JPS5944878A - Semiconductor light emitting diode - Google Patents

Semiconductor light emitting diode

Info

Publication number
JPS5944878A
JPS5944878A JP57155454A JP15545482A JPS5944878A JP S5944878 A JPS5944878 A JP S5944878A JP 57155454 A JP57155454 A JP 57155454A JP 15545482 A JP15545482 A JP 15545482A JP S5944878 A JPS5944878 A JP S5944878A
Authority
JP
Japan
Prior art keywords
current
active layer
type
light emitting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57155454A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57155454A priority Critical patent/JPS5944878A/en
Publication of JPS5944878A publication Critical patent/JPS5944878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Abstract

PURPOSE:To remarkably improve the linearity of a current-optical output property by a method wherein the sectional area in the direction horizontal to the main surface of the substrate of a conductivity type semiconductor layer is more increased as it is close to an active layer. CONSTITUTION:The region of current flow in a P type clad layer 11 is strictured by a region 13 surrounded by an N type or high resistant semiconductor layer 12. The diameter of the stricture region 13 is more increased as it is closer to the active layer 15 from the point D1 nearest to a P-electrode 14. When current is made to flow from the P-electrode 14, the expansion of the current more enlarges as it is closer to the active layer 15. The expansion of the current becomes larger as the current value is smaller. The variation of this current expansion increases more remarkably than conventional, therefore the change of the luminous diameter compared with current further increases more than conventional.

Description

【発明の詳細な説明】 本発明は、半導体発光タイオード(以下IJDと呼ぶ)
に関するものである。
[Detailed Description of the Invention] The present invention relates to a semiconductor light emitting diode (hereinafter referred to as IJD).
It is related to.

LEDは、光通信システムの光源として重要であり研や
u開発が精力的に行なわれている。特に発光波長0.8
1tm帯の、Gaks / AlGaAs系のIJDは
既に実用圧供せられている。ところで、LEDの光通信
用光源としての利点は安価であること、信頼性にぼれて
いることの他K、電流−ブt1出力特性のni純性が浸
れているという利点があり1ζrにアナログ変調方式の
通信システムの光源とじて重要な役割を果I−2ている
。さて、近年の光ファイバの低損失化に伴な′/1波長
波長1御 が伝送損失最小の<21域となった。これに(i′ない
、光源としても、この波長領域の光を出力するInGa
AsP / InP系のLEDの研究開発が進められて
いる。しかしながら従来のInGaAsP/InP系の
LEDでは、′電流の増加につれて、光出力が、i’t
1!和するとい5力(曵相現象がみられ、電流−光11
1力4y性の直線性が仙めて悪かった。ぞのだめに、ア
ナrffグ変調方式の抽イt1シスデムに鏑し7ている
どいつ、LEDの大きな利点が損なわれていた。
LEDs are important as light sources for optical communication systems, and are being actively researched and developed. Especially the emission wavelength is 0.8
1tm band Gaks/AlGaAs IJDs have already been put into practical use. By the way, the advantages of LED as a light source for optical communication are that it is inexpensive, has high reliability, and has the advantage of having a pure current-butt1 output characteristic. It plays an important role as a light source in the I-2 communication system. Now, as optical fibers have become lower in loss in recent years, '/1 wavelength wavelength 1 control has become in the <21 region where the transmission loss is minimum. In addition to this (i'), InGa, which outputs light in this wavelength range, can also be used as a light source.
Research and development of AsP/InP-based LEDs is progressing. However, in the conventional InGaAsP/InP LED, as the current increases, the light output decreases i't
1! The sum of the 5 forces (a phase phenomenon is observed, current - light 11
The linearity of the 1st force and 4th direction was extremely poor. Unfortunately, the great advantages of LEDs have been lost in the implementation of analog RFF modulation-based T1 systems.

