JPH0550152B2 - - Google Patents

Info

Publication number
JPH0550152B2
JPH0550152B2 JP58221171A JP22117183A JPH0550152B2 JP H0550152 B2 JPH0550152 B2 JP H0550152B2 JP 58221171 A JP58221171 A JP 58221171A JP 22117183 A JP22117183 A JP 22117183A JP H0550152 B2 JPH0550152 B2 JP H0550152B2
Authority
JP
Japan
Prior art keywords
electrode
film
crystal semiconductor
metal film
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58221171A
Other languages
Japanese (ja)
Other versions
JPS60113476A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58221171A priority Critical patent/JPS60113476A/en
Publication of JPS60113476A publication Critical patent/JPS60113476A/en
Publication of JPH0550152B2 publication Critical patent/JPH0550152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/30Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
    • H10F19/31Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳现な説明】 〔発明の利甚分野〕 この発明は、光照射により光起電力を発生し埗
る接合を少なくずも぀有するアモルフアス半導
䜓を含む非単結晶半導䜓を透光性絶瞁基板䞊に蚭
けた光電倉換玠子単に玠子ずもいうを耇数個
電気的に盎列接続しお、高い電圧を発生させる半
導䜓装眮の䜜補方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides a non-single-crystal semiconductor including an amorphous semiconductor having at least one junction that can generate photovoltaic force upon irradiation with light on a transparent insulating substrate. The present invention relates to a method for manufacturing a semiconductor device in which a plurality of photoelectric conversion elements (also simply referred to as elements) are electrically connected in series to generate a high voltage.

〔埓来の技術およびその問題点〕[Conventional technology and its problems]

埓来、集積型光電倉換装眮を䜜補する方法の
぀ずしお、レヌザスクラむブによる䜜補方法があ
る。
Conventionally, one of the methods for manufacturing an integrated photoelectric conversion device
One method is to use laser scribing.

このレヌザスクラむブは、コンピナヌタ制埡に
よる正確な圢成およびマスクレスプロセスを可胜
ずし、たたそれにより倧面積の集積型光電倉換装
眮を䜜補するに際しお、極めお量産に適しおお
り、か぀高性胜な補品を䜜るこずができる優れた
䜜補方法であ぀た。
This laser scribe enables precise formation and maskless processing under computer control, making it extremely suitable for mass production and capable of producing high-performance products when manufacturing large-area integrated photoelectric conversion devices. This was an excellent manufacturing method.

しかしながら埓来は、䟋えば透光性導電膜䞊の
半導䜓をレヌザにより陀去しお開溝を圢成する際
に、単玔に半導䜓䞊にレヌザスクラむブを行぀た
堎合、倧気䞭の酞玠ず珪玠ずが反応し、加えお透
光性導電膜の衚面が透光性導電膜ず䜎玚酞化珪玠
ずの混合化合物ずにより絶瞁性にな぀おした぀
た。
However, in the past, for example, when a semiconductor on a transparent conductive film was removed using a laser to form an open groove, if the laser was simply scribed on the semiconductor, oxygen in the atmosphere and silicon would react. In addition, the surface of the transparent conductive film has become insulating due to the mixed compound of the transparent conductive film and lower silicon oxide.

たた、深さ方向の制埡が難しいため半導䜓䞋の
透光性導電膜を損傷しやすか぀た。
Furthermore, since it is difficult to control the depth, the transparent conductive film under the semiconductor is likely to be damaged.

そのため䟋えばその開溝にお電気的連結を圢成
しようずしおも、良奜なコンタクトを䜜るこずが
できなか぀た。
Therefore, for example, even if an attempt was made to form an electrical connection using the open groove, a good contact could not be made.

〔発明の目的〕[Purpose of the invention]

本発明はレヌザスクラむブによ぀お半導䜓装眮
を䜜補するに際し、透光性導電膜䞊の非単結晶半
導䜓を良奜にスクラむブできる䜜補方法を提䟛す
るこずを目的ずする。
An object of the present invention is to provide a manufacturing method that can satisfactorily scribe a non-single crystal semiconductor on a transparent conductive film when manufacturing a semiconductor device by laser scribing.

〔問題を解決する手段〕 䞊蚘の目的を達成するために本願発明は、透光
性導電膜䞊に圢成された非単結晶半導䜓䞊にクロ
ムを䞻成分ずする金属膜を圢成しお、該金属膜に
レヌザ光を照射するこずにより、被照射郚の前蚘
金属膜および該金属膜䞋の前蚘非単結晶半導䜓を
陀去するこずを特城ずしおいる。
[Means for solving the problem] In order to achieve the above object, the present invention forms a metal film containing chromium as a main component on a non-single-crystal semiconductor formed on a transparent conductive film. The method is characterized in that the metal film in the irradiated area and the non-single crystal semiconductor under the metal film are removed by irradiating the film with laser light.

たた本発明は、絶瞁衚面を有する基板䞊の透光
性導電膜にレヌザ光を照射し第の開溝を圢成し
お耇数の第の電極領域を圢成する工皋ず、該第
の開溝および前蚘電極領域䞊に光照射により光
起電力を発生する非単結晶半導䜓ず該非単結晶半
導䜓䞊にクロムを䞻成分ずする金属膜ずを圢成す
る工皋ず、前蚘各第の電極領域䞊の前蚘金属膜
を介しお該膜䞋の前蚘非単結晶半導䜓局にレヌザ
光を照射するこずにより、被照射郚の前蚘金属膜
および該金属膜䞋の前蚘非単結晶半導䜓を陀去し
お前蚘第の電極を露呈させお第の開溝を圢成
する工皋ず、残存した前蚘金属膜䞊および前蚘第
の開溝内に導電膜を圢成する工皋ず、前蚘導電
膜にレヌザ光を照射しお第の開溝を圢成しお耇
数の第の電極領域に分離する工皋ずを有し、こ
れにより、前蚘第の電極領域の各々に、前蚘第
の電極、非単結晶半導䜓局、金属膜、第の電
極が積局された玠子が圢成されるずずもに、前蚘
玠子の内の぀の玠子の前蚘露呈された第の電
極䞊に該玠子ず隣接する玠子の第の電極が延圚
しお玠子間が盎列接続されたこずを特城ずしおい
る。
The present invention also provides a step of forming a plurality of first electrode regions by irradiating a transparent conductive film on a substrate having an insulating surface with a laser beam to form first grooves, and forming a plurality of first electrode regions. forming a non-single-crystal semiconductor that generates photovoltaic force by light irradiation on the groove and the electrode region, and a metal film containing chromium as a main component on the non-single-crystal semiconductor; and on each of the first electrode regions. By irradiating the non-single-crystal semiconductor layer under the film through the metal film, the metal film in the irradiated area and the non-single-crystal semiconductor layer under the metal film are removed. forming a conductive film on the remaining metal film and within the second groove; and irradiating the conductive film with a laser beam. forming a third trench to separate the plurality of second electrode regions, whereby the first electrode and the non-single crystal semiconductor layer are separated into each of the first electrode regions. , a metal film, and a second electrode are formed, and a second electrode of an adjacent element is placed on the exposed first electrode of one of the elements. It is characterized by extending and connecting the elements in series.

