JPS6260278A - Semiconductor light emitting diode - Google Patents

Semiconductor light emitting diode

Info

Publication number
JPS6260278A
JPS6260278A JP60199983A JP19998385A JPS6260278A JP S6260278 A JPS6260278 A JP S6260278A JP 60199983 A JP60199983 A JP 60199983A JP 19998385 A JP19998385 A JP 19998385A JP S6260278 A JPS6260278 A JP S6260278A
Authority
JP
Japan
Prior art keywords
type
active layer
semiconductor
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60199983A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60199983A priority Critical patent/JPS6260278A/en
Publication of JPS6260278A publication Critical patent/JPS6260278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve coupling efficiency by a method wherein a whole disk type active layer is used as a light emitting region and two semiconductor layers are contacted with the active layer to form a double-hetero laminated structure and one of the two semiconductor layers, which is contacted with a semiconductor substrate, is given an electric conductivity type of P and the other semiconductor layer is given a type of N. CONSTITUTION:A P-type semiconductor cladding layer 12, an N-type semiconductor active layer 13 and an N-type semiconductor cladding layer 14 are successively formed on an N-type semiconductor substrate 11 to form a double-hetero laminated structure. The active layer is limited to a disk type active layer region 13 with a diameter less than about 30mum. On the most part of the surface of the N-type cladding layer 14 formed immediately above the disk type active layer region 13, an N-type electrode 17 is formed to use the whole disk type active layer region 13 as a light emitting region. A P-type electrode 18 is formed on a part of the surface of the P-type semiconductor cladding layer 12 and an output light is taken out from the surface of the N-type semiconductor substrate 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信システムの光源として有効な半導体発
光ダイオード(以下LFiDと呼ぶ)、特に半導体基板
面に垂直な方向に光を取出す面発光盤LEDに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor light emitting diode (hereinafter referred to as LFiD) which is effective as a light source for an optical communication system, and particularly a surface emitting diode (hereinafter referred to as LFiD) that emits light in a direction perpendicular to the surface of a semiconductor substrate. Regarding board LED.

(従来技術とその問題点) 光通信システムの光源としてLEDは、今後増増重要と
なる。このようなLFSDでは、発光輝度が高く光ファ
イバーへの光入力が大きいことが重要である。それには
、発光領域の発光効率とともに、光ファイバーへの結合
効率が問題となる。光通信用ファイバーとして一般的な
グレーデッドインデックスファイバーにLEDの光を結
合させる場合、結合効率ηCはファイバーのコア径Df
(Prior art and its problems) LEDs will become increasingly important as light sources for optical communication systems in the future. In such an LFSD, it is important that the luminance is high and the light input to the optical fiber is large. For this purpose, the coupling efficiency to the optical fiber becomes a problem as well as the luminous efficiency of the light emitting region. When coupling LED light to a graded index fiber, which is commonly used as an optical communication fiber, the coupling efficiency ηC is determined by the fiber core diameter Df.
.

ファイバーの開口数NA、LEDの発光径Daと次式の
関係で表わされる。
It is expressed by the relationship between the numerical aperture NA of the fiber and the emission diameter Da of the LED as shown in the following equation.

即ち、LEDの発光径Daが小さいほど結合効率が大き
いので発光径をできるだけ小さくすることが望ましい。
That is, the smaller the emission diameter Da of the LED, the higher the coupling efficiency, so it is desirable to make the emission diameter as small as possible.

