JPS5990972A - Semiconductor light-emitting diode - Google Patents

Semiconductor light-emitting diode

Info

Publication number
JPS5990972A
JPS5990972A JP57200568A JP20056882A JPS5990972A JP S5990972 A JPS5990972 A JP S5990972A JP 57200568 A JP57200568 A JP 57200568A JP 20056882 A JP20056882 A JP 20056882A JP S5990972 A JPS5990972 A JP S5990972A
Authority
JP
Japan
Prior art keywords
type
layer
region
current
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57200568A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57200568A priority Critical patent/JPS5990972A/en
Publication of JPS5990972A publication Critical patent/JPS5990972A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the LED, in which the linearity of currents-optical output characteristics is improved remarkably without damaging fiber coupling power, by forming a first conduction type semiconductor layer between an active layer and a first conduction type ohmic electrode and forming a region, in which first conducton type impurity carrier concentration is increased with a separation from the central axis of a light- emitting region, in the semiconductor layer of the first conduction type semiconductor layer. CONSTITUTION:An N type InP layer 31 and a P type InGaAsP layer 34 are formed on an N type InP substrate 30, an SiO2 film is formed to the surface of the P type InGaAsP layer 34, a pattern is formed, the SiO2 film is left circularly, and others are removed. A P type impurity such as Zn is diffused while using the SiO2 film as a mask, and high-concentration diffusion regions 35 are formed in a P type InP layer 33. A TiPt film 37 is formed on the surfaces of the P type InGaAsP layer 34 and the SiO2 film 36, and the P type ohmic electrode 38 is formed through heat treatment in H2 or N2. Lastly, N type ohmic electrodes 39 are formed through heat treatment in a H2 or N2 atmosphere. When forward currents are flowed through the LED, a light-emitting diameter expands in a low current region, current concentration becomes more conspicuous with the increase of currents, and the extension of the light-emitting diameter reduces to several mum or less in a high current region.

Description

【発明の詳細な説明】 本発明は半導体発光ダイオードc以下LgDと呼ぶ)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting diode (hereinafter referred to as LgD).

LEDは光通信システムの光源として重要であり研究開
発が精力的に行なわれている。
LEDs are important as light sources for optical communication systems and are being actively researched and developed.

特に発光波長0.8 μm帯のGaAs/AJGaAs
系のLEDは、既に実用に供せられている。ところで、
LEDの光通信用光源としての利点は、安価であること
、信頼性に優れていることの他に、社流−光出力特性の
直線性が優れているという438点がアリ、特にアナロ
グ変調方式の通信システムの光源として重要な役割を果
している。さて、近年の光ファイバの低損失に伴ない波
長1μ厘計4.7μmnどいつだより長波長帯が伝送損
失最小の領域となった。これに伴ない光源としてもこの
波長領域の光を出力するInGaAsP/InP糸のL
EDの研究開発が進められている。しかしながら、従来
のfnoa、AsP/In、P糸のLEDでは、電流の
胞加につれて光出力が飽和するという飽和現象がみられ
、電流−光出力特性の直線性が極めて悪か、つた。その
ためにアナログ変調方式の通信システムに淵していると
いうLEDの大きな利点が損なわれていた。
In particular, GaAs/AJGaAs with an emission wavelength of 0.8 μm band
LEDs of this type are already in practical use. by the way,
The advantages of LEDs as light sources for optical communication are that they are inexpensive, have excellent reliability, and have excellent linearity in optical output characteristics, especially when using analog modulation methods. It plays an important role as a light source for communication systems. Now, as optical fibers have become lower in loss in recent years, the longer wavelength band (4.7 μm in total, 1 μm in wavelength) has become the region with the lowest transmission loss. Along with this, L of InGaAsP/InP yarn that outputs light in this wavelength range can also be used as a light source.
Research and development of ED is progressing. However, conventional fnoa, AsP/In, and P thread LEDs exhibit a saturation phenomenon in which the light output saturates as the current increases, and the linearity of the current-light output characteristics is extremely poor. For this reason, the great advantage of LEDs, which is limited to analog modulation type communication systems, has been lost.

