JPS61125092A - Semiconductor light emitting diode - Google Patents

Semiconductor light emitting diode

Info

Publication number
JPS61125092A
JPS61125092A JP59246616A JP24661684A JPS61125092A JP S61125092 A JPS61125092 A JP S61125092A JP 59246616 A JP59246616 A JP 59246616A JP 24661684 A JP24661684 A JP 24661684A JP S61125092 A JPS61125092 A JP S61125092A
Authority
JP
Japan
Prior art keywords
active layer
groove
light emitting
light
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59246616A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59246616A priority Critical patent/JPS61125092A/en
Publication of JPS61125092A publication Critical patent/JPS61125092A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve coupling efficiency without impairing light emitting efficiency, by providing a ring shaped groove, whose diameter is less than a specified length and which penetrates an active layer, and using the entire active layer at the inner side of the groove as a light emitting region. CONSTITUTION:On an N type semiconductor substrate 11, an N type semiconductor clad layer 12, an N type semiconductor active layer 13 and P type semiconductor clad layer 14 are sequentially formed, and a double heterogeneous laminated structure is obtained. A ring shaped groove 15 penetrates through the active layer 13 and has an inner diameter less than about 30mum. A P type electrode 16 is formed on the entire surface of the P type clad layer 14 at the inner side of the groove. The entire active layer 13 at the inner side of the groove 15 is made to be a light emitting region. Output light is taken out of a light output window 17, which is provided on the surface of the N type semiconductor substrate 11. A current is injected into the entire active layer 13 and the inner side of the groove 15. Therefore, the entire active layer 13 uniformly emits light, and the coupling efficiency is strikingly improved. Since the inner diameter of the groove 15 is made to be less than about 30mum, the effect is remarkable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信システムの光源として有効な半導体発
光ダイオード(以下LEDと呼ぶ)、特に半導体基板面
に垂直な方向に光を取出す面発光型LEDK関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to semiconductor light emitting diodes (hereinafter referred to as LEDs) that are effective as light sources for optical communication systems, and particularly to surface emitting diodes (hereinafter referred to as LEDs) that emit light in a direction perpendicular to the surface of a semiconductor substrate. Regarding type LEDK.

(従来技術とその問題点) 光通信システムの光源としてLEDは今後増々重要とな
る。仁のようなLEDでは発光輝度が高く光ファイバー
への光入力が大きいことが重要である。それには発光領
域の発光効率とともに、光ファイバーへの結合効率が問
題となる。光通信用ファイバーとして一般的なグレーデ
ッドインデックスファイバーにLEDの光を結合させる
場合結合効率ηCはファイバーのコア径Df、 7 フ
ィバ−の開口数N人、LEDの発光径Daと次式の関係
で表わされる。
(Prior art and its problems) LEDs will become increasingly important as light sources for optical communication systems in the future. It is important for LEDs such as those that the luminance is high and the light input to the optical fiber is large. In order to achieve this, the issue is not only the luminous efficiency of the light emitting region but also the coupling efficiency to the optical fiber. When coupling the light from an LED to a graded index fiber, which is a common fiber for optical communication, the coupling efficiency ηC is determined by the relationship between the core diameter Df of the fiber, the numerical aperture N of the fiber, and the emission diameter Da of the LED as shown in the following equation. expressed.

即ち、LEDの発光径Daが小さいほど結合効率が大き
い。従って発光径をできるだけ小さくすることが望まし
い。
That is, the smaller the luminous diameter Da of the LED, the greater the coupling efficiency. Therefore, it is desirable to make the emission diameter as small as possible.