従来より発光径を小さくするために、いくつかの電流狭
塾手段が用いられてきた(光通信素子工学、工学図書、
(1983)P128〜P134)。一般的な構造は、
酸化膜により電流を狭窄したり、表面近傍に設けた拡散
領域によるpn接合で電流を狭争した構造である。これ
ら素子表面近傍で電流狭窄を行なう構造では、電流が、
活性層に達するまで、及び活性層内で横方向に拡がるた
め発光径が電流狭嗜径より数μm大きくなるとともに発
光強度の半径方向の分布に著しいだれが生じる。そのた
め発光径を小さくするには、電流狭キ径をそれ以上に数
μ霞以上小さくしなければならないという問題がある。
Conventionally, several current narrowing methods have been used to reduce the emission diameter (optical communication device engineering, engineering books,
(1983) P128-P134). The general structure is
This is a structure in which the current is constricted by an oxide film or by a pn junction formed by a diffusion region provided near the surface. In these structures where current confinement occurs near the element surface, the current is
Since it spreads laterally until it reaches the active layer and within the active layer, the emission diameter becomes several μm larger than the current narrowing diameter, and a significant droop occurs in the radial distribution of emission intensity. Therefore, in order to reduce the emission diameter, there is a problem in that the current narrowing diameter must be reduced by several μm or more.

さらに発光径が小さくなる程発光強度分布のだれの影響
が大きくなり、結合効率は(1)式の関係から大きくず
れて発光径を小さくしても結合効率は向上しないという
問題がある。
Furthermore, as the emission diameter becomes smaller, the influence of the drop in the emission intensity distribution increases, and there is a problem that the coupling efficiency deviates greatly from the relationship expressed by equation (1), and the coupling efficiency does not improve even if the emission diameter is made small.

又、活性層にプロトン照射による高抵抗領域を設は電流
を狭喰する構造がある。この構造では発光強度分布のだ
れは小さくなるが、活性層の発光領域の周囲がプロトン
照射による損傷層で囲まれているため、キャリヤが損傷
層で非発光過程により失なわれ発光部の発光効率が著し
く低下するという問題があった。
Further, there is a structure in which a high resistance region is provided in the active layer by proton irradiation to narrow the current. In this structure, the drop in the emission intensity distribution becomes smaller, but because the light-emitting region of the active layer is surrounded by a damaged layer due to proton irradiation, carriers are lost in the damaged layer through non-light-emitting processes, which increases the luminous efficiency of the light-emitting part. There was a problem in that the value decreased significantly.

(発明の目的) 本発明の目的はこのような従来の欠点を除去し、発光効
率を損なうことなく結合効率を高め光ファイバーへの光
入力の高いLFiDを提供することである。
(Objective of the Invention) An object of the present invention is to eliminate such conventional drawbacks, and to provide an LFiD that increases coupling efficiency without impairing luminous efficiency and allows high light input to an optical fiber.

(発明の構成) 本発明によれば、半絶縁性又は口型の電気導電型の半導
体基板上に、活性層を有するダブルヘテロ積層構造を備
えた半導体発光ダイオードによって、直径約30a7F
!以下の円板状に限定された活性層を有し、この円板状
の活性層全体を発光領域とし、この活性層に接し、活性
層とダブルヘテロ積層構造を形成する2つの半導体層の
うち半導体基板に近接する側の半導体層の電気導電型を
P型とし、他方の半導体層を口型としたことを特徴とす
る半導体発光ダイオードが得られる。
(Structure of the Invention) According to the present invention, a semiconductor light emitting diode having a double-hetero laminated structure having an active layer on a semi-insulating or mouth-type electrically conductive semiconductor substrate is used to produce a semiconductor light emitting diode with a diameter of about 30a7F.
! It has an active layer limited to the following disk shape, the entire disk-shaped active layer serves as a light emitting region, and one of the two semiconductor layers that is in contact with this active layer and forms a double-hetero stacked structure with the active layer. A semiconductor light emitting diode is obtained in which the electrical conductivity type of the semiconductor layer on the side closer to the semiconductor substrate is P type, and the other semiconductor layer is of mouth type.