ところで、不発明者らの研究も含めた最近の研究により
、この電流−光出力特性の飽和はInGa−AsP活性
層への注入キャリア濃度nの約2乗に比例した発光電流
成分の他にnの約3乗に比例した非発光電流成分が存在
しており、電流を増加するとともに、この非発光電流成
分の全電流に対する割合が増大するためであり、この非
発光電流はオージェ再結合の可能性が極めて高いことが
明ら必になってきた。これらの研究結果に基づけば電流
−光出力特性の飽和を低減するだめに活性層の厚さを厚
くす乙、あるいは発光面積を大きくすることにより注入
キャリヤ濃度の低い状態で動作させるという方策が考え
られる。実際、活性層を厚くする櫛、又、発光面積を大
きくする程、飽和はある程度改善される。し永し、活性
層2〜3μm以上に厚くすると、活性層内での光吸1f
lの増大、注入キャリ〜の活性層内の厚み方向での分布
が一様で外くなるといったことが起こり、光出力を大き
く損なうという問題が生じたり、結晶成長も厚くするに
つれ、良質の結晶を得ることが極めて困難になるという
問題があり、活性層を厚くすることにより、飽和を著し
く改善するととは、極めて困難÷あった。又、発光面積
を大きくすることに関しては、光吸収、注入キャリヤの
分布、結晶成長といった点での問題は少ないが、飽和を
著しく改善するためには、発光面積を極めて大きくする
必要があり、通常光通信に用いられているコア径数10
μm程度の光7アイパに結合させると結合損失が大きく
なり、ファイバ結合パワーを著しく損なうという問題が
あった。
By the way, recent research, including research by the inventors, has revealed that the saturation of this current-light output characteristic is caused by n in addition to a light emitting current component proportional to the square of the carrier concentration n injected into the InGa-AsP active layer. This is because there is a non-luminescent current component proportional to the third power of It has become clear that there is an extremely high level of sexuality. Based on these research results, it is possible to increase the thickness of the active layer in order to reduce the saturation of the current-light output characteristics, or to operate with a low injected carrier concentration by increasing the light emitting area. It will be done. In fact, saturation can be improved to some extent by making the active layer thicker or by increasing the light emitting area. However, if the active layer is thickened to 2 to 3 μm or more, the light absorption within the active layer decreases by 1f.
As l increases, the distribution of injected carries in the thickness direction within the active layer becomes uneven, causing problems such as a significant loss of optical output. However, it is extremely difficult to significantly improve saturation by increasing the thickness of the active layer. In addition, increasing the light emitting area poses few problems in terms of light absorption, distribution of injected carriers, and crystal growth, but in order to significantly improve saturation, it is necessary to make the light emitting area extremely large. Core diameter number 10 used in optical communication
When coupled to an optical 7-eyeper of about μm, there is a problem in that the coupling loss becomes large and the fiber coupling power is significantly impaired.

さらに、このようなオージェ再結合は、 InGaAs
Pのみでは°なく、波長1〜1.7μmの光源として使
い得る他の半導体材料でもInGaAsPと同程度ある
いは、それ以上起り得るといった研究結果もあり、半導
体材料を変えることによる解決も困難である。
Furthermore, such Auger recombination is possible in InGaAs
There are also research results showing that the problem is not only caused by P, but also by other semiconductor materials that can be used as a light source with a wavelength of 1 to 1.7 μm, to the same extent or more than InGaAsP, and it is difficult to solve the problem by changing the semiconductor material.

このように電沈−光出力特性の飽和という問題に対し、
実用上有効な手段は、これまで得られていなかった。
In this way, to deal with the problem of saturation of electrolyte precipitation and optical output characteristics,
No practically effective means have been available so far.

本発明はこのよう力欠点を除くためになされたもので、
ファイバ結合パワーを大きく損なうとと女く電流−光出
力特性の直線性の著しく改善しだLEDを提出するもの
である。即ち、本発明の発光ダイオードは、ダブルへテ
ロ構造を有し、半導体基板の主表面に対し垂直方向に光
を取出す平面発光型半導体発光ダイオードにおいて活性
層と第1導電型オーミツク′龜極との間に少なくとも1
層力1らなる第1導電型半導体層を設け、この第1導電
型半導体層の少なくとも一つの半導体層内に発光領域の
中心軸力1ら速いな、第1導電型不純物キヤリヤ濃度の
大きくなる領域を有する構成と外っている。
The present invention was made in order to eliminate these power defects.
The present invention proposes an LED in which the linearity of the current-light output characteristic is significantly improved without significantly impairing the fiber-coupled power. That is, the light emitting diode of the present invention has a double heterostructure, and is a planar light emitting type semiconductor light emitting diode that emits light in a direction perpendicular to the main surface of a semiconductor substrate. at least 1 between
A first conductivity type semiconductor layer having a layer force of 1 is provided, and in at least one semiconductor layer of the first conductivity type semiconductor layer, the central axial force of the light emitting region is increased by 1, and the first conductivity type impurity carrier concentration increases. It is out of configuration with a region.