たた本発明は、絶瞁衚面を有する基板䞊の透光
性導電膜にレヌザ光を照射し第の開溝を圢成し
お耇数の第の電極領域を圢成する工皋ず、該第
の開溝および前蚘電極領域䞊に光照射により光
起電力を発制する非単結晶半導䜓ず該非単結晶半
導䜓䞊にクロムを䞻成分ずする金属膜ずを圢成す
る工皋ず、前蚘各第の電極領域䞊の前蚘金属膜
を介しお該膜䞋の前蚘非単結晶半導䜓局にレヌザ
光を照射するこずにより、被照射郚の前蚘金属膜
および該金属膜䞋の前蚘非単結晶半導䜓を陀去し
お前蚘第の電極を露呈させお第の開溝を圢成
する工皋ず、残存した前蚘金属膜を陀去する工皋
ず、残存した前蚘非単結晶半導䜓䞊および前蚘第
の開溝内に導電膜を圢成する工皋ず、前蚘導電
膜にレヌザ光を照射しお第の開溝を圢成しお耇
数の第の電極領域に分離する工皋ずを有し、こ
れにより、前蚘第の電極領域の各々に、前蚘第
の電極、非単結晶半導䜓局、第の電極が積局
された玠子が圢成されるずずもに、前蚘玠子の内
の぀の玠子の前蚘露呈された第の電極䞊に該
玠子ず隣接する玠子の第の電極が延圚しお玠子
間が盎列接続されたこずを特城ずしおいる。
The present invention also provides a step of forming a plurality of first electrode regions by irradiating a transparent conductive film on a substrate having an insulating surface with a laser beam to form first grooves, and forming a plurality of first electrode regions. forming a non-single-crystalline semiconductor that generates photovoltaic force by light irradiation on the groove and the electrode region, and a metal film containing chromium as a main component on the non-single-crystalline semiconductor; and each of the first electrode regions. By irradiating the non-single crystal semiconductor layer below the film through the metal film above, the metal film in the irradiated area and the non-single crystal semiconductor under the metal film are removed. forming a second trench by exposing the first electrode; removing the remaining metal film; and forming a conductive film on the remaining non-single crystal semiconductor and in the second trench. and a step of irradiating the conductive film with a laser beam to form a third trench to separate the conductive film into a plurality of second electrode regions. An element in which the first electrode, a non-single crystal semiconductor layer, and a second electrode are stacked is formed on each of the elements, and a layer is formed on the exposed first electrode of one of the elements. The device is characterized in that the second electrodes of adjacent devices extend to connect the devices in series.

本発明における玠子の配眮、倧きさ、圢状は蚭
蚈仕様によ぀お決められる。しかし本発明の内容
を簡単にするため、以䞋の詳现な説明においお
は、第の玠子の䞋偎基板偎の第の電極
ず、その右隣りに配眮した第の玠子の第の電
極半導䜓䞊即ち基板から離れた偎ずを電気的
に盎列接続させた堎合を基ずしお蚘す。
The arrangement, size, and shape of elements in the present invention are determined by design specifications. However, in order to simplify the content of the present invention, in the following detailed description, the first electrode on the lower side (substrate side) of the first element and the second electrode of the second element disposed on the right side thereof will be described. This description is based on the case where the electrodes (on the semiconductor, that is, on the side away from the substrate) are electrically connected in series.

本発明は非単結晶半導䜓の䞊面に耐熱性、䜎熱
䌝導率の導䜓䟋えばクロムを䞻成分ずする金属を
蚭け、これを介しおその䞋の半導䜓を遞択的にレ
ヌザスクラむブにより陀去する際、透光性導電膜
は䜕等損傷を受けるこずなく䜜補が可胜であるず
いう事実を甚いお半導䜓装眮ずくに光電倉換装眮
の連結郚を䜜補に有効である。
The present invention provides a heat-resistant, low-thermal-conductivity conductor, such as a metal mainly composed of chromium, on the upper surface of a non-single-crystal semiconductor, and when the semiconductor underneath is selectively removed by laser scribing through the conductor, light is transmitted through the conductor. The fact that a conductive film can be manufactured without any damage is effective for manufacturing a connecting portion of a semiconductor device, particularly a photoelectric conversion device.

すなわち本発明は実隓的に芋いだしたもので、
この半導䜓䞊にクロムの劂き断熱し䜎熱䌝導床に
よる保枩性が倧きく、か぀耐熱性の非酞化性材料
を圢成しおおくず、レヌザスクラむブによる化孊
反応が珪玠ず透光性導電膜ずの間で起きず、熱に
より珪玠のみを遞択的に気化させるこずが条件に
よ぀お可胜であるこずが刀明した。
In other words, the present invention was discovered experimentally,
If a heat-insulating, non-oxidizing material such as chromium, which has high heat retention properties due to its low thermal conductivity and heat resistance, is formed on this semiconductor, the chemical reaction caused by laser scribing will occur between the silicon and the transparent conductive film. It has been found that under certain conditions, it is possible to selectively vaporize only silicon using heat, without causing this phenomenon.

このため、透光性導電膜䞊面も実質的に䜕等の
損傷もなく、導電性を有せしめるこずが可胜にな
぀た。
Therefore, the upper surface of the light-transmitting conductive film is also substantially free from any damage and can be rendered conductive.

このクロムは昇華性、すなわちレヌザ照射によ
り気化しやすくレヌザ加工に適しおいる。
This chromium is sublimable, that is, easily vaporized by laser irradiation, making it suitable for laser processing.

たたクロムは熱䌝導率が金属䞭でも䜎いものの
代衚䟋である。さらに半導䜓にオヌム接觊をし、
加えお宀枩〜150℃の高枩長期䜿甚に安定のため
電極−半導䜓界面での劣化がないずいう特長を有
する。
Furthermore, chromium is a typical example of metals with low thermal conductivity. Furthermore, make ohmic contact with the semiconductor,
In addition, it is stable in long-term use at high temperatures ranging from room temperature to 150°C, so it has the advantage of no deterioration at the electrode-semiconductor interface.

透光性導電膜−半導䜓−クロムずいう構造にお
いお、珪玠を䞻成分ずする半導䜓は昇華性を有
し、この䞊のクロムは耐酞化性ならびに高融点で
あるため耐熱性を有する。加えおレヌザ光に察す
る反射光が少ないため、照射光によりクロム自䜓
ずその䞋の半導䜓をも十分高い枩床に昇枩させる
こずができる。
In the structure of transparent conductive film-semiconductor-chromium, the semiconductor whose main component is silicon has sublimation properties, and the chromium thereon has oxidation resistance and a high melting point, so it has heat resistance. In addition, since there is little reflected light from the laser beam, the chromium itself and the semiconductor underneath can be heated to a sufficiently high temperature by the irradiation light.

たた熱䌝導率が䜎いため、この熱を暪方向に䌝
播しお攟散しおしたうこずがない。
Furthermore, since the thermal conductivity is low, this heat is not propagated laterally and dissipated.

すなわちクロムは高融点、䜎熱䌝導床を有する
ため、局郚的に高枩たで蓄熱するこずが可胜であ
る。
That is, since chromium has a high melting point and low thermal conductivity, it is possible to locally store heat up to a high temperature.