(発明の作用、原理) 第1図は本発明の素子断面構造の一例を示す図で6る。(Operation, principle of invention) FIG. 1 is a diagram showing an example of the cross-sectional structure of an element according to the present invention.

n型半導体基板11上にp型半導体クラッド層12、n
型半導体活性層13、n型半導体クラッド層14が順に
形成されておりダブルヘテロ積層構造を呈している。又
、活性層は、直径約30μm以下の円板状活性層領fi
13に限定されている。円板状活性層領域13の直上部
のn型クラッド層14の表面の大部分に口型電極17が
形成されており、円板状活性層領域13全体が発光領域
となるようにしている。又、P型半導体クラッド層12
の表面の一部にPfi電極が形成されている。そしてn
型半導体基板11の表面から出力光を取出す。
On the n-type semiconductor substrate 11, a p-type semiconductor cladding layer 12, n
A type semiconductor active layer 13 and an n-type semiconductor cladding layer 14 are formed in this order, exhibiting a double-hetero stacked structure. Further, the active layer has a disk-shaped active layer region fi with a diameter of about 30 μm or less.
Limited to 13. A mouth electrode 17 is formed on most of the surface of the n-type cladding layer 14 directly above the disc-shaped active layer region 13, so that the entire disc-shaped active layer region 13 becomes a light-emitting region. Moreover, the P-type semiconductor cladding layer 12
A Pfi electrode is formed on a part of the surface. and n
Output light is extracted from the surface of the semiconductor substrate 11.

本発明では円板状の活性層が形成され、この円板状の活
性層全体に電流が注入されるため、均一に発光を生じる
。その結果、半径方向の発光強度分布は非常に鋭い矩形
状となり、従来みられていた分布のだれがなくなる。こ
のため光ファイバーとの結合効率は著しく改善される。
In the present invention, a disk-shaped active layer is formed, and a current is injected into the entire disk-shaped active layer, so that light is emitted uniformly. As a result, the emission intensity distribution in the radial direction becomes a very sharp rectangular shape, eliminating the droop in the distribution that was previously observed. Therefore, the coupling efficiency with optical fibers is significantly improved.

第2図は、発光径Daと結合効率WCとの関係を示した
図であるが、従来第2図に破線で示した5一 様に、発光径Daが、約30μm以下では結合効率の増
加は大きくなく飽和した。これは発光径が小さくなるに
つれて電流波がりによる発光分布のだれの影響が大きく
なり、有効に結合されなくなるためである。本発明によ
り第2図に実線で示した様に結合効率は著しく改善され
た。特に発光径が約30μm以下でその改善は顕著で、
径が小さくなる程改善量が大きい。
Fig. 2 is a diagram showing the relationship between the emission diameter Da and the coupling efficiency WC. Conventionally, as shown by the broken line in Fig. 2, the coupling efficiency increases when the emission diameter Da is about 30 μm or less. is not large and saturated. This is because as the diameter of the emitted light becomes smaller, the effect of drooping of the emitted light distribution due to current waves increases, and the light is not coupled effectively. According to the present invention, the coupling efficiency was significantly improved as shown by the solid line in FIG. The improvement is particularly noticeable when the emission diameter is approximately 30 μm or less.
The smaller the diameter, the greater the improvement.