以下に図面を用いて本発明について詳細に説明する。第
1図は本4:明のL E Dの原理を説明するための図
でに、る。第1図(、)は、LEDの断面前音を第1図
(b)及び(C)は、従来及び不発明のL 1!3 D
のPfiクラッド層11のキャリヤ濃度分布をそれぞれ
示している◎ 従来のLEDではP型クラッド層11のキャリヤ濃度の
水平方向の分布が一様であるのに対し、本発明のT、 
E T)では、電流の流路の中心部に対し、外側のギヤ
リヤ濃度が高くなっている。
The present invention will be explained in detail below using the drawings. Figure 1 is from Book 4: A diagram for explaining the principle of light emitting diode. Figure 1 (,) shows the cross-sectional front sound of the LED. Figure 1 (b) and (C) show the conventional and uninvented L 1!3 D
◎ In the conventional LED, the carrier concentration distribution in the P-type cladding layer 11 in the horizontal direction is uniform, but in the T of the present invention,
ET), the gear concentration on the outside is higher than in the center of the current flow path.

P型りラッド層11表面に設けられた直径DcのP型電
硫12から順方向電流を流すと、P型クラッド層11及
び活a層13での電流楯1拡がりのため、活性層では電
極径Dcより広い領域に電流が流れ発光径Daは電極径
Dcより大きくなる。ここで発光強度が中央部の十にな
る径を発光径とする。
When a forward current is passed from the P-type insulator 12 with a diameter Dc provided on the surface of the P-type cladding layer 11, the current shield 1 spreads in the P-type cladding layer 11 and the active a layer 13. Current flows in a region wider than the diameter Dc, and the emission diameter Da becomes larger than the electrode diameter Dc. Here, the diameter where the emission intensity is 10 at the center is defined as the emission diameter.

P型クラッド層11での電流波がりは、P型クラッド層
11の電気伝導度が大きい程、即ちキャリヤ濃度が大き
い程大きくなる。又、電流を増すにつれて、電流の流路
の周辺部に対し中央部を流れる電流の比率が大きくなり
電流集中の度合いが大きくなる。本発明のLEDは、こ
の電流波がりを積極的に利用したものである。第1図(
C)に示した様に本発明のLEDでは、Pクラッド層の
電流の中心部から離れた位置に中心部よりキャリヤ濃度
の高い領域を設けである。従って、低電流域では高濃度
領域のだめに電流波がりが、一層大きくなる。一方、高
電流域では中央部を流れる電流が主となり、周辺に設け
た高濃度領域の影響が小さくなり電流波がりは小さくな
る。従って、発光径比の電流工に対する変化をみると、
第2図に示した様に、従来に比べ極めて大きな変化を示
すようになる。
The current wave in the P-type cladding layer 11 increases as the electrical conductivity of the P-type cladding layer 11 increases, that is, as the carrier concentration increases. Furthermore, as the current increases, the ratio of the current flowing through the central part to the peripheral part of the current flow path increases, and the degree of current concentration increases. The LED of the present invention actively utilizes this current wave. Figure 1 (
As shown in C), in the LED of the present invention, a region having a higher carrier concentration than the center is provided at a position away from the center of the current in the P cladding layer. Therefore, in the low current region, the current wave becomes even larger than in the high concentration region. On the other hand, in a high current region, the current mainly flows through the center, and the influence of the high concentration regions provided at the periphery is reduced, resulting in smaller current waves. Therefore, looking at the change in the emission diameter ratio with respect to the electric current,
As shown in FIG. 2, this shows an extremely large change compared to the conventional method.

トレジストによりパターンを形成し、直径約120μm
の円形状にAuGeNiを除去し、光取出し窓40を形
成する。最後にH,又はN、雰囲気中で熱処理すること
によりn型オーミック電極39を形成する。このLED
に順方向電流を流すと第4図に示した様に電流が3 N
O+nA以下の低電流域では発光径が10−30μm程
度拡がり、′電流増加とともに電流集中が顕著になり、
10100−2O0の高電流域では発光径の拡がりは数
μm以下になる。
A pattern is formed using resist and has a diameter of approximately 120 μm.
The AuGeNi is removed in a circular shape to form a light extraction window 40. Finally, an n-type ohmic electrode 39 is formed by heat treatment in an H or N atmosphere. This LED
When a forward current is applied to , the current increases to 3 N as shown in Figure 4.
In the low current range below O+nA, the emission diameter expands by about 10-30 μm, and as the current increases, current concentration becomes more pronounced.
In the high current range of 10100-2O0, the emission diameter expands to several μm or less.

