JPS62226674A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JPS62226674A
JPS62226674A JP61071758A JP7175886A JPS62226674A JP S62226674 A JPS62226674 A JP S62226674A JP 61071758 A JP61071758 A JP 61071758A JP 7175886 A JP7175886 A JP 7175886A JP S62226674 A JPS62226674 A JP S62226674A
Authority
JP
Japan
Prior art keywords
layer
projection
light emitting
active layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61071758A
Other languages
Japanese (ja)
Inventor
Noboru Iwasaki
登 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61071758A priority Critical patent/JPS62226674A/en
Publication of JPS62226674A publication Critical patent/JPS62226674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To form the intensity distribution of a light emitting section to an approximately rectangular shape, and to improve coupling efficiency to an optical fiber by forming a projection with a circular surface at the central section of a substrate surface and prcviously surrounding the periphery of the projector by a high resistance semi conductor layer when an active layer, a clad layer and a contact layer are liquid- grown on a semiconductor substrate in an epitaxial manner. CONSTITUTION:A circular projection having tbe area of a top of anproximately 30mum<2> is shaped to the surface of an n-type InP substrate l through etching, and the peripheral section of tbe projection is surrounded by a high-resistance InP layer 2 through a liquid phase epitaxial method. An InGaAsP active layer 3, a p-type InP clad layer 4 and a p-typo InGaAsP contact layer 5 are liquid-grown on tbe whole surface including the projection in an epitaxial manner in succession, and a p side electrode 8 is applied onto the layer 5 and an n side elcctrode 9 onto the back of tbe substrate l respectively. A window for cxtracting beams having a diameter of approximately 120mum is bored to the electrode 9, and the window is coated with an antireflection film 10. Accordingly, since a current blocking layer is formed to the peripheral section of the projection, a current injection section is limited, thus equalizing the density of current injection to the active layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ通信用の発光ダイオードに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to light emitting diodes for optical fiber communications.

〔従来の技術〕[Conventional technology]

従来の発光ダイオードは第3図に示すように、平坦な半
導体基板の上に順次活性層、クラツド層5コンタクト層
をエピタキシャル成長させて作成していた。第3図にお
いて、1は半導体基板(例えばInP)、2は高抵抗層
(InP)、3は活性層(1nGaAsP)、4はクラ
ッド層(p型InP)、5はコンタクト層(p型InG
aAsP ) 、8はp側電極、9はn側電極、10は
反射防止膜である。
A conventional light emitting diode, as shown in FIG. 3, was fabricated by sequentially epitaxially growing an active layer, a cladding layer, and a contact layer on a flat semiconductor substrate. In FIG. 3, 1 is a semiconductor substrate (for example, InP), 2 is a high-resistance layer (InP), 3 is an active layer (1nGaAsP), 4 is a cladding layer (p-type InP), and 5 is a contact layer (p-type InG).
aAsP ), 8 is a p-side electrode, 9 is an n-side electrode, and 10 is an antireflection film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の発光ダイオードでは、エピタキシャル成
長層が面方向では一様であるが、光ファイバへの結合効
率を高めるために、発光部を光ファイバのコア径程度に
限定しなければならず、そのためにエピタキシャル成長
層表面に一部を除いて電気絶縁膜を形成するなどして、
一部分にだけ電流が注入されるようにし、発光部を限定
してい友。しかし、従来の方法では電流注入を限定する
部分と活性層かはなれているため活性層では電流が両方
向へ広がり、発光部内での電流密度が一定ではなくなる
。このため発光部周辺では発光強度が徐々に小さくなっ
て光ファイバとの結合効率が悪くなったシ、場所によっ
て発光波長や応答速度が変化するため光ファイバとの結
合のし方によって発光波長や応答速度にばらつきが出た
シした。
In the conventional light emitting diode described above, the epitaxial growth layer is uniform in the plane direction, but in order to increase the coupling efficiency to the optical fiber, the light emitting part must be limited to the diameter of the optical fiber's core. By forming an electrical insulating film on the surface of the epitaxial growth layer except for a part,
The current is injected only into one part, limiting the light emitting part. However, in the conventional method, since the part that limits current injection is separated from the active layer, the current spreads in both directions in the active layer, making the current density within the light emitting part not constant. For this reason, the light emission intensity gradually decreases around the light emitting part, and the coupling efficiency with the optical fiber deteriorates.The light emission wavelength and response speed change depending on the location, so the light emission wavelength and response speed vary depending on the way of coupling with the optical fiber. There was some variation in speed.

特に発光部周辺部の光を光ファイバで受けると応答速度
が遅くなってしまう。また従来の発光ダイオードでは、
pn接合がチップ全面にわ之っているためpn接合容量
が大きく応答速度が遅くなっている。
In particular, when light from the periphery of the light emitting part is received by an optical fiber, the response speed becomes slow. In addition, with conventional light emitting diodes,
Since the pn junction extends over the entire surface of the chip, the pn junction capacitance is large and the response speed is slow.