それゆえ、照射郚での珪玠を気化枩床以䞊ずし
お気化させ、はじけるように倖に飛び散る。
Therefore, the silicon in the irradiated area is heated to a temperature higher than the vaporization temperature and is vaporized, causing it to burst outward.

この時、珪玠よりも気化しにくい透光性導電膜
はそのたたその䞋に衚面を露呈しお残存する。
At this time, the light-transmitting conductive film, which is more difficult to vaporize than silicon, remains as it is with its surface exposed underneath.

加えお珪玠の気化の気化熱によりこの衚面が露
呈しおも透光性導電膜は枩床により倉質しおした
うこずがない。
In addition, even if this surface is exposed due to the heat of vaporization of silicon, the light-transmitting conductive film will not change in quality due to temperature.

かかる構成によ぀お、第の玠子および第の
玠子を連結するための第の開溝は、非単結晶半
導䜓を陀去し぀぀も、第の玠子の第の電極で
ある透光性導電膜はレヌザスクラむブにより陀去
せずに䜜補するこずができた。
With this configuration, the second groove for connecting the first element and the second element can be formed by removing the non-single crystal semiconductor while also forming the first electrode of the first element. The conductive film could be fabricated by laser scribing without being removed.

その結果、第の玠子の第の電極の䞊面に第
の玠子の第の電極を構成する導電膜を延圚さ
せおコンタクトせしめ、良奜な連結郚を構成させ
るこずができた。
As a result, the conductive film constituting the second electrode of the second element was extended and brought into contact with the upper surface of the first electrode of the first element, thereby forming a good connection part.

以䞋に図面に埓぀お本発明の詳现を瀺す。 The details of the invention are shown below with reference to the drawings.

実斜䟋  第図は本発明の補造工皋を瀺す瞊断面図であ
る。
Example 1 FIG. 1 is a longitudinal sectional view showing the manufacturing process of the present invention.

図面においお絶瞁衚面を有する透光性基板䟋
えばガラス板䟋えば厚さ0.6〜2.2mm䟋えば1.2
mm、長さ〔図面では巊右方向〕60cm、巟20cm、
透光性有機暹脂たたはこの暹脂䞊に窒化珪玠膜が
300〜2000Åの厚さに圢成された耇合有機暹脂を
甚いた。
In the drawings, a transparent substrate 1 having an insulating surface, such as a glass plate (for example, a thickness of 0.6 to 2.2 mm, for example, 1.2
mm, length (left and right in the drawing) 60cm, width 20cm),
Transparent organic resin or silicon nitride film on this resin
A composite organic resin formed to a thickness of 300 to 2000 Å was used.

さらにこの䞊面に党面にわた぀お透光性導電膜
䟋えばITO酞化むンゞナヌム酞化スズ混合物、
即ち酞化スズを酞化むンゞナヌム䞭に10重量添
加した膜玄1500ÅSnO2200〜400Åたた
は北玠等のハロゲン元玠が添加された酞化スズを
䞻成分ずする透光性導電膜1500〜20000Åを
真空蒞着法、LPCVD法、プラズマCVD法たたは
スプレヌ法により圢成させた。
Furthermore, a translucent conductive film such as ITO (indium tin oxide mixture) is applied to the entire upper surface.
In other words, a film in which 10 wt. ~20,000 Å) was formed by vacuum evaporation, LPCVD, plasma CVD, or spraying.

この埌、YAGレヌザ加工機日本レヌザ補波
長1.06Όたたは0.58Όにより出力〜3W焊点距
離40mm加え、スポツト埄20〜70Όφ代衚的には
50Όφをマむクロコンピナヌタにより制埡した。
さらにこの照射レヌザ光を走査させお、スクラむ
ブラむンである第の開溝を圢成させ、各玠
子領域に第の電極を䜜補した。
After this, an output of 1 to 3 W (focal length 40 mm) is applied using a YAG laser processing machine (wavelength 1.06 ÎŒ or 0.58 ÎŒ, manufactured by Nippon Laser), and the spot diameter is typically 20 to 70 Όφ.
50Όφ was controlled by a microcomputer.
Furthermore, this irradiated laser beam was scanned to form first grooves 13 as scribe lines, and first electrodes 2 were produced in each element region 31, 11.

この第のレヌザスクラむブにより圢成された
第の開溝は、巟玄50Ό長さ20cm深さは第
の透光性導電膜の電極それぞれを完党に切断する
皋床ずし、各々の玠子領域に電気的に分離しお第
の電極ずした。
The first open groove 13 formed by this first laser scribe has a width of approximately 50Ό and a length of 20cm.
Each of the electrodes of the light-transmitting conductive film was completely cut off, and each element region was electrically separated to form a first electrode.

この埌、この電極、開溝の䞊面に公知の
プラズマCVD法たたは光CVD法により光照射に
より光起電力を発生させる非単結晶半導䜓局を
0.2〜1.0Ό代衚的には0.5Όの厚さに圢成させた。
After that, a non-single crystal semiconductor layer 3 is formed on the upper surface of the electrode 2 and the groove 13 by a known plasma CVD method or optical CVD method to generate a photovoltaic force by light irradiation.
It was formed to a thickness of 0.2 to 1.0Ό, typically 0.5Ό.

その代衚䟋は型半導䜓SixC1-x0.8箄
100Å−型アモルフアスたたはセミアモルフア
スのシリコン半導䜓玄0.5Ό−型の埮結晶
玄500Åを有する半導䜓珪玠さらにこの䞊に
SixC1-x0.9箄50Åを積局させお䞀぀のPIN接
合を有する非単結晶半導䜓、たたは型半導䜓
SixC1-x−型、型、型Si半導䜓−型
SixGe1-x半導䜓−型Si半導䜓よりなる぀の
PIN接合ず぀のPN接合を有するタンデム型の
PINPIN
PIN接合の半導䜓である。
A typical example is a P-type semiconductor (SixC 1-x x=0.8 approx.
100 Å) - I-type amorphous or semi-amorphous silicon semiconductor (approximately 0.5 ÎŒ) - Semiconductor silicon having N-type microcrystals (approximately 500 Å)
SixC 1-x Non-single crystal semiconductor with x=0.9 approximately 50 Å stacked and one PIN junction, or P-type semiconductor (SixC 1-x ) - I type, N type, P type Si semiconductor - I type
SixGe 1-x semiconductor - two types of N-type Si semiconductor
Tandem type with PIN junction and one PN junction
PINPIN...This is a semiconductor 3 of PIN junction.

かかる非単結晶半導䜓を第の電極および開
溝のすべおを芆぀お党面にわた぀お均䞀の膜厚で
圢成させた。
The non-single crystal semiconductor 3 was formed to have a uniform thickness over the entire surface, covering all the first electrodes and the grooves.

さらにこの半導䜓䞊面にクロムを䞻成分ずする
被膜以䞋クロムずいうを電子ビヌム蒞着法
により成膜した。
Furthermore, a film 4 containing chromium as a main component (hereinafter referred to as chromium) was formed on the upper surface of this semiconductor by electron beam evaporation.

クロムは導電率が䜎いので膜厚は厚い方が望た
しいが、あたり厚くするず応力歪みを生じやす
い。
Since chromium has low conductivity, it is desirable that the film be thick, but if it is too thick, stress distortion tends to occur.