従来よプ発光径を小さくするためにいくつかの電流狭窄
手段が用いられてきた(光通信素子工学、工学図書、 
(1983) p 128〜9134)。一般的な構造
は酸化膜によシミ流を狭窄したシ、表面近傍に設けた拡
散領域によるpn接合で電流を狭窄した構造である。こ
れら素子表面近傍で電流狭窄を行なう構造では電流が活
性層に達するまで、及び活性膚内で横方向に拡がるため
発光径が電流狭窄径よシ数μm大きくなるとともに発光
強度の半径方向の分布に著しいだれが生じた。そのため
発光径を小さくするには電流狭窄径をそれ以上に数μm
以上小さくしなければならないという問題がある。さら
に発光径が小さくなる程発光強度分布のだれの影響が大
きくなり結合効率は(1)式の関係から大きくずれて発
光径を小さくしても結合効率は向上しないという問題が
ある。
Conventionally, several current confinement methods have been used to reduce the luminous diameter (optical communication device engineering, engineering books, etc.).
(1983) p 128-9134). A typical structure is one in which the stain flow is constricted by an oxide film, and the current is constricted by a pn junction formed by a diffusion region provided near the surface. In these structures where current is constricted near the surface of the device, the current spreads laterally until it reaches the active layer and within the active skin, so the diameter of the emitted light becomes several micrometers larger than the diameter of the current confinement, and the distribution of the emitted light intensity in the radial direction changes. A significant sore occurred. Therefore, in order to reduce the emission diameter, the current confinement diameter should be set several μm beyond that.
There is a problem in that it has to be made smaller than that. Furthermore, as the emission diameter becomes smaller, the influence of the drop in the emission intensity distribution becomes larger, and the coupling efficiency deviates greatly from the relationship expressed by equation (1), so that there is a problem that the coupling efficiency does not improve even if the emission diameter is made smaller.

又、活性層にプロトン照射による高抵抗領域を設は電流
を狭窄する構造がある。この場合発光強度分布のだれは
小さくなるが活性層の発光領域の周囲をプロトン照射に
よる損傷層で囲まれているため、キャリヤが損傷層で非
発光に失なわれ発光部の発光効率が著しく低下するとい
う問題があった。
Further, there is a structure in which a high resistance region is provided in the active layer by proton irradiation to constrict the current. In this case, the drop in the emission intensity distribution becomes smaller, but since the light-emitting region of the active layer is surrounded by a damaged layer due to proton irradiation, carriers are lost in the damaged layer to non-emission, and the light-emitting efficiency of the light-emitting part decreases significantly. There was a problem.

(発明の目的) 本発明はこのような従来の欠点を除去し発光効率を損な
うことなく結合効率を高め光ファイバーへの光入力の高
いLEDを実現するものである。
(Object of the Invention) The present invention aims to eliminate such conventional drawbacks, increase coupling efficiency without impairing luminous efficiency, and realize an LED with high light input to an optical fiber.

(発明の構成) 本発明によれば、活性層を有するダブルヘテロ積層構造
を備えた半導体発光ダイオードにおいて、内径が直径約
30μm以下で活性層を貫通する輪状の溝を有し、この
溝の内側の活性層全体を発光領域としたことを特徴とす
る半導体発光ダイオードである。
(Structure of the Invention) According to the present invention, a semiconductor light emitting diode having a double hetero stack structure having an active layer has an annular groove having an inner diameter of about 30 μm or less and penetrating through the active layer, A semiconductor light emitting diode characterized in that the entire active layer of the semiconductor light emitting diode is used as a light emitting region.

(発明の作用・原理) 第1図は本発明の素子断面構造の一例を示す図である。(Function/principle of invention) FIG. 1 is a diagram showing an example of the cross-sectional structure of an element according to the present invention.

n型半導体基板11上にn型半導体クラ、ド層12.n
il半導体活性層13、p型半導体クラッド層14が順
に形成されておシダプルヘテロ積層構造を呈している。
An n-type semiconductor layer 12 . is formed on the n-type semiconductor substrate 11 . n
An il semiconductor active layer 13 and a p-type semiconductor cladding layer 14 are formed in this order to form a cedar pull hetero-stack structure.

又、活性層13を貫通する内径が直径約30μm以下の
輪状の溝15が形成されている。溝15の内側のP型ク
ラッド層14の表面にはp型電極16が全面に形成され
ておシ、溝15の内側の活性層13全体が発光領域とな
るようにしている。n型半導体基板11の表面に設けら
れた光取出し窓17から出力光を取出す。
Further, a ring-shaped groove 15 having an inner diameter of about 30 μm or less is formed passing through the active layer 13 . A p-type electrode 16 is formed entirely on the surface of the P-type cladding layer 14 inside the groove 15, so that the entire active layer 13 inside the groove 15 becomes a light-emitting region. Output light is extracted from a light extraction window 17 provided on the surface of the n-type semiconductor substrate 11.

本発明では円板状の活性層が形成され、この円板状の活
性層全体に電流が注入されるため、均一に発光を生じる
。その結果、半径方向の発光強度分布は非常に鋭い矩形
状となシ、従来みられていた分布のだれがなくなる。そ
の結果光ファイバーとの結合効率は著しく改善される。
In the present invention, a disk-shaped active layer is formed, and a current is injected into the entire disk-shaped active layer, so that light is emitted uniformly. As a result, the emission intensity distribution in the radial direction has a very sharp rectangular shape, eliminating the droop in the distribution that was conventionally seen. As a result, the coupling efficiency with optical fibers is significantly improved.

