JPS6132583A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS6132583A
JPS6132583A JP59154827A JP15482784A JPS6132583A JP S6132583 A JPS6132583 A JP S6132583A JP 59154827 A JP59154827 A JP 59154827A JP 15482784 A JP15482784 A JP 15482784A JP S6132583 A JPS6132583 A JP S6132583A
Authority
JP
Japan
Prior art keywords
active layer
current injection
groove
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59154827A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59154827A priority Critical patent/JPS6132583A/en
Publication of JPS6132583A publication Critical patent/JPS6132583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides

Abstract

PURPOSE:To realize an LED having high performance and a surface light-emitting laser easily by selectively forming a current injection region to one part of an active layer in a groove and extracting main output beams in the direction vertical to a substrate surface. CONSTITUTION:A semiconductor active layer 12 is formed into a groove 11 in a semiconductor substrate 10, a current injection region is shaped selectively to one part of the active layer 12, and main output beams are extracted in the direction vertical to the surface of the semiconductor substrate 10. The active layer 12 such as a p type InGaAsP one 12 and a p type InP layer 13 are formed onto the substrate 10 such as an n type InP one 10, to which the groove 11 is formed, through a liquid-phase epitaxial growth method in succession. An SiO2 film 14 is shaped onto the surface of the p type InP layer 13, and the SiO2 film is removed circularly in a section just above the groove 11, and used as a current injection port 15. TiPt is evaporated onto the surfaces of the SiO2 film 14 and the current injection port 15, and employed as a p type electrode 16. A section just under the current injection port 15 functions as the current injection region for the active layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明祉、高輝度半導体発光ダイオード及び面発光レー
ザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high brightness semiconductor light emitting diode and a surface emitting laser.

(従来技術とその問題点) 光通信や光情報処理システムの光源として、半導体発光
ダイオード(以下LEDと呼ぶ)及び面発光レーザは今
後増々重要となる。LEDにおいては、発光輝度が高く
、光ファイバーへの光入力が大きな高出力LEDがシス
テム上必要となる。
(Prior art and its problems) Semiconductor light emitting diodes (hereinafter referred to as LEDs) and surface emitting lasers will become increasingly important as light sources for optical communications and optical information processing systems. For LEDs, a system requires a high-output LED with high luminance and high light input to the optical fiber.

LEDの出力を高めるには、いくつかの要素があるが、
なかでも、発光部の発光効率を高くすることが最も基本
的で重要な要素である。ところで発光部の発光効率は、
発光部を有する活性層と呼ばれる半導体層の厚さと密接
に関連しており、高出力を得るには、この活性層の厚さ
を厚くする必要がある。特に、発光波長1μm帯のLE
Dでは、この波長帯の半導体材料に顕著なオージェ再結
合という非発光過程が強いため、活性層厚を1〜2μm
以上に厚くすることが、高出力化の極めて重要な要素で
ある。
There are several factors to increase the output of LEDs.
Among these, the most fundamental and important factor is to increase the luminous efficiency of the light emitting section. By the way, the luminous efficiency of the light emitting part is
It is closely related to the thickness of a semiconductor layer called an active layer that has a light emitting part, and in order to obtain high output, it is necessary to increase the thickness of this active layer. In particular, LE with an emission wavelength of 1 μm band
In D, the active layer thickness is set to 1 to 2 μm because semiconductor materials in this wavelength band have a strong non-emissive process called Auger recombination.
Increasing the thickness above is an extremely important factor in achieving high output.

一方、面発光レーザは、活性層面に垂直な方向に光を取
出す半導体レーザであるが、この場合も発振しきい値を
下げるKは、利得領域を大きくするために活性層を2μ
m以上に厚くすることが重要である。このようにLED
や面発光レーザにおいて、特性上活性層厚を厚くするこ
とが不可欠である。
On the other hand, a surface emitting laser is a semiconductor laser that emits light in a direction perpendicular to the surface of the active layer, but in this case as well, K to lower the oscillation threshold is required to increase the active layer by 2 μm in order to increase the gain region.
It is important to make the thickness thicker than m. LED like this
In surface-emitting lasers and surface-emitting lasers, it is essential to increase the thickness of the active layer due to their characteristics.

従来LEDや面発光レーザは、活性層は平〆であっり(
トランザクション・オン・エレクトロン・テバイス(I
EEE Trans、Electron、Dev、)g
D−30,(1983)285.ジャーナル・オン・カ
ンタム・エレクトロニクス(IIE、J、O,E、)O
R−19(1983)1035   )。
Conventional LEDs and surface emitting lasers have flat active layers (
Transactions on Electron Devices (I
EEE Trans, Electron, Dev,)g
D-30, (1983) 285. Journal on Quantum Electronics (IIE, J, O, E,) O
R-19 (1983) 1035).