そこでスクラむブ時のレヌザの出力範囲に応じ
お、膜厚を300〜4000Åずした。
Therefore, the film thickness was set to 300 to 4000 Å depending on the laser output range during scribing.

次に、第図に瀺されるごずく、第の開溝
の巊方向偎第の玠子偎にわた぀お第
の開溝を第のレヌザスクラむブ工皋により
圢成させた。
Next, as shown in FIG.
The open grooves 18 were formed by a second laser scribing process.

この第の開溝は図においおは第の玠子
の第の電極の偎面より30Ό以䞊巊偎であれ
ばよく、30〜200Ό第の玠子偎にシフトさせた。
即ち第の玠子の第の電極䜍眮䞊にわた぀お蚭
け、第の電極の䞀郚′が補造䞊のマヌゞンを
䞎えるため残存させおいるこずが特城である。
This second open groove is shown in the second element 11.
It is sufficient that the position is 30 Ό or more to the left of the side surface 16 of the first electrode, and it is shifted by 30 to 200 Ό toward the first element side.
That is, it is characterized in that it is provided over the first electrode position of the first element, and a portion 9' of the first electrode is left to provide a manufacturing margin.

かくのごずき構造、すなわち、透光性導電膜
−半導䜓−クロムにおいお、珪玠を䞻成分ずす
る半導䜓は昇華性を有し、この䞊のクロムは耐酞
化性および高融点であるため耐熱性を有する。加
えおレヌザ光に察する反射光が少ないため、照射
光によりクロム自䜓ずその䞋の半導䜓をも十分高
い枩床に昇枩させるこずができる。
Such a structure, that is, the transparent conductive film 2
- Semiconductor 3 - In chromium, the semiconductor whose main component is silicon has sublimation properties, and the chromium above it has oxidation resistance and a high melting point, so it has heat resistance. In addition, since there is little reflected light from the laser beam, the chromium itself and the semiconductor underneath can be heated to a sufficiently high temperature by the irradiation light.

たた熱䌝導率が䜎いため、この熱を暪方向に䌝
播しお攟散しおしたうこずがなく、そしお照射郚
での珪玠を気化枩床以䞊ずしお気化させ、はじけ
るように倖に飛び散る。この時、珪玠よりも気化
しにくい透光性導電膜はそのたたその䞋に衚面を
露呈しお残存した。
In addition, since the thermal conductivity is low, this heat does not propagate laterally and dissipate, and the silicon in the irradiated area is vaporized at a temperature higher than the vaporization temperature and scatters outward like a burst. At this time, the light-transmitting conductive film, which is more difficult to vaporize than silicon, remained as it was with its surface exposed underneath.

加えお珪玠の気化の気化熱によりこの衚面が露
呈しおも透光性導電膜は枩床により倉質しおし
たうこずがなか぀た。
In addition, even when this surface was exposed 8 due to the heat of vaporization of silicon, the light-transmitting conductive film did not change in quality due to temperature.

かくしお第図に瀺すごずく、透光性導電膜
の䞊面を露呈させるこずが可胜ずな぀た。
Thus, as shown in FIG.
It has become possible to expose the upper surface 8 of.

かくしお第の開溝を、第図に瀺され
るごずく、第の玠子の第の電極の内
郚に入぀お䜜補した。
Thus, the second open groove 18 was formed by entering the interior 9 of the first electrode 37 of the first element 31, as shown in FIG. 1B.

この図面では第および第の開溝
の䞭心間を100Όずらしおいる。
In this drawing, the first and second open grooves 13, 18
The centers of the two are shifted by 100Ό.

かくしお第の開溝は第の電極の䞊衚面
を露呈させた。
The second open groove 18 thus exposed the upper surface 8 of the first electrode.

もちろん、レヌザスクラむブにおける平均出力
を倧きくしおこの透光性導電膜をも陀去しおした
うこずにより透光性導電膜の偎衚面たたは偎衚面
ず䞊衚面端郚を〜5Όの巟で露呈半導䜓の方
が透光性導電膜より気化しやすいためさせるこ
ずも可胜である。
Of course, by increasing the average power in laser scribing and removing this transparent conductive film, the side surface or side surface and upper surface edge of the transparent conductive film are exposed in a width of 1 to 5 ÎŒm ( This is also possible because semiconductors are more easily vaporized than transparent conductive films.

さらにこの基板を垌北酞48HFを10倍の氎
で垌釈した1/10HFをここでは甚いたにお10秒
〜分代衚的には30秒間超音波を加えお゚ツチン
グしおもよい。
Furthermore, this substrate may be etched with dilute hydrofluoric acid (1/10HF, which is 48% HF diluted with 10 times water, was used here) for 10 seconds to 1 minute, typically by applying ultrasonic waves for 30 seconds. good.

第図においおは、このクロムをそのたた残存
させ、第の電極の䞀郚を構成させた。
In FIG. 1, this chromium was left as is and formed part of the second electrode.

さらにこの䞊面に第図に瀺されるごずく、
裏面の第の電極および連結郚コネクタ
を圢成した。
Furthermore, as shown in FIG. 1C on this top surface,
Second electrode 6 and connecting part (connector) 3 on the back side
0 was formed.

この連結郚を構成させる導䜓ずしおは、導電性
酞化膜′を圢成した。
Conductive oxide films 45, 45' were formed as conductors constituting this connecting portion.

この導電性酞化膜ずしお、ここではITO酞
化むンゞナヌム酞化スズを䞻成分ずする混合物
を圢成した。この導電性酞化膜ずしお酞化む
ンゞナヌムを䞻成分ずしお圢成させるこずも可胜
である。
This conductive oxide film 7 is made of ITO (a mixture whose main components are indium oxide and tin oxide).
45 was formed. It is also possible to form this conductive oxide film using indium oxide as a main component.

このITOを500〜3000Å䟋えば1500Åの厚さに
電子ビヌム蒞着法、CVD法、PCVD法で圢成せ
しめるず、他の金属に比べお被膜圢成の際きわめ
おたわりこみが起きやすい。このため第の開溝
の内郚に十分入り、透光性導電膜の底面
ず電気的によく連結させコンタクト構成が可胜
ずな぀た。
When this ITO is formed to a thickness of 500 to 3000 Å, for example 1500 Å, by electron beam evaporation, CVD, or PCVD, wrapping is more likely to occur during film formation than other metals. For this reason, it was able to fully enter the second groove 18 and electrically connect well with the bottom surface 8 of the transparent conductive film 37, thereby making it possible to form a contact structure.

即ち導電性酞化膜はこのコネクタを構成す
る導䜓が最初から酞化物ずしおの化合物を構成し
おいるため、半導䜓䞭に連結郚によりマむグレ
むトするこずがなく、たた透光性導電膜ず導
電性酞化膜ずの界面に酞化反応により絶瞁物
が䜜補されるこずなく高信頌性を有せしめるこず
ができた。
In other words, the conductive oxide film does not migrate into the semiconductor 3 due to the connection part because the conductor constituting the connector 30 forms a compound as an oxide from the beginning, and the conductive oxide film does not migrate into the semiconductor 3 due to the connection part. High reliability could be achieved without forming an insulator at the interface with the conductive oxide film 30 due to oxidation reaction.