上述したような欠点をなくすため始め少なくとも活性層
をエピタキシャル成長し、エピタキシャル成長層を発光
部を残して発光部周辺部をエツチングにより取シ除き、
さらに発光部周辺に電流阻止層をエピタキシャル成長す
る構造や(例えば、特開昭59−125679号公報)
、始めに電流阻止層をエピタキシャル成長させてから一
部分だけ半導体基板まで達する穴をあけ、その上に活性
層を含む層をエピタキシャル成長する構造(例えば、特
開昭59−121885号公報)により、電流注入部の
限定をエピタキシャル成長層内部で行って電流の構体が
りを防ぐ方法が考えられているが、どちらの方法もエピ
タキシャル成長を2度行なう必要がある。
In order to eliminate the above-mentioned drawbacks, at least the active layer is epitaxially grown, and the epitaxially grown layer is removed by etching the area around the light emitting part, leaving the light emitting part.
Furthermore, a structure in which a current blocking layer is epitaxially grown around the light emitting part (for example, Japanese Patent Laid-Open No. 59-125679)
, a current injection part is formed by first epitaxially growing a current blocking layer, then making a hole that partially reaches the semiconductor substrate, and epitaxially growing a layer including an active layer thereon (for example, Japanese Patent Laid-Open No. 121885/1985). A method has been considered in which the current is limited within the epitaxial growth layer to prevent the current structure from becoming distorted, but both methods require epitaxial growth to be performed twice.

本発明の目的は、1回のエピタキシャル成長でエピタキ
シャル成長層内で電流注入部が限定され、活性層への注
入電流密度が一様になり、光7アイパへの結合効率が改
善され、かつ発光波長や応答速度のばらつきが小さく、
かつpn接合容量も低減でき応答速度を改善することが
できる発光ダイオードを提供することにある。
The purpose of the present invention is to limit the current injection part in the epitaxial growth layer in one epitaxial growth, to make the injection current density to the active layer uniform, to improve the coupling efficiency to the optical 7 eyeper, and to improve the emission wavelength and Small variation in response speed,
Another object of the present invention is to provide a light emitting diode that can reduce pn junction capacitance and improve response speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による発光ダイオードは、半導体基板表面に頂上
が円形の突起を形成し、液相エピタキシャル成長により
前記突起の頂上部以外に高抵抗半導体層または半導体基
板と逆の導電型を有する半導体層を成長させることによ
り電流阻止層を形成し、その上に順次活性層、クラッド
層、コンタクト層を含む層をエピタキシャル成長させる
ことによって、前記半導体基板の突起部にのみ電流注入
されるようにした構造を有している。
In the light emitting diode according to the present invention, a projection having a circular top is formed on the surface of a semiconductor substrate, and a high-resistance semiconductor layer or a semiconductor layer having a conductivity type opposite to that of the semiconductor substrate is grown on a region other than the top of the projection by liquid phase epitaxial growth. The semiconductor substrate has a structure in which current is injected only into the protruding portions of the semiconductor substrate by forming a current blocking layer and epitaxially growing layers including an active layer, a cladding layer, and a contact layer on the current blocking layer. There is.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の第1の実施例の断面図である。第1
図に示すように、n型InP基板10表面に頂上が直径
30μmの円形である突起をエツチングにより形成する
。次いでその基板上に液相エピタキシャル成長により高
抵抗InP層2を突起の周辺部に成長し、さらに全面に
InGaAsP活性層3、p型InPクラッド層4、p
型InGaAsPコンタクト層5、を順次成長する。次
に、コンタクト層の上にp側電極8を形成し、InP基
板を厚さ140μm になるように鏡面研摩してからn
1tQ電極9を形成する。n側電極には直径120μm
の光取出し用窓を開け、そこに反射防止膜1oを形成す
る。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a first embodiment of the invention. 1st
As shown in the figure, a circular protrusion with a top having a diameter of 30 μm is formed on the surface of an n-type InP substrate 10 by etching. Next, a high-resistance InP layer 2 is grown on the substrate by liquid phase epitaxial growth around the protrusion, and an InGaAsP active layer 3, a p-type InP cladding layer 4, and a p-type InP cladding layer 4 are then grown on the entire surface.
An InGaAsP type contact layer 5 is successively grown. Next, a p-side electrode 8 is formed on the contact layer, and the InP substrate is mirror-polished to a thickness of 140 μm.
A 1tQ electrode 9 is formed. The n-side electrode has a diameter of 120 μm.
A light extraction window is opened and an antireflection film 1o is formed there.