第2図は、発光径Daと結合効率η。との関係を示した
図である〃ζ従来第2図に破線で示した様に、発光径D
aが、約30μm以下では結合効率の増加は大きくなく
飽和した。これは発光径が小さくなるにつれて電流波が
りによる発光分布のだれの影響が犬きくなシ有効に結合
されなくなるだめである。本発明により第2図に実線で
示した様に結合効率は著しく改善された。特に発光径が
約30μm以下でその改善は顕著で、径が小さくなる程
改善量が大きい。
Figure 2 shows the emission diameter Da and coupling efficiency η. This is a diagram showing the relationship between
When a is about 30 μm or less, the increase in binding efficiency is not large and becomes saturated. This is because as the emission diameter becomes smaller, the influence of the drooping of the emission distribution due to current waves is no longer effectively combined. According to the present invention, the coupling efficiency was significantly improved as shown by the solid line in FIG. The improvement is particularly remarkable when the emission diameter is about 30 μm or less, and the smaller the diameter, the greater the improvement.

さらに従来の例えばプロトン照射型LEDとは異なシ活
性層発光領域の周囲は欠陥領域で囲まれていないため発
光効率の低下を伴なわない。その結果、結合効率の改善
はそのまま、結合パワーの改善に結びつき、高いファイ
バー人力が得られる。
Furthermore, unlike conventional, for example, proton irradiation type LEDs, the active layer light emitting region is not surrounded by defective regions, so that there is no reduction in light emitting efficiency. As a result, improvement in coupling efficiency directly leads to improvement in coupling power, resulting in high fiber power.

ところで従来報告されているメサ形状を呈したLIDで
はメサの表面に電流狭窄手段を設け、メサの中央部付近
のみ電流を注入させる構造となっている(日立評論Vo
1.65yNolO(1983)p49〜52)。しか
し、この構造では基本的に先に述べた絶縁膜や活性層に
よる電流狭窄と同じで、発光径を小さくした場合に生じ
る発光強度分布のだれにともなう結合効率の劣化は解決
されない。しかるに本発明では溝の内側の活性層全体に
電流が注入されるため活性層全体が均一に発光し結合効
率が著しく改善され、しかも溝の内径が約30μm以下
でその効果が顕著であることが実験によシ明らかとなっ
たものである。
By the way, in the mesa-shaped LID that has been reported so far, a current confinement means is provided on the surface of the mesa, and the current is injected only near the center of the mesa (Hitachi Review Vol.
1.65yNolO (1983) p49-52). However, this structure is basically the same as the current confinement due to the insulating film and active layer described above, and does not solve the problem of deterioration in coupling efficiency due to the fluctuation of the emission intensity distribution that occurs when the emission diameter is made small. However, in the present invention, since the current is injected into the entire active layer inside the groove, the entire active layer emits light uniformly and the coupling efficiency is significantly improved, and this effect is remarkable when the inner diameter of the groove is about 30 μm or less. This has become clear through experiments.

さらに、溝の外側の半導体層は、その表面の位置が溝の
内側の半導体層の表面とほぼ同じ高さにあるため素子の
製造工程において溝の内側の半導体層を欠損から保護し
、歩留シを高くすることができる。又、応力が溝の内側
の半導体層のみに集中しなくなるため信頼性が高いとい
う利点がある。
Furthermore, since the surface of the semiconductor layer outside the trench is almost at the same height as the surface of the semiconductor layer inside the trench, it protects the semiconductor layer inside the trench from defects during the device manufacturing process, increasing yield. It is possible to raise the shi. Furthermore, since stress is not concentrated only on the semiconductor layer inside the groove, there is an advantage that reliability is high.

