュームまたは酸化スズを主成分と
する透光性の第1の導電膜が設けられたことを特徴とす
る光電変換装置。
[Claims] 1. A first conductive film on a substrate having an insulating surface, a non-single crystal semiconductor that generates a photovoltaic force upon irradiation with light, and a second conductive film on the semiconductor. , an opening groove in the first conductive film provided inside the edge of the substrate on a side portion of the substrate, and a second conductive film on the non-single crystal semiconductor provided covering the opening groove. A photoelectric conversion device characterized in that a side end of is provided above or inside the open groove. 2. In claim 1, the substrate is made of a transparent glass or organic resin film, and a transparent film containing indium oxide or tin oxide as a main component is provided on the insulating surface of the substrate. A photoelectric conversion device characterized in that a conductive film of No. 1 is provided.
JP58207150A 1983-11-04 1983-11-04 Photoelectric converter Granted JPS60100479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207150A JPS60100479A (en) 1983-11-04 1983-11-04 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207150A JPS60100479A (en) 1983-11-04 1983-11-04 Photoelectric converter

Publications (2)

Publication Number Publication Date
JPS60100479A true JPS60100479A (en) 1985-06-04
JPH0566755B2 JPH0566755B2 (en) 1993-09-22

Family

ID=16535039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207150A Granted JPS60100479A (en) 1983-11-04 1983-11-04 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPS60100479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824488A (en) * 1983-06-21 1989-04-25 Sanyo Electric Co., Ltd. Photovoltaic device
US6184058B1 (en) 1997-10-24 2001-02-06 Sharp Kabushiki Kaisha Integrated thin film solar battery and method for fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5996779A (en) * 1982-11-24 1984-06-04 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS6059785A (en) * 1983-09-12 1985-04-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5996779A (en) * 1982-11-24 1984-06-04 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS6059785A (en) * 1983-09-12 1985-04-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824488A (en) * 1983-06-21 1989-04-25 Sanyo Electric Co., Ltd. Photovoltaic device
US6184058B1 (en) 1997-10-24 2001-02-06 Sharp Kabushiki Kaisha Integrated thin film solar battery and method for fabricating the same

Also Published As

Publication number Publication date
JPH0566755B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
JPS60100482A (en) Manufacture of photoelectric converting semicoductor device
JPS60100479A (en) Photoelectric converter
JP3720254B2 (en) Thin film solar cell and manufacturing method thereof
JPS6059784A (en) Manufacture of photoelectric conversion semiconductor device
JPS5996778A (en) Manufacture of photoelectric conversion device
JPH0566754B2 (en)
JPS60100481A (en) Photoelectric converting semiconductor device
JPS60100480A (en) Manufacture of photoelectric converter
JP2585503B2 (en) Laser processing method
JPH06177408A (en) Thin film solar battery and its manufacture
JPH0415631B2 (en)
JPS59155973A (en) Photoelectric conversion semiconductor device
JPH0572113B2 (en)
JPH0620152B2 (en) Photoelectric conversion device
JP2638235B2 (en) Method for manufacturing photoelectric conversion device
JPS5996783A (en) Photoelectric conversion device
JPS6085572A (en) Manufacture of photoelectric conversion semiconductor device
JPH0550152B2 (en)
JPH0758797B2 (en) Method for manufacturing photoelectric conversion semiconductor device
JPS6085574A (en) Manufacture of semiconductor device
JPS59155974A (en) Manufacture of photoelectric converter
JPH03151673A (en) Manufacture of photovoltaic device
JPH0614556B2 (en) Photoelectric conversion device and manufacturing method thereof
JPS6085571A (en) Photoelectric conversion semiconductor device
JPS6158278A (en) Manufacture of semiconductor device