ところで本発明者らの研究も営めた、最近の6斤究によ
りこの電流−光出力特性の飽和は、InGaA,P活性
層への注入キャリヤ++QUnの約2乗に比例した発光
電流成分の他に、nの約3乗に比例した、非発光電流成
分が存在しでおり電流を増加するとともに、この非発光
電流成分の全電流に刻する割合が、増大するためであり
、こめ非発光電流は、オージェ丙結合の可能性がN4め
で)1モいことが明らかになってき九−こノしらの研究
結果に基づけば、電流−光出力特性の飽和を低減するた
めとして活性層の厚さを厚くする、あるいは発光面積を
大きくすることにより注入キャリヤ濃度の低い状態で動
作させるという方正が考えられる。実際活性層を厚くす
る程、又、発光面積を大きくする程飽和はある程度改善
さjする、しかし、活性層を2〜3μm以上に厚くする
と、活性I幀内での光吸収の増大、注入キャリヤの活性
層内の厚入力向での分布が一様でなくなるといったこと
が起こり、光出力を太き(損なうという問題がイトした
り、H1品成長上も、即くするにつれ、良質の結晶を1
4ることが侠めて困難になるという問題があり、活性層
厚を厚くすることにより、飽和を著しく改善することは
、極めて困罷であった。又、発光面積を大きくすること
に関しては、光吸収、注入キャリヤの分相を著しく改善
するためには、発光面積を極めて大きくする必要があり
、通常光7J1信に用いら11ているコア径、数10μ
m程度の光ファイバに結合させると、結合損失が大きく
なりファ・rバ結合パワーを著しく損なうという間匙が
あった。
By the way, a recent 6-year study conducted by the present inventors revealed that the saturation of this current-light output characteristic is caused by a light emission current component proportional to approximately the square of the carriers injected into the InGaA,P active layer +QUn. This is because there is a non-luminescent current component proportional to the third power of n, and as the current increases, the proportion of this non-luminescent current component to the total current increases. It has become clear that the possibility of Auger-C coupling is the highest (at N4).Based on the research results of K-Konoshira et al., the thickness of the active layer can be increased in order to reduce the saturation of the current-light output characteristics. A possible solution is to operate with a low concentration of injected carriers by increasing the thickness or by increasing the light emitting area. In fact, the thicker the active layer and the larger the light emitting area, the better the saturation to some extent. However, if the active layer is made thicker than 2 to 3 μm, light absorption increases within the active layer and the injected carriers increase. The distribution in the thickness direction in the active layer becomes non-uniform, leading to problems such as loss of optical output. 1
However, it has been extremely difficult to significantly improve saturation by increasing the thickness of the active layer. Regarding increasing the light emitting area, in order to significantly improve light absorption and phase separation of injected carriers, it is necessary to make the light emitting area extremely large. several tens of microns
There was a problem that when coupled to an optical fiber of about m length, the coupling loss would increase and the fiber/r fiber coupling power would be significantly impaired.

さらに、このようなオージェ内結合は、InGaAsP
のみではなく、波長1〜1.7μmの光源として使い得
る他の半導体相料でもInGaAsPと同程度あるいは
それ以上起りi外るといったω1究結果もあり、斗導体
拐料を変えることによる解決も困難である。
Furthermore, such intra-Auger coupling is possible in InGaAsP
Not only that, but also other semiconductor phase materials that can be used as a light source with a wavelength of 1 to 1.7 μm have the same or higher occurrence of ω1 than InGaAsP, and it is difficult to solve the problem by changing the conductor layer. It is.

このように、電流−光出力特性の飽和という問題に対し
、実用」−行動な手段は、これまで(喝られていなかっ
t(。
In this way, no practical measures have been taken to date to deal with the problem of saturation of current-light output characteristics.

本発明的、このような欠点をトrくためになさiしたも
ので、ファイバ結合パワーを大きく損なうことなく、電
流−光出力特性の的糾性の著しく改拠したIJI)を提
供するものて・ある。
The present invention has been devised to overcome these drawbacks, and provides an IJI with significantly improved precision in current-optical output characteristics without significantly impairing fiber-coupled power. ·be.

即ち、本発明の発光クイオードータフル・\jIj構造
を有(27、半導体基板の主表面に苅L i[1lii
i方向に光を取出す平面発光型半導体発光タイオードに
おいて、活性層と、第1の導電型オーiyり電Hzとの
間に、第1の導電型半導体層を設け、この第1の導電型
半辺・体層の半導体基板の主表面に対し、水平方向の断
面積を活性層に近い程大きくしたことを特徴とする半導
体発光タイオートである。
That is, it has the light-emitting quardotful structure of the present invention (27, a semiconductor substrate has a semiconductor substrate with a
In a planar light emitting type semiconductor light emitting diode that extracts light in the i direction, a first conductivity type semiconductor layer is provided between the active layer and the first conductivity type Oiy current. This is a semiconductor light-emitting tie-out characterized in that the cross-sectional area in the horizontal direction relative to the main surface of the semiconductor substrate of the side/body layer is increased as it approaches the active layer.