(実施例) 第3図は本発明の実施例を示す素子断面構造図である。(Example) FIG. 3 is a cross-sectional structural diagram of an element showing an embodiment of the present invention.

n型InP基板11上にn型InP層12、n型InG
aAsP活性層13yp型InP層14、p型InGa
AsPコンタクト層18を順に例えば液相エピタキシャ
ル法により形成する。続いて例えばBrメタノールによ
る化学エツチングによシ、内径的25μmの輪状で、活
性層を貫通する溝15を形成する。溝15の内側のp型
InGaAsPコンタクト層18の表面を除いて他にS
iO□膜21全21し、p型コンタクト層18表面にT
i1t膜を形成しp型電極16とする。n型InP基板
11を厚さ約100μmに研磨した後、輪状の溝を同心
円状に直径約100μmの光取出し窓17を除き、他に
AuGeNi膜を形成しn型電極19とする。最後にp
型電極16上に厚さ10〜20μmの金メッキ層20を
形成する。
An n-type InP layer 12 and an n-type InG layer are formed on an n-type InP substrate 11.
aAsP active layer 13 yp type InP layer 14, p type InGa
The AsP contact layer 18 is sequentially formed by, for example, a liquid phase epitaxial method. Subsequently, by chemical etching using, for example, Br methanol, a ring-shaped groove 15 having an inner diameter of 25 μm and penetrating the active layer is formed. Except for the surface of the p-type InGaAsP contact layer 18 inside the trench 15, S
The entire iO□ film 21 is coated with T on the surface of the p-type contact layer 18.
An ilt film is formed to serve as a p-type electrode 16. After polishing the n-type InP substrate 11 to a thickness of about 100 μm, a light extraction window 17 with a diameter of about 100 μm is formed in the annular groove concentrically, and an AuGeNi film is formed thereon to form the n-type electrode 19. Finally p
A gold plating layer 20 with a thickness of 10 to 20 μm is formed on the mold electrode 16.

第4図は電流対ファイバー人力パワー特性を、本発明の
LED及び、同一ウニバーから作成した8i02電流狭
窄の従来構造LEDについて示した図である。ファイバ
ーはコア径50μm1開口数NA=0.2のグレーデッ
ドインデックスファイバーである。本実施例によりLE
iDの出力光のファイバーへの結合効率が著しく改善し
、ファイバー人カパワーが100μW以上と従来に比べ
2倍以上向上した。さらに溝構造としたため、溝の外側
の半導体層のない単純なメサ構造に比べ製造歩留シが大
巾に向上した。
FIG. 4 shows current vs. fiber human power characteristics for an LED of the present invention and a conventionally constructed LED of 8i02 current constriction made from the same Univar. The fiber is a graded index fiber with a core diameter of 50 μm and a numerical aperture NA=0.2. In this example, LE
The coupling efficiency of iD's output light to the fiber has been significantly improved, and the fiber power is more than 100 μW, more than twice as high as before. Furthermore, because of the groove structure, the manufacturing yield was significantly improved compared to a simple mesa structure without a semiconductor layer outside the groove.

(発明の効果) 本発明によシ発光効率を損なうことなくファイバーとの
結合効率を高め光ファイバーへの光入力の著しく向上し
た高性能なLEDを高い製造歩留シで得ることができた
(Effects of the Invention) According to the present invention, it was possible to obtain a high-performance LED in which the coupling efficiency with the fiber was increased without impairing the luminous efficiency, and the light input to the optical fiber was significantly improved, with a high manufacturing yield.

尚本発明はInGaAsPを活性層とするLEDのみな
らずGaAs等他の半導体のLEDにも適用できる。
The present invention can be applied not only to LEDs using InGaAsP as an active layer but also to LEDs using other semiconductors such as GaAs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図2第2図は本発明の原理を、第1図2第2図は本
発明の実施例をそれぞれ示す図である。 千  2   図 9−光径、Do(μm) 20.4酬メツヤノむ 17.ぜe月ヤd交し葱。 亭  4  口
FIG. 1, FIG. 2, and FIG. 2 illustrate the principle of the present invention, and FIG. 1, FIG. 2, and FIG. 2 illustrate embodiments of the present invention. 1,000 2 Figure 9 - Optical diameter, Do (μm) 20.4 The moon and green onion. Tei 4 mouths

Claims (1)

【特許請求の範囲】[Claims]  活性層を有するダブルヘテロ積層構造を備えた半導体
発光ダイオードにおいて、内径が直径約30μm以下で
活性層を貫通する輪状の溝を有し、この溝の内側の活性
層全体を発光領域としたことを特徴とする半導体発光ダ
イオード。
In a semiconductor light-emitting diode with a double-hetero laminated structure having an active layer, a ring-shaped groove having an inner diameter of about 30 μm or less and penetrating the active layer is provided, and the entire active layer inside the groove is used as a light-emitting region. Features of semiconductor light emitting diodes.
JP59246616A 1984-11-21 1984-11-21 Semiconductor light emitting diode Pending JPS61125092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246616A JPS61125092A (en) 1984-11-21 1984-11-21 Semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246616A JPS61125092A (en) 1984-11-21 1984-11-21 Semiconductor light emitting diode