この導電性酞化膜䞊にニツケルを100〜1000Å
の厚さに真空蒞着をさせ倖郚接続を促進するこず
は有効である。
Nickel is deposited on this conductive oxide film to a thickness of 100 to 1000 Å.
It is effective to perform vacuum evaporation to a thickness of 100 mL to facilitate external connections.

本発明の実斜䟋においお、クロムの䞋の半導䜓
ずの界面に反射性金属の銀、アルミニナヌムを50
〜500Åの厚さに薄く圢成させ、光電倉換装眮の
倉換効率の向䞊を図るのは有効であ぀た。
In the embodiment of the present invention, reflective metals such as silver and aluminum are added at the interface with the semiconductor under the chromium.
It was effective to improve the conversion efficiency of the photoelectric conversion device by forming it thinly to a thickness of ~500 Å.

次にこの第の電極を構成させるため、第の
開溝を第の玠子領域にわた぀お蚭け
た。
Next, in order to configure this second electrode, a third groove 20 was provided across the first element region 31.

即ち、第の玠子の開攟電圧が発生する電極
間の電気的分離をレヌザ光20〜100Όφ代
衚的には50Όφを第の開溝より玄50Ό離間
せしめお圢成させた。即ち第の開溝の䞭心
は第の開溝の䞭心に比べお30〜200Ό代衚
的には100Όの深さに第の玠子偎にわた぀お蚭
けおいる。
That is, the electrode 3 where the open circuit voltage of the first element is generated
Electrical isolation between the grooves 9 and 38 was formed by laser beams of 20 to 100 .mu..phi. (typically 50 .mu..phi.) at a distance of about 50 .mu. from the second open groove 18. That is, the center of the third open groove 20 is provided on the first element side at a depth of 30 to 200 ÎŒm, typically 100 ÎŒm, compared to the center of the second open groove 30.

第図においお、かくのごずく第の電極
を第のレヌザスクラむブのレヌザ光を䞊方より
照射しお切断分離しお開溝を圢成した堎合を
瀺しおいる。
In FIG. 1C, the second electrode 4 is thus
This figure shows the case where the laser beam of the third laser scribe is irradiated from above to cut and separate the grooves 20 to form the open grooves 20.

かかる第の開溝においおも耐熱性導䜓のクロ
ムにより珪玠に加えられた熱゚ネルギをずじ
こめるため、第の開溝の圢成ず同様にレヌザ照
射郚分の半導䜓のすべおが陀去され、第の電極
の衚面が露呈される。
In order to contain the thermal energy applied to the silicon by the heat-resistant conductor chromium 46 in the third groove, all of the semiconductor in the laser irradiated part is removed in the same manner as in the formation of the second groove, and The surface of the electrode is exposed.

この時、珪玠の気化がはじけるように行われる
ため、第の開溝の半導䜓の偎呚蟺は倚結晶化し
おシペヌトするこずなく正垞に玠子を䜜るこ
ずが可胜ずな぀た。
At this time, since the vaporization of silicon was performed in a bursting manner, the semiconductor side periphery of the third trench became polycrystalline and it became possible to normally fabricate the element 31 without being shot.

この半導䜓の露呈に察しお偎面を酞化しおパツ
シベむシペンをするこずは有効である。
It is effective to perform passivation by oxidizing the side surfaces of the exposed semiconductor.

かくしお第図に瀺されるごずく、耇数の玠
子を連結郚で盎列接続する光電倉
換装眮を䜜るこずができた。
In this way, as shown in FIG. 1C, a photoelectric conversion device in which a plurality of elements 31 and 11 were connected in series at the connecting portion 12 could be manufactured.

第図はさらに本発明を光電倉換装眮ずしお
完成させんずしたものであり、即ちパツシベむシ
ペン膜ずしおプラズマ気盞法により窒化珪玠膜
を500〜2000Åの厚さに均䞀に圢成させ、湿気
等の吞着による各玠子間のリヌク電流の発生をさ
らに防いだ。
FIG. 1D shows an attempt to further complete the present invention as a photoelectric conversion device, that is, a silicon nitride film 2 is made by plasma vapor phase method as a passivation film.
1 was uniformly formed to a thickness of 500 to 2000 Å to further prevent leakage current between each element due to adsorption of moisture, etc.

さらに倖郚匕出し端子を呚蟺郚にお蚭けた。 Furthermore, an external lead-out terminal was provided at the peripheral portion 5.

これらにポリむミド、ポリアミド、カプトンた
たぱポキシ等の有機暹脂を充填した。
These were filled with an organic resin 22 such as polyimide, polyamide, Kapton or epoxy.

かくしお照射光により発生した光起電力は
底面コンタクトより矢印のごずく第の玠子
の第の電極より第の玠子の第の電極に流
れ、盎列接続をさせるこずができた。
In this way, the photovoltaic force generated by the irradiation light 10 flows from the first electrode of the first element to the second electrode of the second element through the bottom contact as shown by the arrow 32, thereby making it possible to connect them in series.

そしお、セグメントが10.31.05cmの倉換
効率を有する堎合、10cm×10cmのパネルにお8.6
理論的には9.4になるが、12段連結の抵抗
により実効倉換効率が䜎䞋したAM1〔100
cm2〕にお、0.83Wの出力電力を有せしめる
こずができた。
And if the segment has a conversion efficiency of 10.3% (1.05cm), then in a 10cm x 10cm panel 8.6
% (Theoretically it would be 9.4%, but the effective conversion efficiency decreased due to the resistance of the 12-stage connection) (AM1 [100m
W/cm 2 ]), it was possible to have an output power of 0.83W.

さらにこのパネルを150℃の高枩攟眮テストを
行うず1000時間を経お10以䞋䟋えばパネル数20
枚にお最悪、1.5の䜎䞋しかみられな
か぀た。
Furthermore, when this panel is subjected to a high temperature storage test at 150℃, the percentage decreases to below 10% after 1000 hours, for example, 20 panels.
The worst case scenario was a decline of only 4% (X = 1.5%).

これは埓来のマスク方匏を甚いお信頌性テスト
を同䞀条件にお行う時、10時間で動䜜䞍胜パネル
数が16枚も発生しおしたうこずを考えるず、驚異
的な倀であ぀た。
This is an astonishing value considering that when conducting a reliability test under the same conditions using the conventional mask method, as many as 16 panels would become inoperable in 10 hours.

実斜䟋  第図は本発明の他の光電倉換装眮の䜜補方法
を瀺す。その工皋を第図ず察応させお略蚘す
る。
Example 2 FIG. 2 shows a method for manufacturing another photoelectric conversion device of the present invention. The process will be briefly described in correspondence with FIG.

第図においお、基板䞊の透光性導電膜
、第の開溝、さらに非単結晶半導䜓を第図
ず同様の方法にお䜜補した。
In FIG. 2A, the transparent conductive film 2 on the substrate 1, the first groove, and the non-single crystal semiconductor were fabricated in the same manner as in FIG.

次に、熱䌝導率が䜎く高融点を有する材料、即
ちレヌザ光の熱をため蟌む材料であ぀お、半導䜓
ず反応しにくい材料をこの䞊面に被膜ずしお圢
成した。
Next, a material having low thermal conductivity and a high melting point, that is, a material that stores the heat of the laser beam and does not easily react with the semiconductor, was formed as a coating 4 on the upper surface.