P副電極38の径が20 /jlnの場合、発光径は4
5μm程度から25μm 4M * tで変化してゆく
。従って、このLEDを、例えば、コア径50μmのグ
レーデッドインデッタス7アイパーに結合させると、電
流が増加するにつれて、結合効率が大きくなるためも、
電流−光出力特性の直線性の著しく改善された従来にな
い優れたL Iy D特性が得られた。
When the diameter of the P sub-electrode 38 is 20/jln, the emission diameter is 4
It changes from about 5 μm to 25 μm 4M*t. Therefore, when this LED is coupled to, for example, a graded indetatus 7 eyeper with a core diameter of 50 μm, the coupling efficiency increases as the current increases.
Unprecedented excellent L Iy D characteristics with significantly improved linearity of current-light output characteristics were obtained.

第6図は本発明の別の実施を示した図で、第7図(a)
は、L18Dの断面構造を第6図(blは、P型クラッ
ド層33のキャリヤ濃度分布を、それぞれ示している。
FIG. 6 is a diagram showing another implementation of the present invention, and FIG. 7(a)
FIG. 6 shows the cross-sectional structure of L18D (bl shows the carrier concentration distribution of the P-type cladding layer 33, respectively.

本実施例ではP型クラッド層33・電流の流路の周辺部
に高濃度領域35を設けるとともに流路の中心部にも高
濃度領域41を設けている。
In this embodiment, a high concentration region 35 is provided at the periphery of the P-type cladding layer 33 and the current flow path, and a high concentration region 41 is also provided at the center of the flow path.

この高濃度領域41は、M3図の実施例と同様にPM不
純物の拡散により形成できる。中心部の高濃度領域41
Kまり高電流域での電流の中央への集中が、第3図の実
施例より顕著に起こるため、高電流でのファイバー結合
パワーがより大きくなり、電流−光出力特性の直線性を
一層改善することかできた。
This high concentration region 41 can be formed by diffusion of PM impurities as in the embodiment shown in FIG. M3. High concentration area 41 in the center
Since the concentration of current in the center in the high current range is more pronounced than in the example shown in Figure 3, the fiber-coupled power at high currents becomes larger, further improving the linearity of the current-optical output characteristics. I was able to do something.

第3図及び第6図の実施例では、高濃度領域がP−In
Pクラッド層及びP−InOaAsPコンタクト層の両
方に形成されているが、両方の層に形成されていなくて
も、クラッド層又はコンタクト層のいずれかの層のみに
形成され°Cいる場合でも同様の効果を得ることができ
る。
In the embodiments shown in FIGS. 3 and 6, the high concentration region is P-In.
Although it is formed in both the P cladding layer and the P-InOaAsP contact layer, it is similar even if it is not formed in both layers or only in either the cladding layer or the contact layer. effect can be obtained.

また、高濃度領域は不純物仏故以外の方法、例えば高濃
度領域となるべき部分を削り取った後、その部分に結晶
成長により高感1皮領域を形成しても効果は同じである
Furthermore, the high concentration region can be formed by a method other than impurity-based methods, for example, by scraping off a portion that should become a high concentration region and then forming a high sensitivity region in that portion by crystal growth, the same effect can be obtained.

第3図及び第6図の実施例に対し、各層の電気的導“成
型を反転した構造、即ち、Pg、をn型に反転した構造
でも、本発明の効果を得ることができる。キャリヤ濃度
が同じ場合、n型InPの電気伝導度はP型InPに比
べ、数10倍大きい。
The effects of the present invention can also be obtained with a structure in which the electrically conductive molding of each layer is reversed with respect to the embodiments shown in FIGS. 3 and 6, that is, a structure in which Pg is reversed to n-type.Carrier concentration When the values are the same, the electrical conductivity of n-type InP is several tens of times higher than that of p-type InP.

そのため、同じ電流拡がり効果を得るのにP型に比べ1
桁以上率さい不純物量で良いといった製造上の大きな利
点があり、又、キャリヤ濃度をP型の場合と同じにした
場合、n型InP層の厚さを薄くすることができ、直列
抵抗や熱抵抗を小さくできるといった特性上の利点もあ
る。これまでの実施例ではInGaAsP/InP系の
L E DVCツイて示してきたが、他の■−v族化合
物半導体材料を用いだLEDについても、本発明を適用
することができる。
Therefore, to obtain the same current spreading effect, compared to the P type, the
There is a great manufacturing advantage in that an amount of impurity is required to be an order of magnitude lower.Also, if the carrier concentration is the same as in the P-type case, the thickness of the n-type InP layer can be made thinner, reducing series resistance and heat. It also has the advantage of being able to reduce resistance. In the embodiments so far, an InGaAsP/InP-based LED DVC has been shown, but the present invention can also be applied to LEDs using other Ⅰ-v group compound semiconductor materials.