Publications (1)

Publication Number Publication Date
JPS61125092A true JPS61125092A (en) 1986-06-12

Family

ID=17151051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246616A Pending JPS61125092A (en) 1984-11-21 1984-11-21 Semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JPS61125092A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312871A (en) * 1988-06-10 1989-12-18 Omron Tateisi Electron Co Semiconductor light emitting diode for slit-light
US5753940A (en) * 1995-10-16 1998-05-19 Kabushiki Kaisha Toshiba Light-emitting diode having narrow luminescence spectrum
JP2001308377A (en) * 2000-04-25 2001-11-02 Nippon Sheet Glass Co Ltd Three-terminal light-emitting thyristor and self- scanning light-emitting element array
WO2002005358A1 (en) * 2000-07-10 2002-01-17 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
WO2001080322A3 (en) * 2000-04-19 2002-03-28 Osram Opto Semiconductors Gmbh High-radiance led chip and a method for producing the same
CN100459185C (en) * 2004-12-15 2009-02-04 上海蓝光科技有限公司 Light-emitting diode and method of preparing the same
WO2015094600A1 (en) * 2013-12-20 2015-06-25 LuxVue Technology Corporation Light-emitting diode with current injection confinement trench

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119775A (en) * 1982-12-25 1984-07-11 Fujitsu Ltd Light emitting semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119775A (en) * 1982-12-25 1984-07-11 Fujitsu Ltd Light emitting semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312871A (en) * 1988-06-10 1989-12-18 Omron Tateisi Electron Co Semiconductor light emitting diode for slit-light
US5753940A (en) * 1995-10-16 1998-05-19 Kabushiki Kaisha Toshiba Light-emitting diode having narrow luminescence spectrum
WO2001080322A3 (en) * 2000-04-19 2002-03-28 Osram Opto Semiconductors Gmbh High-radiance led chip and a method for producing the same
US7026657B2 (en) 2000-04-19 2006-04-11 Osram Gmbh High radiance led chip and a method for producing same
US7306960B2 (en) 2000-04-19 2007-12-11 Osram Gmbh High radiance LED chip and a method for producing same
JP2001308377A (en) * 2000-04-25 2001-11-02 Nippon Sheet Glass Co Ltd Three-terminal light-emitting thyristor and self- scanning light-emitting element array
WO2002005358A1 (en) * 2000-07-10 2002-01-17 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
US6946687B2 (en) 2000-07-10 2005-09-20 Osram Gmbh Radiation-emitting semiconductor chip with a radiation-emitting active layer
CN100459185C (en) * 2004-12-15 2009-02-04 上海蓝光科技有限公司 Light-emitting diode and method of preparing the same
WO2015094600A1 (en) * 2013-12-20 2015-06-25 LuxVue Technology Corporation Light-emitting diode with current injection confinement trench
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench

Similar Documents

Publication Publication Date Title
US6420732B1 (en) Light emitting diode of improved current blocking and light extraction structure
JPS62500415A (en) Multi-wavelength light emitting device
US4755485A (en) Method of making light-emitting diodes
JPH07111339A (en) Surface emission type semiconductor light emitting device
US4249967A (en) Method of manufacturing a light-emitting diode by liquid phase epitaxy
JP3239061B2 (en) Light emitting diode and method of manufacturing the same
JPS61125092A (en) Semiconductor light emitting diode
US4220960A (en) Light emitting diode structure
JPS6386580A (en) Light emitting diode
JPS6260278A (en) Semiconductor light emitting diode
JPS625674A (en) Semiconductor light emitting diode
JPH0738147A (en) Semiconductor light emitting device
JPH0479273A (en) Optical transmission electric signal amplifier device
JPS6134984A (en) Semiconductor light-emitting diode
JPH0319369A (en) Semiconductor device
JPH0220853Y2 (en)
JPS6272185A (en) Negative resistance optical device
JPS5871669A (en) Both surfaces light emission type light emitting diode
JPH07169992A (en) Semiconductor light emitter
JPS6320128Y2 (en)
JPS604276A (en) Light emitting element
KR100192231B1 (en) Semiconductor laser diode structure and manufacturing method
JPS62226674A (en) Light-emitting diode
JPS61187383A (en) Manufacture of semiconductor light emitting element
JPS61199679A (en) Semiconductor light-emitting element