しかしながら、従来のような構造で活性層を1〜2μm
以上に厚くすると、結晶成長においてウェハの周囲に生
じるエツジグロースのために、結晶成長層間の組成の混
シ込みが起き、結晶品質を著しく低下させ、発光効率も
低下させるという問題があった。又、厚い活性層の成長
始めと終りで、成長条件が大きく異なるため、層厚方向
の組成の変動が大きくなるという問題もあった。
However, in the conventional structure, the active layer is 1 to 2 μm thick.
If it is made thicker than this, there is a problem in that edge growth that occurs around the wafer during crystal growth causes mixing of the composition between the crystal growth layers, significantly reducing crystal quality and reducing luminous efficiency. Furthermore, since the growth conditions are significantly different between the beginning and the end of the growth of the thick active layer, there is also the problem that the compositional variation in the layer thickness direction becomes large.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、高性
能なり、HDや面発光レー゛ザを容易に実施することを
可能にするものである。
(Object of the Invention) The present invention eliminates such conventional drawbacks and makes it possible to easily implement high performance, HD, and surface emitting lasers.

(発明の1##X) 本発明によれば、化合物半導体を活性層とする半導体発
光素子において、溝を設けた半導体基板と、少なくとも
この溝内に設けた半導体活性層とを少なくとも有し、溝
内の活性層の一部に選択的に電流注入領域を設け、前記
半導体基板面に垂直な方向に主出力光を取出すことf:
特徴とする、半導体発光素子である。
(Invention 1 ## Selectively providing a current injection region in a part of the active layer in the groove and extracting the main output light in a direction perpendicular to the surface of the semiconductor substrate f:
This is a semiconductor light-emitting device with characteristics.

(本発明の作用・原理) 本発明の発光素子は、活性層が基板に設けられた溝内に
形成されている。例えば液相エビクキシャル成長法で活
性層を形成すると、溝内の成長速鑵 度が溝外部の平グ部よシ著しく大きいため、溝内に優先
的に結晶成長が起こる。そのため、基板の大部分を占め
る平趙′部の活性層が薄い状態で溝部の活性層を厚く形
成することができる。その結果、従来問題であったエツ
ジグロースに起因した結晶品質の低下を除去することが
でき、高発光効率な厚膜活性層を得ることができる。
(Operation/Principle of the Present Invention) In the light emitting element of the present invention, the active layer is formed in a groove provided in a substrate. For example, when an active layer is formed by a liquid phase eviaxial growth method, crystal growth occurs preferentially within the grooves because the growth rate within the grooves is significantly higher than that of the flat portions outside the grooves. Therefore, the active layer in the groove part can be formed thick while the active layer in the flat part occupying most of the substrate is thin. As a result, the conventional problem of deterioration in crystal quality caused by edge growth can be eliminated, and a thick film active layer with high luminous efficiency can be obtained.

又、溝の深さを深くシ、溝幅を狭くすることによ勺、厚
さ数μm程度の活性層を形成することができ、その結果
、面発光レーザの利得領域が太きくなり、レーザ発振し
きい値が低くなる。
In addition, by increasing the depth of the groove and narrowing the groove width, it is possible to form an active layer with a thickness of several micrometers.As a result, the gain region of the surface-emitting laser becomes thicker, and the laser Oscillation threshold becomes lower.

(実施例) 第1図は、本発明の一実施例を示す図である。(Example) FIG. 1 is a diagram showing an embodiment of the present invention.

この実施例は、InGaAsPを活性層としたLBDで
ある。深さ2〜3μm1幅20〜30μmの溝11を形
成したn型InP基板10の上にP型1nGaAsP活
性層12、P型InP層13を順に液相エピタキシャル
成長法によ多形成する。P型InP層13の表面にSi
O□膜14全14した後、溝11の直上部に直径10〜
20μmの円形状に8i0□膜を除去し、電流注入口1
5とする。
This example is an LBD with an active layer made of InGaAsP. A P-type 1nGaAsP active layer 12 and a P-type InP layer 13 are sequentially formed by liquid phase epitaxial growth on an n-type InP substrate 10 in which a groove 11 having a depth of 2 to 3 μm and a width of 20 to 30 μm is formed. Si on the surface of the P-type InP layer 13
After the entire O□ film 14 has been removed, a diameter 10~
Remove the 8i0□ film in a circular shape of 20 μm, and insert the current injection port 1.
5.

8i02膜14及び電流注入口15の表面に、例えばT
iPtを蒸着し、P型電極16とする。n型InP基板
10を厚さ約100μmに研摩した後n型InP基&1
00表面に電流注入口15と同心円状に直径約100μ
mの光取出し窓17t−除き他にAuGeNi膜を形成
し、n型電極18を形成する。
For example, T is applied to the surfaces of the 8i02 film 14 and the current injection port 15.
iPt is deposited to form a P-type electrode 16. After polishing the n-type InP substrate 10 to a thickness of approximately 100 μm, the n-type InP base &1
Approximately 100μ in diameter on the 00 surface concentrically with the current injection port 15
Except for the light extraction window 17t-m, an AuGeNi film is formed, and an n-type electrode 18 is formed.