以下に、図面を用いて、本発明について詳細に説明する
The present invention will be explained in detail below using the drawings.

第1図は、本発明のLIIDの原理を説明するだめの図
である。第1図(a)及び(b)は、それぞれ従来反ひ
本発明のJ、18Dの断面の一部をボしている。p型り
ラ、ド層11内の電流のrAすれる領域は、n型又IJ
j11勺抵抗の半導体1fi12でl!t1まれだ′I
iI域131Cより狭窄されている。この電p、狭窄領
域13は、従来のLliiDでは、電流拡がりを用来る
だ()′抑制する目的から、第1図(a)にボした様に
、円柱状、即ち狭窄領域13の直径が、p笥、s14に
最も近い19((D、)から、活性層15に最も近い所
(lJt)までほぼ同じ、即ちDt=D2−になる(兼
にしr&)だ。
FIG. 1 is a diagram for explaining the principle of LIID of the present invention. FIGS. 1(a) and 1(b) partially omit the cross sections of J and 18D of the present invention, respectively, compared to the conventional structure. The region where the current rA in the p-type layer 11 flows is the n-type or IJ
j11 resistance semiconductor 1fi12 l! t1 rare'I
It is narrower than the iI region 131C. In the conventional LliiD, this electric current p and the constriction region 13 are formed in a cylindrical shape, as shown in FIG. , p, and s14 are almost the same from 19((D,) closest to the active layer 15 to the location (lJt) closest to the active layer 15, that is, Dt=D2- (and r&).

本発明のLT(Dは、これとは逆に、電流拡がりを制御
しつつ、積極的に起こさせる目的から、第1図(b)に
示した様に狭窄領域13の直径づζ、p電1が14に最
も近い所〈D、)から活性層15に近つくにつれて、大
きくしている。p矩′1梗14から電流を流すと、活性
層15に近づくにつれて、箪MYの拡がりが大きくなる
う叉、電流の拡がりtよ、市、流値の小さい程大きくな
るう従って、本発明のLEDK電流を流すと、低鳳流で
は、11.流拡がりが大きく電流狭窄領J戊13のhj
i性層匝近い所′T:制限される、1C流を増ずにつれ
1、電流拡がりは、狭窄+rl城13のp 亀49(1
4に■ハ・い7% ”7: 1l−j+1.J、さtす
る。ト!げなり、電流拡かりが小さくなる。この電流拡
がりの変化は従来に比べて、著しく大きくなり発光径の
電流に対する変化は、第2図に/lクシだ様匠偵来に比
べ4側めて大きくなる。
On the contrary, the LT (D) of the present invention is designed to control the current spread while controlling the current spread, so that the diameter of the constriction region 13 is 1 increases as it approaches the active layer 15 from the point (D) closest to 14. When a current is passed from the p rectangle 14, the spread of the current becomes larger as it approaches the active layer 15, and the spread of the current becomes larger as the current value becomes smaller. When LEDK current is applied, 11. The current spread is large and the current constriction region J 13 hj
The area near the i-type layer 'T: is restricted, as the 1C current increases, the current spread is
7% 7: 1l-j+1.J, the current spread becomes smaller.This change in current spread becomes significantly larger than in the past, and the emission diameter increases. The change with respect to the current is shown in Figure 2, which is much larger on the 4th side than in the case of the /l comb.