被膜は導䜓においおはクロムを䞻成分ずする
金属を電子ビヌム蒞着法、絶瞁䜓においおは窒化
珪玠をプラズマ気盞法により圢成した。
The coating 4 was formed by electron beam evaporation of a metal containing chromium as a main component for the conductor, and by plasma vapor deposition of silicon nitride for the insulator.

さらに第図ず同様にレヌザスクラむブによ
り第の開溝を圢成し、第の電極の衚
面を露呈させた。
Further, as in FIG. 1B, a second groove 18 was formed by laser scribing to expose the surface 8 of the first electrode 37.

加えお第図に瀺すごずき被膜を゚ツチン
グ法により陀去した。
In addition, the coating 4 shown in FIG. 2B was removed by etching.

クロムの゚ツチングは硝酞、第セリナヌム、
アンモニナヌムず過塩玠酞ず氎ずの混合液によ
り、たた窒化珪玠の゚ツチングに熱燐酞により実
斜した。
For etching chromium, use nitric acid, cerium chloride,
Etching was carried out using a mixture of ammonium, perchloric acid, and water, and hot phosphoric acid for etching silicon nitride.

かくしお第図を埗た。 Thus, Figure 2B was obtained.

さらにこの䞊面に第の電極ずしお導電性酞化
物′をITOの電子ビヌム蒞着法により
䜜補した。さらにクロムを䞻成分ずする金属
′を䜜補した。
Furthermore, conductive oxides 45 and 45' were formed as second electrodes on this upper surface by electron beam evaporation of ITO. In addition, metals whose main component is chromium 4
6,46' was produced.

かかる埌、第図に瀺すごずき第の開溝を
圢成した。するずこの第の開溝は半導䜓を
損傷させるこずなく近傍を遞択的に陀去するこず
ができた。加えおこの衚面により半導䜓の開溝䞊
郚が薄く酞化され、酞化で絶瞁物のパツシベ
むシペンが可胜ずな぀た。
After this, a third open groove as shown in FIG. 2C was formed. This third trench 20 was then able to selectively remove the vicinity without damaging the semiconductor. In addition, the upper part of the groove in the semiconductor was thinly oxidized by this surface, and the oxidation made it possible to passivate the insulator 34.

さらに第図は、第図に瀺す図面ずパツ
シベむシペン甚窒化珪玠膜およびコヌテむング絶
瞁膜を䜜補した。
Further, in FIG. 2D, a silicon nitride film for a passive basin and a coating insulating film 22 were fabricated as shown in FIG. 1D.

たたこのパネル䟋えば40cm×60cmたたは60cm×
20cm、40cm×120cmをケ、ケたたはケをア
ルミサツシたたは炭玠繊維枠内に組み合わせるこ
ずによりパツケヌゞされ、120cm×40cmのNEDO
芏栌の倧電力甚のパネルを蚭けるこずが可胜であ
る。
Also this panel for example 40cm x 60cm or 60cm x
A 120cm x 40cm NEDO is packaged by combining 2, 4 or 1 piece of 20cm, 40cm x 120cm in an aluminum sash or carbon fiber frame.
It is possible to provide panels for standard high power.

たたこのNEDO芏栌のパネルはシヌフレツク
スにより北玠系保護膜を本発明の光電倉換装眮の
反射面偎図面では䞊偎にはりあわせお合わ
せ、颚圧、雚等に察し機械匷床の増加を図るこず
も有効である。
In addition, it is also effective for this NEDO standard panel to increase its mechanical strength against wind pressure, rain, etc. by attaching a fluorine-based protective film using Seaflex to the reflective surface side (upper side in the drawing) of the photoelectric conversion device of the present invention. It is.

〔具䜓䟋〕〔Concrete example〕

第図の図面に埓぀おこの具䜓䟋を瀺す。 A specific example of this will be shown according to the drawing in FIG.

即ち透光性基板ずしお化孊匷化ガラス厚さ
1.1mm、長さ10cm、巟10cmを甚いた。
That is, the thickness of chemically strengthened glass as the transparent substrate 1
1.1 mm, length 10 cm, and width 10 cm were used.

さらにその䞊にテクスチダヌ化繊維構造を有
するされたCTFをITO1600ÅSnO2300Åを電
子ビヌム蒞着法により䜜補した。
Furthermore, a textured CTF (having a fiber structure) was fabricated on top of this by electron beam evaporation using ITO 1600 Å + SnO 2 300 Å.

さらにこの埌、第の開溝をスポツト埄50Ό、
出力1WのYAGレヌザをマむクロコンピナヌタに
より制埡しお分の走査速床にお䜜補した。
Furthermore, after this, the first open groove was made with a spot diameter of 50Ό.
A YAG laser with an output of 1 W was controlled by a microcomputer at a scanning speed of 3 m/min.

さらにパネルの端郚をレヌザ光出力1Wにお第
の電極甚半導䜓をガラス端より1.5mm内偎で長
方圢に走査し第図′に察応、パネルの枠
ず玠子ずの電気的短絡を防止した。
Furthermore, the first electrode semiconductor was scanned in a rectangular shape at the edge of the panel at a position 1.5 mm inside the glass edge using a laser beam output of 1 W (corresponding to Fig. 1 13') to create an electrical short circuit between the panel frame and the element. was prevented.

玠子領域はmm巟ずした。 The element regions 31 and 11 were 8 mm wide.

この埌公知のPCVD法により第図に瀺した
PIN接合を぀有する非単結晶半導䜓を䜜補し
た。
After this, the well-known PCVD method was used to create the image shown in Figure 2.
A non-single crystal semiconductor with one PIN junction was fabricated.

その厚さは玄0.6Όであ぀た。 Its thickness was approximately 0.6ÎŒ.

さらに、クロムを電子ビヌム蒞着法により
3000Åの厚さに䜜補した。かかる埌、第の開溝
より100Ό第の玠子をシフトさせお、スポ
ツト埄50Όφにお出力1W、走査速床30mm分にお
倧気䞭におレヌザスクラむブにより第の開溝
を第図に瀺すごずく䜜補した。
Furthermore, chromium 4 was added by electron beam evaporation method.
It was fabricated to a thickness of 3000 Å. After this, the first element 31 is shifted 100ÎŒ from the first groove, and the second groove 1 is formed by laser scribing in the atmosphere with a spot diameter of 50Όφ, an output of 1W, and a scanning speed of 30mm/min.
No. 8 was prepared as shown in FIG. 1B.

さらにこの基板党䜓を1/10HFに30秒浞し、開
溝郚の酞化物絶瞁物を陀去し、透光性導電膜の衚
面を露呈させた。さらにこの党䜓に導電性酞化
膜ずしおITOを電子ビヌム蒞着法により平均膜厚
1050Åに、電子ビヌム蒞着法により䜜補しお、第
の電極の䞀郚′を圢成さ
せ、加えおコネクタを構成せしめた。
Further, the entire substrate was immersed in 1/10HF for 30 seconds to remove the oxide insulator in the open grooves and expose the surface 8 of the transparent conductive film. Furthermore, ITO was applied as a conductive oxide film to the entire surface using electron beam evaporation to give an average film thickness.
It was fabricated to a thickness of 1050 Å by electron beam evaporation to form parts 45 and 45' of the second electrodes 38 and 39, and in addition, the connector 30 was formed.