さらに従来の例えばプロトン照射型LEDとは異なり活
性層発光領域の周囲は、欠陥領域で囲まれていないため
発光効率の低下を伴なわない。その結果、結合効率の改
善はそのまま、結合パワーの改善に結びつき、高いファ
イバー人力が得られるO ところで、従来報告されているメサ形状を呈したLED
では、メサの表面に電流狭堅手段を設け、メサの中央部
付近のみ電流を注入させる構造となっている( ” 日
立評論Vo1,65.Nol0(1983)P49〜5
2)。しかし、この構造では基本的に、先に述べた絶縁
膜や拡散層による電流狭窄と同じで、発光径を小さくし
た場合に生じる発光強度分布のだれにともなう結合効率
の劣化は解決されない。′しかるに本発明では、円板状
の活性層全体く電流が注入されるため、活性層全体が均
一に発光し結合効率が著しく改善され、しかも円板の直
径が約30μm以下でその効果が顕著であることが実験
により明らかとなったものである。
Furthermore, unlike conventional, for example, proton irradiation type LEDs, the active layer light emitting region is not surrounded by defective regions, so that there is no reduction in light emitting efficiency. As a result, the improvement in coupling efficiency directly leads to the improvement in coupling power, and high fiber power can be obtained.By the way, conventionally reported mesa-shaped LEDs
In this case, a current narrowing means is provided on the surface of the mesa, and the current is injected only near the center of the mesa ("Hitachi Review Vol. 1, 65. No. 0 (1983) P49-5
2). However, this structure is basically the same as the current confinement caused by the insulating film or diffusion layer described above, and does not solve the problem of deterioration in coupling efficiency due to the fluctuation of the emission intensity distribution that occurs when the emission diameter is made small. 'However, in the present invention, since the current is injected throughout the disk-shaped active layer, the entire active layer emits light uniformly and the coupling efficiency is significantly improved, and this effect is noticeable when the disk diameter is about 30 μm or less. It has been revealed through experiments that this is the case.

さらに、活性層13に接する2つの半導体クラッド層の
うち、半導体基板11に近接する側の半導体クラッド層
12をP型に、他方の半導体クラッド層14をn型にし
ている。n[半導体の比抵抗は、P型に比べ数10分の
1以下と著しく小さいため、電流の流路が狭いクラッド
層14をn型とすることによりここでの電気抵抗を著し
く小さくすることができる。さらに、n型半導体へのオ
ーミック電極抵抗はP型に比べ小さいため、クラッド層
14をn型とすることにより電極面積の小さいクラッド
層14へのオーミック電極の抵抗を小さくすることがで
きる。この様に活性層に対し、半導体基板と反対側のク
ラッド層14をnfiとすることにエリ、素子抵抗を著
しく低減することができ、直流動作時での発熱を抵減し
、光出力、信頼性を向上することができる。
Further, of the two semiconductor cladding layers in contact with the active layer 13, the semiconductor cladding layer 12 on the side closer to the semiconductor substrate 11 is of the P type, and the other semiconductor cladding layer 14 is of the N type. Since the specific resistance of n[semiconductors is extremely small, several tenths or less of that of P-type, it is possible to significantly reduce the electrical resistance here by making the cladding layer 14, which has a narrow current flow path, of N-type. can. Furthermore, since the ohmic electrode resistance to an n-type semiconductor is smaller than that to a p-type semiconductor, by making the cladding layer 14 n-type, the resistance of the ohmic electrode to the cladding layer 14 having a small electrode area can be reduced. In this way, by making the cladding layer 14 on the opposite side of the semiconductor substrate from the active layer to NFI, it is possible to significantly reduce element resistance, reduce heat generation during DC operation, and improve optical output and reliability. can improve sexual performance.

又、半導体基板11の電気導電型を半絶縁性又はnfi
としているため、P型に比べ、フリーキャリヤ吸収によ
る光の減衰を著しく低減させることができ、基板11の
表面から取出す光出力を大きくすることができる。
Further, the electrical conductivity type of the semiconductor substrate 11 may be semi-insulating or NFI.
Therefore, compared to the P type, light attenuation due to free carrier absorption can be significantly reduced, and the light output extracted from the surface of the substrate 11 can be increased.