ところでLEDを光ファイバーに結合させると、結合効
率は、はぼ発光径の2乗に反比イダ1し、発光径が小さ
い程、大きくなる。従って、第2図tヒニホしだ様に、
電流を増fKつjLで、発光径が、へα1著に小さくな
る本発明の、LEl)では、結き効率は、電流の増加と
ともに著[7く大きくなる。従ってファイバ結合パワー
は、従来のIJDでは、電流増加とともに著しく飽和す
るのに対し、本発明の1.T(Dでは、結合効不f、r
: M−i流lや1加とともに大きくなることにより、
4+めで簡素した霜、流−ファイバ結合パワーの直線性
が得られる。
By the way, when an LED is coupled to an optical fiber, the coupling efficiency is approximately equal to the inverse ratio of the square of the emission diameter, and becomes larger as the emission diameter becomes smaller. Therefore, as shown in Figure 2,
In the case of the present invention (LE1) in which the emission diameter becomes significantly smaller by α1 when the current is increased by fK x jL, the coupling efficiency becomes significantly larger by [7] as the current increases. Therefore, the fiber-coupled power saturates significantly as the current increases in conventional IJDs, whereas the fiber-coupled power in 1. T(D, the bonding effect f, r
: By increasing with M-i flow l and 1 addition,
At 4+, simple frost and flow-fiber coupled power linearity is obtained.

以−ヒが、本発明のIJDの動作原理の概略て゛ある。The following is an outline of the operating principle of the IJD of the present invention.

l nG2AsP / I nP系のLEDを例にとっ
て実施例に沿って説明する。第3図は、本発明の一実施
例のLED断面構造を小す1¥1′t′ある。、n型1
nP基板31の上に、。型11Pi32、活性層となる
n型InGaAsPR33、p型InPr@34を液相
エビタパ(シャル法、気相エピタキシ、ル法等により連
続して形成する。p型1nP 34のfi lij K
 、、フォトレジストにより的径数10μmのマスクを
形成する。什学工、チ又は− ドライエッヲにより、p
 m I n P M’1341に選択的にエツチング
l1、メサ状に伽J−する。
An example will be described using an lnG2AsP/lnP-based LED as an example. FIG. 3 shows a cross-sectional structure of an LED according to an embodiment of the present invention. , n-type 1
on the nP substrate 31. The mold 11Pi32, the n-type InGaAsPR33 that will become the active layer, and the p-type InPr@34 are successively formed by liquid phase epitaxy (Shall method, vapor phase epitaxy, Le method, etc.).
, A mask with a target diameter of several 10 μm is formed using photoresist. By science engineering, chi or - Dry Ewo, p
Selective etching l1 on M I n P M'1341 to form a mesa shape.

このメサ状領域35は、In(3aA、sP活性層33
に最も近い所での直径が、InGaAs)’活性石33
から最も離れた所での西経に比べvμm〜10μm暇、
上火きくなる様にする。マスクを除去した後、気相エピ
タキシャル法、有機囮ノ^熱分解法(NOCVD)、分
子線エビクキシャル法等により、p型InP層34の上
にn m、 In]:’ )f 3 fi ?形成する
。次にn型1、Pl肴i36をエツチングし7て〜p型
1nPメサ領域35の上面金y露出させる。次1/Cn
型1nPi餐、36及び、p型1nl’35の表面に、
蒸盾によりAu Z n膜37を形成し、H,又はr嶋
テf、囲気中1′:熱処理して1.型オーミック電壁3
7を形f2ν、する。続いて、n型1nP基IX、(3
1を研磨して、約100μmのp4jさにしA:後、こ
の表面に、A+IG e N i蒸>VllF38’G
形成する。フォトレジストにより、p )j、9. l
nPメザ領域35の上jNiの円形バクーンに合せて、
AH(jeNi膜38上にバク−7形成しで、的洋約1
2 (l Jin+の円形ルくにA、(jeNiケ除去
し、光取り出し悠39を形成する。最後にR7又はN、
′jJ、囲気中で熱処理して、n型オーミック電倹38
′5I:形成する。このLHI)に順方向机流を流すと
、第4図にボした様に、低電流域では、発光径が1υ〜
30μm 程j駿拡がり、電流増加とともに、発光径が
小さくなり−100mA前後のll−b電流域では、発
光径の拡力;りは数/1m以1になる。p型電櫓37の
径が20μmの場合発光径は45μm程度から2511
m程度まで大きく変イヒしてゆく。従って、この)、、
EDを例え(1′:1′コア(モ50μmのグレーテッ
ドインデックスフプイノく−に結合させると、電流が増
すにつれて、結合効率力監大きくなるために、結合〕切
−け、第5図に/]<シた様に、100mA1度で、軍
、 +m 1子20μmの従来のLEDと同程度の市い
値が得られ、しかも、電流−ライ;1七ノj特性の直線
性の著しく改善された従来になG1れだLl特性が侮ら
れた。
This mesa-shaped region 35 has an In(3aA, sP active layer 33
The diameter at the point closest to is InGaAs)' activated stone 33
Vμm~10μm distance compared to the west longitude at the farthest point from
Make sure to heat it up. After removing the mask, nm, In]:') f 3 fi ? Form. Next, the n-type 1 and Pl layers 36 are etched 7 to expose gold y on the upper surface of the p-type 1nP mesa region 35. Next 1/Cn
On the surface of type 1nPi plate 36 and p type 1nl'35,
An Au Zn film 37 is formed using a vapor shield, and heat treated in an atmosphere of 1. Type ohmic electrical wall 3
7 in the form f2ν. Subsequently, n-type 1nP group IX, (3
1 was polished to a p4j thickness of approximately 100 μm. After that, this surface was coated with A+IG e Ni vapor>VllF38'G.
Form. By photoresist, p)j, 9. l
In line with the circular Bakun of jNi above the nP meza region 35,
AH (by forming Bac-7 on the jeNi film 38, the target is about 1
2 (Remove A, (jeNi) from the circular ring of Jin+ to form light extraction Yu 39. Finally, R7 or N,
'jJ, heat treated in an ambient atmosphere to form an n-type ohmic electric current 38
'5I: Form. When a forward mechanical current is applied to this LHI), as shown in Fig. 4, in the low current range, the emission diameter increases from 1υ to
The light emitting diameter expands rapidly by about 30 μm, and as the current increases, the light emitting diameter becomes smaller. In the ll-b current range of around -100 mA, the light emitting diameter expands by several/1 m or more. When the diameter of the p-type electric tower 37 is 20 μm, the emission diameter is from about 45 μm to 2511
It changes greatly until it reaches about m. Therefore, this)
For example, when an ED is coupled to a 1':1' core (Mo 50 μm graded index ink), as the current increases, the coupling efficiency increases, so the coupling is cut, Figure 5. As shown above, at 100 mA 1 degree, a market value comparable to that of a conventional LED with a single 20 μm current can be obtained, and moreover, the linearity of the current - line characteristic is significantly improved. The improved G1 leakage Ll characteristics were underestimated in the past.