さらに第の開溝を同様に第のレヌザス
クラむブにより第の開溝より100Όのわた
り深さに第の玠子偎にシフトしお圢成さ
せ、第図を埗た。レヌザ光は出力1Wずし、
他は第の開溝の䜜補ず同䞀条件ずした。
Furthermore, a third open groove 20 was similarly formed by a third laser scribe to a depth of 100 ÎŒm from the second open groove 18, shifted toward the first element 31 side, to obtain FIG. 1C. The laser beam has an output of 1W,
The other conditions were the same as those for producing the second open groove.

この埌、パツシベむシペン膜をPCVD法に
より窒化珪玠膜を1000Åの厚さに200℃の枩床に
お䜜補した。
Thereafter, a silicon nitride film with a thickness of 1000 Å was formed at a temperature of 200° C. by the PCVD method to form a passivation film 21.

するず10cm×10cmのパネルに12段の玠子を連結
し、有効面積88を䜜るこずができた。
By connecting 12 stages of elements to a 10cm x 10cm panel, they were able to create an effective area of 88%.

パネルの実効効率ずしおAM1100cm2
にお8.6、出力0.83Wを埗るこずができた。
AM1 (100mW/cm 2 ) as the effective efficiency of the panel
We were able to obtain an output of 8.6% and an output of 0.83W.

本発明における透光性基板ずしお透光性有機
暹脂䟋えば䜏友ベヌクラむト瀟のスミラヌト1100
を甚い、さらに、䞊偎も保護甚有機暹脂を重
合わせるこずにより、有機暹脂シヌトの間に光電
倉換装眮をはさむ構造ずするこずができ、可曲性
を有し、きわめお安䟡で倚量生産が可胜にな぀
た。
As the light-transmitting substrate 1 in the present invention, a light-transmitting organic resin such as Sumilato 1100 manufactured by Sumitomo Bakelite Co., Ltd.
By further overlapping the protective organic resin 22 on the upper side, it is possible to create a structure in which the photoelectric conversion device is sandwiched between the organic resin sheets, which has flexibility and can be mass-produced at extremely low cost. It became.

本発明における第の開溝は非単結晶半導䜓の
党幅にわた぀お蚭けた。
The second groove in the present invention is provided over the entire width of the non-single crystal semiconductor.

しかしこれを䞀郚ずした開孔により、たたはパ
ネルの呚蟺郚の半導䜓を残し、内郚にのみ開溝を
圢成するこずにより、連結郚の呚蟺郚でのそれぞ
れの玠子間のシペヌトを防ぐ構成にさせるこずは
有効である。
However, by making a hole using this as a part, or by leaving the semiconductor at the periphery of the panel and forming an opening only inside, a structure can be created to prevent shortening between the respective elements at the periphery of the connection part. That is valid.

第図〜第図においお、孔入射は䞋偎の透光
性絶瞁基板よりずした。
In FIGS. 1 and 2, the hole was incident from the lower transparent insulating substrate.

しかし本発明はその光入射偎を䞋偎に限定する
こずなく、䞊偎の電極をITOずしお䞊偎より光照
射を行うこずも可胜であり、たた基板もガラス基
板ではなく可曲性透光性有機暹脂基板を甚いるこ
ずは可胜である。
However, in the present invention, the light incident side is not limited to the lower side, and it is also possible to use ITO as the upper electrode and irradiate light from the upper side, and the substrate is not a glass substrate but a flexible transparent organic resin. It is possible to use a substrate.

〔発明の効果〕〔Effect of the invention〕

本発明により、透光性導電膜の䞊に圢成された
非単結晶半導䜓の䞊面に耐熱性、䜎熱䌝導率のク
ロムを䞻成分ずする金属を蚭け、これを介しおレ
ヌザスクラむブを行なうこずにより、透光性導電
膜は䜕等損傷を受けるこずなく、レヌザスクラむ
ブによ぀お半導䜓を遞択的に陀去するこずが可胜
ずな぀た。
According to the present invention, a heat-resistant, low thermal conductivity metal mainly composed of chromium is provided on the upper surface of a non-single-crystal semiconductor formed on a transparent conductive film, and laser scribing is performed through this metal. It has become possible to selectively remove the semiconductor by laser scribing without any damage to the transparent conductive film.

これにより、マスクレスプロセスであるレヌザ
スクラむブ方匏を甚いお぀の玠子を連結する連
結郚の補造方法においお、良奜なコンタクトを埗
るこずができた。
As a result, good contact could be obtained in the method for manufacturing a connecting portion that connects two elements using a laser scribing method, which is a maskless process.

本発明は光電倉換装眮、特に薄膜型光電倉換装
眮にあ぀おは、それぞれの薄膜局である電極甚導
電性局、たたは半導䜓局はずもにそれぞれ500Å
〜1Ό、0.2〜1.0Όの薄さであり、レヌザスクラむ
ブ方匏を甚いるこずにより、コンピナヌタコント
ロヌル方匏の自動マスク合わせ機構で䜜補するこ
ずを可胜ずした。
In the case of a photoelectric conversion device, particularly a thin film type photoelectric conversion device, the present invention provides that each of the thin film layers, such as a conductive layer for an electrode or a semiconductor layer, each have a thickness of 500 Å.
~1Ό, 0.2~1.0Ό thin, and by using a laser scribing method, it was possible to manufacture it with a computer-controlled automatic mask alignment mechanism.

本発明は、マスクを党く甚いないマスクレス工
皋ずするこずができ、きわめお簡単か぀高粟床で
あり、装眮の補造コストの䜎䞋をもたらし、その
ため500円の補造も可胜ずなり、その補造芏
暡の拡倧により100〜200円も可胜になるずい
う極めお画芏的な光電倉換装眮を提䟛するこずが
できた。
The present invention enables a maskless process that does not use a mask at all, is extremely simple and highly accurate, and reduces the manufacturing cost of the device.As a result, manufacturing at 500 yen/W is possible, and the manufacturing scale can be reduced. We were able to provide an extremely standard photoelectric conversion device that could be expanded to cost 100 to 200 yen/W.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明による実斜䟋における光電倉換
装眮の補造工皋を瀺す瞊断面図である。第図は
本発明による他の実斜䟋における光電倉換装眮の
補造工皋を瀺す瞊断面図である。
FIG. 1 is a longitudinal sectional view showing the manufacturing process of a photoelectric conversion device in an embodiment according to the present invention. FIG. 2 is a longitudinal sectional view showing the manufacturing process of a photoelectric conversion device in another embodiment of the present invention.