(実施例) 第3図は、本発明の第1の実施例を示す素子断面構造図
である。riiInP基板11上にP型InPクラット
層12、n型InGaAsP  活性層13、n型In
P  クラッド層14、n型InGaAsP  :1ン
タクト層15を順に例えば液相エピタキシャル法により
形成する。続いて、例えばBrメタノールによる化学エ
ツチングにより、円形メサを形成し、活性層13が直径
約25μmの円板状となるようにする。メサ側面に5i
(h膜16を形成する。
(Example) FIG. 3 is a cross-sectional structural diagram of an element showing a first example of the present invention. On the riiInP substrate 11, a P-type InP crat layer 12, an n-type InGaAsP active layer 13, an n-type InP
A P cladding layer 14 and an n-type InGaAsP:1 intact layer 15 are formed in this order by, for example, a liquid phase epitaxial method. Subsequently, a circular mesa is formed by chemical etching using, for example, Br methanol, so that the active layer 13 has a disk shape with a diameter of about 25 μm. 5i on the side of the mesa
(H film 16 is formed.

n型I nGaAsP  コンタクト層15の表面に、
人uGeNi膜を形成しn型電極17とし、P型電極1
8とする。最後に基板11を厚さ約1100Aに研摩す
る。
On the surface of the n-type InGaAsP contact layer 15,
A uGeNi film is formed as an n-type electrode 17, and a p-type electrode 1 is formed.
8. Finally, the substrate 11 is polished to a thickness of about 1100 Å.

本実施例によりLEDの出力光のファイバーへの結合効
率が著しく向上し、ファイバーλカパワーが従来の約2
倍以上向上した。さらK、クラッド層14をn型とした
ために、P型に比べ素子抵抗が175以下に低減され直
流動作時の発熱が著しく低減したことも、光出力の向上
に大きく寄与した。さらにこの発熱の低減により、素子
の信頼性も大巾に向上した。
This embodiment significantly improves the coupling efficiency of the output light from the LED to the fiber, and the fiber λ power is approximately 2
It has improved more than twice. Furthermore, since the cladding layer 14 was made of n-type, the element resistance was reduced to 175 or less compared to P-type, and heat generation during DC operation was significantly reduced, which also contributed greatly to the improvement of optical output. Furthermore, this reduction in heat generation greatly improved the reliability of the device.

第4図は、本発明の第2の実施例を示す。第1の実施例
とは異なり、活性層発光領域13は、活性層を貫通する
溝19により直径約25μmの円板状に限定されている
。又、半導体基板11の導電型は、半絶縁性としている
。半絶縁性基板11上にP型InP  クラyF層12
、n型InGaAsP活性層13、n型InP  クラ
y )’層l 4. nuInGaAs  コンタクト
層15を順に例えば、液相エピタキシャル法により形成
する。続いて、Brメタノールによる化学エツチングに
より内在的−9:^ 25μmの輪状で活性層を貫通′する溝19を形成する
。溝19の外側のn型I nGa AsP  コンタク
ト層15の表面から、P型InP  クラッド層12に
達するzn拡散を行ない選択的にP型拡散領域20を形
成する。溝19の内側のn型I nGaAsPコンタク
ト層150表面にAuGeNi 膜を形成し、n型電極
17とし、溝19の外側のP型拡散領域20表面に人u
Zn膜を形成し、Pfi電極18とする溝19の側面に
5if2膜21を形成する。P型電極1g及びn型電極
17の表面にそれぞれ金メッキ層22.23を形成する
。最後にInP 基板11を厚さ約100μmに研摩し
光取出し口とする。
FIG. 4 shows a second embodiment of the invention. Unlike the first embodiment, the active layer light emitting region 13 is limited to a disk shape with a diameter of about 25 μm by a groove 19 penetrating the active layer. Further, the conductivity type of the semiconductor substrate 11 is semi-insulating. P-type InP cryF layer 12 on semi-insulating substrate 11
, n-type InGaAsP active layer 13, n-type InP crystal layer 4. A nuInGaAs contact layer 15 is sequentially formed by, for example, a liquid phase epitaxial method. Subsequently, by chemical etching with Br methanol, an internal groove 19 having a ring shape of -9:25 .mu.m and penetrating the active layer is formed. Zn diffusion is performed from the surface of the n-type InGaAsP contact layer 15 outside the trench 19 to reach the P-type InP cladding layer 12 to selectively form a P-type diffusion region 20. An AuGeNi film is formed on the surface of the n-type I nGaAsP contact layer 150 inside the groove 19 to serve as the n-type electrode 17, and a film is formed on the surface of the P-type diffusion region 20 outside the groove 19.
A Zn film is formed, and a 5if2 film 21 is formed on the side surface of the groove 19 which will become the Pfi electrode 18. Gold plating layers 22 and 23 are formed on the surfaces of the P-type electrode 1g and the N-type electrode 17, respectively. Finally, the InP substrate 11 is polished to a thickness of about 100 μm to form a light extraction port.