上記の実施例では電流注入を限定している部分が活性層
のすぐ下の層である之め活性層での電流広がりが低減さ
れ、発光強度分布が矩形状に近くなシ、光ファイバーへ
の入力パワが増加する。ま次回様に注入電流密度が均一
になったことと、高抵抗層によってpn接合容量が減少
することにより、応答速度特性も改善される。
In the above embodiment, the part that limits current injection is the layer immediately below the active layer, so the current spread in the active layer is reduced and the emission intensity distribution is nearly rectangular, which reduces the input to the optical fiber. Power increases. Second, the response speed characteristics are also improved because the injected current density becomes uniform and the pn junction capacitance is reduced by the high resistance layer.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

第2図に示すように、n型1nP 基板lの表面に頂上
が直径30μmの円形である突起をエツチングにより形
成する。その上に液相エビタキシャル成長によりp型I
nP層5.n型InP層7の2層を突起の周辺に順次成
長する。その後筒1の実施例と同様の工程によりInG
aAsP活性層3.p型InPクラッド層4+p型In
GaAsP :M/クラッド層形成し、次いで、p側電
極8.n側電極9゜反射防止膜10を形成し第2の実施
例の発光ダイオードを完成する。第2の実施例では半導
体基板と逆の導電型を有する半導体層が形成されている
ので第1の実施例と同様この層が電流阻止層として機能
することができる。
As shown in FIG. 2, a circular protrusion with a top having a diameter of 30 μm is formed on the surface of an n-type 1nP substrate 1 by etching. On top of that, p-type I is formed by liquid phase epitaxial growth.
nP layer5. Two n-type InP layers 7 are sequentially grown around the protrusion. Thereafter, by the same process as in the example of cylinder 1, InG
aAsP active layer 3. p-type InP cladding layer 4+p-type In
GaAsP:M/cladding layer is formed, and then p-side electrode 8. An antireflection film 10 is formed on the n-side electrode 9° to complete the light emitting diode of the second embodiment. In the second embodiment, since a semiconductor layer having a conductivity type opposite to that of the semiconductor substrate is formed, this layer can function as a current blocking layer as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板表面に突起を
形成し、その突起周辺に電流阻止層をエピタキシャル成
長させてから活性層、クラッド層。
As explained above, in the present invention, a protrusion is formed on the surface of a semiconductor substrate, a current blocking layer is epitaxially grown around the protrusion, and then an active layer and a cladding layer are formed.

コンタクト層を営む層をエピタキシャル成長させること
により、1回のエピタキシャル成長でエピタキシャル成
長層内で電流注入部が限定され活性層への注入電流密度
が一様になる発光ダイオードを得ることができる。本発
明による発光ダイオードは発光部強度分布が矩形状に近
くなり光ファイバへの結合効率が改善されると共に、発
光部内での発光波長や応答速度のばらつきが小さく光フ
ァイバへの結合のし方による波長や応答速度のばらつき
を押えることができる。また電流阻止層に高抵抗半導体
層を用いることによって、pn接合容量を低減でき応答
速度を改善することができる。
By epitaxially growing a layer serving as a contact layer, it is possible to obtain a light-emitting diode in which a current injection portion is limited within the epitaxially grown layer and the density of current injected into the active layer is uniform by one epitaxial growth. In the light emitting diode according to the present invention, the intensity distribution of the light emitting part becomes close to a rectangular shape, and the coupling efficiency to the optical fiber is improved, and the variation in the light emission wavelength and response speed within the light emitting part is small, depending on the method of coupling to the optical fiber. Variations in wavelength and response speed can be suppressed. Furthermore, by using a high-resistance semiconductor layer for the current blocking layer, the pn junction capacitance can be reduced and the response speed can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の断面図、第2図は本発
明の第2の実施例の断面図、第3図は従来の発光ダイオ
ードの一例の断面図である。 1・・・・・・半導体基板(n型1nP)、2・・・・
・・高抵抗層(1nP)、3・・・・・・活性層(In
GaAsP)、 4・・・・・・クラッド層(p型In
P) 、5−−−−−−コンタクト層(p型InGaA
sP )、6・・・・・・p型InP層、7・・・・・
・n型InP層、8・・・・・・p側電極、9・・・・
・・n側電極、10・・・・・・反射防止膜、11・・
・・・・5i02i気絶縁膜。 代理人 弁理士  内 原   1   ′日 猶1圀 峯Z回 Y″51¥I
FIG. 1 is a sectional view of a first embodiment of the invention, FIG. 2 is a sectional view of a second embodiment of the invention, and FIG. 3 is a sectional view of an example of a conventional light emitting diode. 1... Semiconductor substrate (n-type 1nP), 2...
... High resistance layer (1nP), 3... Active layer (In
4... Cladding layer (p-type In
P), 5-----Contact layer (p-type InGaA
sP ), 6... p-type InP layer, 7...
・N-type InP layer, 8...p-side electrode, 9...
...N-side electrode, 10...Anti-reflection film, 11...
...5i02i insulation film. Agent Patent Attorney Hara Uchi 1 'day 1 Kunimine Z times Y''51 ¥I