第6図は、本発明の別の実施グn不しだ1ン1である。FIG. 6 shows another implementation of the invention.

本実施例は、第3図の実施例に潤し、各1苦の電気的導
’Flv型を反転させている61111ち、p型1nP
基板61の上にp型[++PI曽62、I)型InGa
AsP層63、r、型IMP Iii!64、p型】0
2層6st刀*成している。キャリヤ濃度が同じ場合n
型InPC)!気(云導度れ11、p型InPに比べ数
10倍大きG)。そのため、本実施例でシ11.同じ電
流拡力;す9h果1:i4るのにp型に比べ、I Gl
i以上小さく、sドーピング量で良いといった結晶成長
上の大きな利点があり、又、ドーピング量をp型の場合
と同程度にした場合、n型InP層64のivさを薄く
することができ曲列抵抗を小さくすることができると(
I)、、)だ!I′N性上の利点もある。
This embodiment improves on the embodiment of FIG.
On the substrate 61 is p-type [++PI so62, I) type InGa.
AsP layer 63, r, type IMP Iiii! 64, p type] 0
It is made up of two layers of 6st swords. If the carrier concentration is the same, n
Type InPC)! (conductivity is 11, G is several ten times larger than that of p-type InP). Therefore, in this embodiment, 11. Compared to p-type, I Gl
There is a great advantage in terms of crystal growth that the amount of doping is smaller than i and only the amount of s doping is required.Also, if the amount of doping is the same as that for p-type, the iv of the n-type InP layer 64 can be made thinner. If the column resistance can be reduced (
I),,)! There are also advantages in terms of I'N properties.

これまでの実施例では、I nGaA4]、’ / I
 HP  系のLEDについてンjマしてきだが、他の
Ill −V族化合物半導体拐料を用いだ1.El)に
ついても本発明をフ1す用することができる。
In the previous examples, I nGaA4], ' / I
Although we have talked about HP-based LEDs, other Ill-V group compound semiconductor materials can also be used.1. The present invention can also be applied to El).