本実施例では、第1の実施例で述べた効果に加えて、溝
構造としたため、溝の外側の半導体層のない第1の実施
例に比べ、製造歩留りが大巾に向上した。これは、溝の
外側の半導体層は、その表面の位置が、溝の内側の半導
体層の表面とほぼ同じ高さにあるため、素子の製造工程
において、溝の内側の半導体層を欠損から保護し、歩留
りを高くすることができることによる。さらに、 In
P基板11を半絶縁性としているため、フリーキャリヤ
吸収が一層減少し、第1の実施例に比べ光出力の改善が
得られた。
In this example, in addition to the effects described in the first example, since the groove structure was used, the manufacturing yield was greatly improved compared to the first example in which there was no semiconductor layer outside the groove. This is because the surface of the semiconductor layer outside the trench is almost at the same height as the surface of the semiconductor layer inside the trench, so the semiconductor layer inside the trench is protected from defects during the device manufacturing process. This is because the yield can be increased. Furthermore, In
Since the P substrate 11 is semi-insulating, free carrier absorption is further reduced, and the optical output is improved compared to the first embodiment.

(発明の効果) 本発明にたり発光効率を損なうことなく、ファイバーと
の結合効率を高め光ファイバーへの光入力の著しく向上
した高性能なLEDを高い製造歩留りで得ることができ
た。
(Effects of the Invention) According to the present invention, it was possible to obtain a high-performance LED in which the coupling efficiency with the fiber was increased and the light input to the optical fiber was significantly improved without impairing the luminous efficiency at a high manufacturing yield.

尚1本発明は、InGaAsP  を活性層とするLE
DのみならずGaAs等他の半導体のLEDにも適用で
きる。
Note 1: The present invention provides an LE having an active layer of InGaAsP.
It can be applied not only to LEDs made of D but also other semiconductors such as GaAs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す断面図、第2図は発光径と
結合効率の関係を示すグラフ、第3図。 第4図は本発明の実施例をそれぞれ示す断面図である。 11・・・・・・基板、12・・・・・・Pgクラッド
層、13・−・・・・活性層、14・−・・・・n[ク
ラッド層、15・・・−・・nfiコンタクト層、16
.21・・・・・・8i0−膜、17・・・・・・n型
電極、18・・・・−・P型電極、19・・・・・・溝
、20・・・・・・P型拡散領域、22.23・・・・
・・金メッキ層。 第1図 率3凹 弔 2 区 発光デモ D次(μ罰
FIG. 1 is a sectional view showing the principle of the present invention, FIG. 2 is a graph showing the relationship between emission diameter and coupling efficiency, and FIG. 3 is a graph showing the relationship between emission diameter and coupling efficiency. FIG. 4 is a sectional view showing each embodiment of the present invention. 11...Substrate, 12...Pg cladding layer, 13...Active layer, 14...n[cladding layer, 15...nfi contact layer, 16
.. 21...8i0-film, 17...n-type electrode, 18...--p type electrode, 19...groove, 20...P Type diffusion region, 22.23...
・Gold plating layer. Figure 1 rate 3 concave condolence 2 ward light emitting demonstration D order (μ penalty