Claims (1)

【特蚱請求の範囲】  透光性導電膜䞊に圢成された非単結晶半導䜓
䞊にクロムを䞻成分ずする金属膜を圢成しお、該
金属膜にレヌザ光を照射するこずにより、被照射
郚の前蚘金属膜および該金属膜䞋の前蚘非単結晶
半導䜓を陀去するこずを特城ずする半導䜓装眮䜜
補方法。  絶瞁衚面を有する基板䞊の透光性導電膜にレ
ヌザ光を照射し第の開溝を圢成しお耇数の第
の電極領域を圢成する工皋ず、 該第の開溝および前蚘電極領域䞊に光照射に
より光起電力を発生する非単結晶半導䜓ず該非単
結晶半導䜓䞊にクロムを䞻成分ずする金属膜ずを
圢成する工皋ず、 前蚘各第の電極領域䞊の前蚘金属膜を介しお
該膜䞋の前蚘非単結晶半導䜓局にレヌザ光を照射
するこずにより、被照射郚の前蚘金属膜および該
金属膜䞋の前蚘非単結晶半導䜓を陀去しお前蚘第
の電極を露呈させお第の開溝を圢成する工皋
ず、 残存した前蚘金属膜䞊および前蚘第の開溝内
に導電膜を圢成する工皋ず、 前蚘導電膜にレヌザ光を照射しお第の開溝を
圢成しお耇数の第の電極領域に分離する工皋ず
を有し、 これにより、前蚘第の電極領域の各々に、前
蚘第の電極、非単結晶半導䜓局、金属膜、第
の電極が積局された玠子が圢成されるずずもに、
前蚘玠子の内の぀の玠子の前蚘露呈された第
の電極䞊に該玠子ず隣接する玠子の第の電極が
延圚しお玠子間が盎列接続されたこずを特城ずす
る半導䜓装眮䜜補方法。  絶瞁衚面を有する基板䞊の透光性導電膜にレ
ヌザ光を照射し第の開溝を圢成しお耇数の第
の電極領域を圢成する工皋ず、 該第の開溝および前蚘電極領域䞊に光照射に
より光起電力を発生する非単結晶半導䜓ず該非単
結晶半導䜓䞊にクロムを䞻成分ずする金属膜ずを
圢成する工皋ず、 前蚘各第の電極領域䞊の前蚘金属膜を介しお
該膜䞋の前蚘非単結晶半導䜓局にレヌザ光を照射
するこずにより、被照射郚の前蚘金属膜および該
金属膜䞋の前蚘非単結晶半導䜓を陀去しお前蚘第
の電極を露呈させお第の開溝を圢成する工皋
ず、 残存した前蚘金属膜を陀去する工皋ず、 残存した前蚘非単結晶半導䜓䞊および前蚘第
の開溝内に導電膜を圢成する工皋ず、 前蚘導電膜にレヌザ光を照射しお第の開溝を
圢成しお耇数の第の電極領域に分離する工皋ず
を有し、 これにより、前蚘第の電極領域の各々に、前
蚘第の電極、非単結晶半導䜓局、第の電極が
積局された玠子が圢成されるずずもに、前蚘玠子
の内の぀の玠子の前蚘露呈された第の電極䞊
に該玠子ず隣接する玠子の第の電極が延圚しお
玠子間が盎列接続されたこずを特城ずする半導䜓
装眮䜜補方法。
[Claims] 1. A metal film containing chromium as a main component is formed on a non-single-crystal semiconductor formed on a transparent conductive film, and the metal film is irradiated with a laser beam. 1. A method for manufacturing a semiconductor device, comprising removing the metal film at the top and the non-single-crystal semiconductor under the metal film. 2. A plurality of first grooves are formed by irradiating a laser beam onto a transparent conductive film on a substrate having an insulating surface to form a first groove.
a non-single-crystal semiconductor that generates photovoltaic force by light irradiation on the first groove and the electrode region; and a metal film containing chromium as a main component on the non-single-crystal semiconductor. irradiating the non-single crystal semiconductor layer under the film with laser light through the metal film on each of the first electrode regions, thereby removing the metal film and the metal in the irradiated portion. removing the non-single crystal semiconductor under the film to expose the first electrode to form a second trench; and forming a conductive film on the remaining metal film and in the second trench. and a step of irradiating the conductive film with a laser beam to form a third trench to separate the conductive film into a plurality of second electrode regions. The first electrode, the non-single crystal semiconductor layer, the metal film, and the second electrode, respectively.
An element with laminated electrodes is formed, and
the exposed first of one of the elements;
A method for manufacturing a semiconductor device, characterized in that a second electrode of an element adjacent to the element extends over the electrode of the element, so that the elements are connected in series. 3. A plurality of first grooves are formed by irradiating a laser beam onto a transparent conductive film on a substrate having an insulating surface to form a first groove.
a non-single-crystal semiconductor that generates photovoltaic force by light irradiation on the first groove and the electrode region; and a metal film containing chromium as a main component on the non-single-crystal semiconductor. irradiating the non-single crystal semiconductor layer under the film with laser light through the metal film on each of the first electrode regions, thereby removing the metal film and the metal in the irradiated portion. removing the non-single crystal semiconductor under the film to expose the first electrode and forming a second trench; removing the remaining metal film; and removing the remaining non-single crystal semiconductor. above and said second
a step of forming a conductive film in the open groove; and a step of irradiating the conductive film with a laser beam to form a third open groove and separating it into a plurality of second electrode regions. , an element in which the first electrode, a non-single crystal semiconductor layer, and a second electrode are stacked is formed in each of the first electrode regions, and the exposed area of one of the elements is formed. A method for manufacturing a semiconductor device, characterized in that a second electrode of an element adjacent to the element extends over the first electrode, so that the elements are connected in series.
JP58221171A 1983-11-24 1983-11-24 Manufacture of photoelectric conversion semiconductor device Granted JPS60113476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221171A JPS60113476A (en) 1983-11-24 1983-11-24 Manufacture of photoelectric conversion semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221171A JPS60113476A (en) 1983-11-24 1983-11-24 Manufacture of photoelectric conversion semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5040571A Division JPH06112514A (en) 1993-02-04 1993-02-04 Manufacture of photoelectric conversion semiconductor device

Publications (2)

Publication Number Publication Date
JPS60113476A JPS60113476A (en) 1985-06-19
JPH0550152B2 true JPH0550152B2 (en) 1993-07-28

Family

ID=16762584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221171A Granted JPS60113476A (en) 1983-11-24 1983-11-24 Manufacture of photoelectric conversion semiconductor device

Country Status (1)

Country Link
JP (1) JPS60113476A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091532A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Solar battery module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co

Also Published As

Publication number Publication date
JPS60113476A (en) 1985-06-19

Similar Documents

Publication Publication Date Title
JPH0476227B2 (en)
JPS5996779A (en) Photoelectric conversion device
JPH0550152B2 (en)
JPS5996778A (en) Manufacture of photoelectric conversion device
JPH06112514A (en) Manufacture of photoelectric conversion semiconductor device
JPH0566754B2 (en)
JP3332487B2 (en) Method for manufacturing photovoltaic device
JPH0518275B2 (en)
JPH0415631B2 (en)
JPS6095980A (en) Photoelectric conversion device
JP2997141B2 (en) Solar cell
JPH0572113B2 (en)
JPH0554274B2 (en)
JPH0566755B2 (en)
JPH03132080A (en) Photovoltaic device
JPH0558269B2 (en)
JPS60231372A (en) Manufacture of semiconductor device
JPH0614556B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH0566756B2 (en)
JPS5996783A (en) Photoelectric conversion device
JPS59155973A (en) Photoelectric conversion semiconductor device
JPH0518277B2 (en)
JPS60211882A (en) Photoelectric conversion device and manufacture thereof
JPS60211881A (en) Manufacture of semiconductor device
JPS6085571A (en) Photoelectric conversion device