以上祥しく述べてきた様に、本発明により、ファイバ結
合パワーを損なうことなく、’lji、流−九出力特件
の直線性の著しく改善しlヒjノ1>D> 1’Jるこ
とかできた。
As mentioned above, the present invention significantly improves the linearity of the output characteristic without impairing the fiber-coupled power. I was able to do it.

【図面の簡単な説明】[Brief explanation of drawings]

第11ヌ1欣び第2図は本発明の動作原911な、第3
図、第4図、第5図は、本発明の81.1の実施(X+
を。 第6図は、第2の実施例をそれぞれボす図である。 図中、15,33.63は話怜→4.31.61は半導
体基板、11,13,34,35,62゜65はn型半
導体層、12.36 64はn型半導体層、14,37
.38は軍使、39は光取り出17窓をそれぞれボす。 代理人弁理士 内原  晋 CO) 第2図 電 タ1dヒ。 躬4図 電流 (mA) 第5図 電流(mA)
11. Figure 2 is the operating principle 911 of the present invention, and Figure 3.
81.1 implementation of the present invention (X+
of. FIG. 6 is a diagram showing the second embodiment. In the figure, 15, 33, 63 are the lines → 4, 31, 61 is the semiconductor substrate, 11, 13, 34, 35, 62, 65 is the n-type semiconductor layer, 12.36 64 is the n-type semiconductor layer, 14, 37
.. 38 opens the military envoy, and 39 opens the 17 light extraction windows. Representative Patent Attorney Susumu Uchihara (CO) Figure 4 Current (mA) Figure 5 Current (mA)

Claims (1)

【特許請求の範囲】[Claims] ダフルへテロ構造を有し、半導体基板の主表面に対し垂
一方向に光を取出す平面発光型半導体発光夕゛イオード
において、活性層と第1の導電型オーミック電樹との間
に、第1の導電型半導体層を設(j、この第1の導電型
半導体層の半導体基板の主表面に対し水平方向の断面積
を、活性層に近い程太きくしたことを特徴とする半導体
発光ダイオ・      −ド。
In a flat light emitting type semiconductor light emitting diode having a double heterostructure and emitting light in one direction perpendicular to the main surface of a semiconductor substrate, a first conductive type ohmic electric tree is disposed between an active layer and a first conductivity type ohmic electric tree. A semiconductor light-emitting diode, characterized in that the cross-sectional area of the first conductive type semiconductor layer in the horizontal direction with respect to the main surface of the semiconductor substrate is made thicker as it approaches the active layer. -Do.
JP57155454A 1982-09-07 1982-09-07 Semiconductor light emitting diode Pending JPS5944878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57155454A JPS5944878A (en) 1982-09-07 1982-09-07 Semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57155454A JPS5944878A (en) 1982-09-07 1982-09-07 Semiconductor light emitting diode

Publications (1)

Publication Number Publication Date
JPS5944878A true JPS5944878A (en) 1984-03-13

Family

ID=15606390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57155454A Pending JPS5944878A (en) 1982-09-07 1982-09-07 Semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JPS5944878A (en)

Similar Documents

Publication Publication Date Title
JPH0381317B2 (en)
JPS6120156B2 (en)
JPS5944878A (en) Semiconductor light emitting diode
US4416011A (en) Semiconductor light emitting device
JPS61125092A (en) Semiconductor light emitting diode
JPH077232A (en) Optical semiconductor device
JP2873462B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS5891689A (en) Semiconductor light-emitting diode
TWI741940B (en) Edge-fired laser element
JPS6243193A (en) Semiconductor laser
JPH04159784A (en) Semiconductor light emitting element and manufacture thereof
JPS61276285A (en) Semiconductor light-emitting device
JPS625674A (en) Semiconductor light emitting diode
JPS5990972A (en) Semiconductor light-emitting diode
JPS6386581A (en) Light emitting diode
JPS5948968A (en) Light-emitting diode
JPS5990973A (en) Semiconductor light-emitting diode
JPS63292684A (en) Light emitting diode
JPS61150294A (en) Semiconductor light emitting device
JPS58154287A (en) Semiconductor light emitting device
JPH0330487A (en) Semiconductor laser and manufacture thereof
JPS593872B2 (en) Method for manufacturing semiconductor light emitting device
JPS5864086A (en) Buried hetero semiconductor laser
JPS61139084A (en) Manufacture of semiconductor device
JPH0283991A (en) Semiconductor laser