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性又はn型の電気導電型の半導体基板上に、活性
層を有するダブルヘテロ積層構造を備えた半導体発光ダ
イオードにおいて、直径約30μm以下の円板状に限定
された活性層を有し、この円板状の活性層全体を発光領
域とし、この活性層に接し活性層とダブルヘテロ積層構
造を形成する2つの半導体層のうち、前記半導体基板に
近接する側の半導体層の電気導電型をP型とし、他方の
半導体層をn型としたことを特徴とする半導体発光ダイ
オード。
A semiconductor light emitting diode having a double heterostack structure having an active layer on a semi-insulating or n-type electrically conductive semiconductor substrate, the active layer having a disk shape with a diameter of about 30 μm or less, The entire disk-shaped active layer is used as a light-emitting region, and of the two semiconductor layers that are in contact with this active layer and form a double-hetero stacked structure with the active layer, the electrical conductivity type of the semiconductor layer that is closer to the semiconductor substrate is determined. A semiconductor light emitting diode characterized in that the semiconductor layer is of P type and the other semiconductor layer is of N type.
JP60199983A 1985-09-09 1985-09-09 Semiconductor light emitting diode Pending JPS6260278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199983A JPS6260278A (en) 1985-09-09 1985-09-09 Semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199983A JPS6260278A (en) 1985-09-09 1985-09-09 Semiconductor light emitting diode

Publications (1)

Publication Number Publication Date
JPS6260278A true JPS6260278A (en) 1987-03-16

Family

ID=16416832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199983A Pending JPS6260278A (en) 1985-09-09 1985-09-09 Semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JPS6260278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298663U (en) * 1989-01-26 1990-08-06
US4989050A (en) * 1989-08-28 1991-01-29 Motorola, Inc. Self aligned, substrate emitting LED
US5125245A (en) * 1989-11-28 1992-06-30 Clover Mfg. Co., Ltd. Knitting yarn guide
JP2017054954A (en) * 2015-09-10 2017-03-16 株式会社東芝 Light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298663U (en) * 1989-01-26 1990-08-06
US4989050A (en) * 1989-08-28 1991-01-29 Motorola, Inc. Self aligned, substrate emitting LED
US5125245A (en) * 1989-11-28 1992-06-30 Clover Mfg. Co., Ltd. Knitting yarn guide
JP2017054954A (en) * 2015-09-10 2017-03-16 株式会社東芝 Light emitting device

Similar Documents

Publication Publication Date Title
US6420732B1 (en) Light emitting diode of improved current blocking and light extraction structure
JPH11168262A (en) Planar optical device, manufacture thereof, and display device
JP2006066518A (en) Semiconductor light-emitting element and method of manufacturing the same
JPH07111339A (en) Surface emission type semiconductor light emitting device
JP3239061B2 (en) Light emitting diode and method of manufacturing the same
JP2947155B2 (en) Semiconductor light emitting device and method of manufacturing the same
US4908830A (en) Buried type semiconductor laser device
JPH10335696A (en) Light emitting diode array
JPS6260278A (en) Semiconductor light emitting diode
JPS61125092A (en) Semiconductor light emitting diode
TW201806180A (en) Light-emitting diode
JPS6032373A (en) Lateral light emitting light emitting diode array structure
JPS625674A (en) Semiconductor light emitting diode
JPH0738147A (en) Semiconductor light emitting device
JPS6134984A (en) Semiconductor light-emitting diode
KR950002208B1 (en) Laser diode and manufacturing method thereof
JPH07202259A (en) Gaalas light emitting diode
JPS6133275B2 (en)
KR100192231B1 (en) Semiconductor laser diode structure and manufacturing method
JP2000269546A (en) Optical semiconductor element
JPS61199679A (en) Semiconductor light-emitting element
JP2001177148A (en) Semiconductor light emitting element and manufacturing method therefor
JPH01138768A (en) Light-emitting diode array
JPS61184889A (en) Semiconductor light emitting device
JPH06350132A (en) Semiconductor luminous element array