以上、詳しく述べてきた様に本発明によ抄ファイバー結
合パワーを損なうことなく、電流−光出力特性の直線性
の著しく改善したLEDを得ることができた。
As described in detail above, according to the present invention, it was possible to obtain an LED in which the linearity of the current-light output characteristic was significantly improved without impairing the fiber-coupled power.

【図面の簡単な説明】[Brief explanation of drawings]

明するための図で、第3図(a)、 (b)から第6図
(a)。 (b)は、本発明の詳細な説明するだめの図である。 図中、13.32は活性層、11.33はP型りラッド
層、34はP型コンタクト層、30.31はn型半導体
、35.41は高不純物キャリヤ濃度領域、36は8i
(J膜12.37.38.39は電極金属、40は光取
出し窓をそれぞれ示している。 (b) 拓1図 祐2図 ”’  35  38 35 37 (b) 0       50        to。 を流(mA) 第5図 (b) 詫6図
Figures 3(a) and 6(b) to 6(a) are for clarification. (b) is a detailed illustration of the present invention. In the figure, 13.32 is an active layer, 11.33 is a P-type rad layer, 34 is a P-type contact layer, 30.31 is an n-type semiconductor, 35.41 is a high impurity carrier concentration region, and 36 is an 8i
(J film 12, 37, 38, 39 indicates the electrode metal, and 40 indicates the light extraction window. (b) 35 38 35 37 (b) 0 50 to. mA) Figure 5 (b) Figure 6

Claims (1)

【特許請求の範囲】[Claims] ダブルヘテp構造を有し、半導体基板の主表面に対し、
垂直方向に光を取出す平面発光型半導体発光ダイオード
において、活性層と第1導電型オーミツク電極との間に
、少くとも1層からなる第1導電型半導体層を設け、こ
の第1導電型半導体層の少なくとも一つの半導体層内に
、発光領域の中心軸から遠い程、第1導電型不純物キヤ
リヤ濃度の大きくなる領域を有することを特徴とする半
導体発光ダイオード。
It has a double hetep structure, and on the main surface of the semiconductor substrate,
In a planar light emitting type semiconductor light emitting diode that extracts light in the vertical direction, at least one first conductivity type semiconductor layer is provided between the active layer and the first conductivity type ohmic electrode, and the first conductivity type semiconductor layer is provided with at least one first conductivity type semiconductor layer. A semiconductor light emitting diode, comprising a region in at least one semiconductor layer, the region having a first conductivity type impurity carrier concentration increasing as the distance from the central axis of the light emitting region increases.
JP57200568A 1982-11-16 1982-11-16 Semiconductor light-emitting diode Pending JPS5990972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200568A JPS5990972A (en) 1982-11-16 1982-11-16 Semiconductor light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200568A JPS5990972A (en) 1982-11-16 1982-11-16 Semiconductor light-emitting diode

Publications (1)

Publication Number Publication Date
JPS5990972A true JPS5990972A (en) 1984-05-25

Family

ID=16426483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200568A Pending JPS5990972A (en) 1982-11-16 1982-11-16 Semiconductor light-emitting diode

Country Status (1)

Country Link
JP (1) JPS5990972A (en)

Similar Documents

Publication Publication Date Title
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JPH09307140A (en) Semiconductor light emitting device
JPS5990972A (en) Semiconductor light-emitting diode
JPH0327577A (en) Light emitting diode array
JPS61125092A (en) Semiconductor light emitting diode
JPH05267715A (en) Semiconductor light-emitting device
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JPS6272185A (en) Negative resistance optical device
JPS58219789A (en) Embedded type optical semiconductor device
KR20050106426A (en) Light-emitting diode device and production method thereof
JPS5891689A (en) Semiconductor light-emitting diode
JPS6260278A (en) Semiconductor light emitting diode
JPH07202259A (en) Gaalas light emitting diode
JPS5990973A (en) Semiconductor light-emitting diode
JPS62226674A (en) Light-emitting diode
JPS62186582A (en) Semiconductor laser device
JPS5948968A (en) Light-emitting diode
JPS5944878A (en) Semiconductor light emitting diode
JPS61150294A (en) Semiconductor light emitting device
JPH0252483A (en) Semiconductor laser device and manufacture thereof
JPH0384969A (en) Semiconductor light emitting element
JPH0330486A (en) Multi quantum well light emitting element
JPH02114676A (en) Semiconductor light emitting element and manufacture thereof
JPS58118178A (en) Semiconductor light emitting element
JPS63216389A (en) Surface emitting type light emitting diode