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に液相エピタキシャル成長法により
順次形成された活性層、クラッド層、コンタクト層を含
んでなる発光ダイオードにおいて、前記半導体基板表面
に頂上が円形の突起が形成され、該基板上に形成された
突起の頂上部以外の表面に液相エピタキシャル成長法に
より高抵抗半導体層が形成され、該高抵抗半導体層を含
む全表面に順次少なくとも活性層、クラッド層、コンタ
クト層が形成されてなることを特徴とする発光ダイオー
ド。
(1) In a light emitting diode comprising an active layer, a cladding layer, and a contact layer that are sequentially formed on a semiconductor substrate by liquid phase epitaxial growth, a protrusion with a circular top is formed on the surface of the semiconductor substrate, and a protrusion with a circular top is formed on the surface of the semiconductor substrate. A high-resistance semiconductor layer is formed on the surface other than the top of the formed protrusion by liquid phase epitaxial growth, and at least an active layer, a cladding layer, and a contact layer are sequentially formed on the entire surface including the high-resistance semiconductor layer. A light emitting diode featuring
(2)半導体基板上に液相エピタキシャル成長法により
順次形成された活性層、クラッド層、コンタクト層を含
んでなる発光ダイオードにおいて、第1の導電型を有す
る前記半導体基板表面に頂上が円形の突起が形成され、
該基板上に形成された突起の頂上部以外の表面に液相エ
ピタキシャル成長法により第2の導電型を有する半導体
層が形成され、さらにその上に順次第1の導電型を有す
る半導体層、活性層、第2の導電型を有するクラッド層
、第2の導電型を有するコンタクト層が形成されてなる
ことを特徴とする発光ダイオード。
(2) In a light emitting diode comprising an active layer, a cladding layer, and a contact layer sequentially formed on a semiconductor substrate by a liquid phase epitaxial growth method, a projection having a circular top on the surface of the semiconductor substrate having a first conductivity type is provided. formed,
A semiconductor layer having a second conductivity type is formed on the surface other than the top of the protrusion formed on the substrate by a liquid phase epitaxial growth method, and further thereon, a semiconductor layer having a first conductivity type and an active layer are sequentially formed. A light emitting diode comprising: a cladding layer having a second conductivity type; and a contact layer having a second conductivity type.
JP61071758A 1986-03-28 1986-03-28 Light-emitting diode Pending JPS62226674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071758A JPS62226674A (en) 1986-03-28 1986-03-28 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071758A JPS62226674A (en) 1986-03-28 1986-03-28 Light-emitting diode

Publications (1)

Publication Number Publication Date
JPS62226674A true JPS62226674A (en) 1987-10-05

Family

ID=13469760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071758A Pending JPS62226674A (en) 1986-03-28 1986-03-28 Light-emitting diode

Country Status (1)

Country Link
JP (1) JPS62226674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590633A (en) * 1991-09-25 1993-04-09 Hitachi Cable Ltd Light emitting diode and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590633A (en) * 1991-09-25 1993-04-09 Hitachi Cable Ltd Light emitting diode and its manufacture

Similar Documents

Publication Publication Date Title
JPS62226674A (en) Light-emitting diode
JPS61125092A (en) Semiconductor light emitting diode
JPS63269593A (en) Semiconductor laser device and its manufacture
JPS5871669A (en) Both surfaces light emission type light emitting diode
KR910005392B1 (en) Manufacturing method of double-hetero junction type led with junction current limited region
JPS6318874B2 (en)
JPS63292684A (en) Light emitting diode
JPH0479274A (en) Light emitting device
KR0179018B1 (en) Method of manufacturing laser diode
JP3046161B2 (en) Semiconductor device including undoped layer
JPS62259490A (en) Buried hetero structure semiconductor laser
JPH01215081A (en) Semiconductor light emitting device
JPS6244715B2 (en)
JPH02114676A (en) Semiconductor light emitting element and manufacture thereof
JPS6243191A (en) Semiconductor laser device
JPS60161690A (en) Manufacture of semiconductor laser device
JPH06326403A (en) Manufacture of semiconductor laser element
JPH01309393A (en) Semiconductor laser device and its manufacture
JPH01179388A (en) Junction type semiconductor light emitting element
JPS5992582A (en) Surface light emitting type semiconductor light emitting diode
JPH06152066A (en) Semiconductor laser element
JPS60176287A (en) Manufacture of stripped structure double hetero- junction type laser
JPS6132583A (en) Semiconductor light-emitting element
JPS61288477A (en) Plane light emitting diode
JPH027488A (en) Buried heterostructure semiconductor laser