電流注入口15の直下部が活性層の電流注入領域となる
The area directly below the current injection port 15 becomes a current injection region of the active layer.

本実施例でInGaAs活性層12の結晶成長溝部11
に優先的に起るので、エツジグロースの問題なく、2〜
3μmの厚さの活性層が形成でき従来に比べ光出力の大
きいLEDを容易に高い歩留シで得ることができた。又
、活性層の側面は大部分熱抵抗の小′才いInPloと
なっているので、発光部からの熱放散が向上することも
本実施例の効果である。
In this embodiment, the crystal growth groove portion 11 of the InGaAs active layer 12 is
Since it occurs preferentially in
It was possible to form an active layer with a thickness of 3 μm, and to easily obtain an LED with a higher light output than conventional ones at a high yield. Furthermore, since most of the side surfaces of the active layer are made of InPlo, which has a low thermal resistance, another advantage of this embodiment is that heat dissipation from the light emitting section is improved.

本発明は面発光レーザにも適用できる。面発光レニザの
場合第1図において、溝11を深さ4〜58m1巾約5
〜10μmと第1の実施例に比し、深く巾狭くなってい
る。
The present invention can also be applied to surface emitting lasers. In the case of a surface emitting lens, the groove 11 is 4 to 58 m deep and approximately 5 m wide in Fig. 1.
~10 μm, which is deeper and narrower than in the first embodiment.

本実施例により、従来1〜2μm程度であった利得領域
を数μmに大きくすることができ、その結果、レーザ発
振しきい値を大きく低減することができた。
According to this embodiment, the gain region, which was conventionally about 1 to 2 μm, can be increased to several μm, and as a result, the laser oscillation threshold can be significantly reduced.

上記実施例では、第1図に示す如く、活性層は溝外部の
基板表面上に形成されているが、溝の内部のみに活性層
を形成しても上記実施例と同様な効果が得られる。
In the above embodiment, as shown in FIG. 1, the active layer is formed on the substrate surface outside the groove, but the same effect as in the above embodiment can be obtained even if the active layer is formed only inside the groove. .

(発明の効果) 本発明により、高輝度で光ファイノく入力の太きなL 
E Dや、発振しきい値の低い面発光レーザを容易に高
い歩留りで得ることができた。
(Effects of the Invention) The present invention provides a high-brightness optical fiber with a thick input L.
ED and surface emitting lasers with low oscillation thresholds could be easily obtained at high yields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図である。 図中10は半導体基板、11は溝、12は活性層をそれ
ぞれ示す。 ′、; 代理人弁理士 内原  晋′ 4、 翫+坤ニー− l1718
FIG. 1 is a diagram showing an embodiment of the present invention. In the figure, 10 indicates a semiconductor substrate, 11 indicates a groove, and 12 indicates an active layer. ′,; Representative Patent Attorney Susumu Uchihara′ 4, Kan+Konni- l1718

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体を活性層とする半導体発光素子において溝
を設けた半導体基板と、少なくともこの溝内に設けた半
導体活性層とを少なくとも有し、溝内の活性層の一部に
選択的に電流注入領域を設け、前記半導体基板面に垂直
な方向に主出力光を取出すことを特徴とする半導体発光
素子。
A semiconductor light emitting device having a compound semiconductor as an active layer includes at least a semiconductor substrate provided with a groove and at least a semiconductor active layer provided in the groove, and a current injection region is selectively provided in a part of the active layer in the groove. What is claimed is: 1. A semiconductor light emitting device, comprising: a semiconductor light emitting device, and main output light is extracted in a direction perpendicular to the surface of the semiconductor substrate.
JP59154827A 1984-07-25 1984-07-25 Semiconductor light-emitting element Pending JPS6132583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154827A JPS6132583A (en) 1984-07-25 1984-07-25 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154827A JPS6132583A (en) 1984-07-25 1984-07-25 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPS6132583A true JPS6132583A (en) 1986-02-15

Family

ID=15592744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154827A Pending JPS6132583A (en) 1984-07-25 1984-07-25 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPS6132583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181989A (en) * 1989-01-09 1990-07-16 Hikari Gijutsu Kenkyu Kaihatsu Kk Surface emission type semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181989A (en) * 1989-01-09 1990-07-16 Hikari Gijutsu Kenkyu Kaihatsu Kk Surface emission type semiconductor laser

Similar Documents

Publication Publication Date Title
JPH09172229A (en) Transparent substrate vertical resonance type surface luminescence laser manufactured by semiconductor wafer bonding
US11923662B2 (en) Edge-emitting laser bar
US4700210A (en) Asymmetric chip design for LEDS
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
JP2765256B2 (en) Light emitting diode
US5898190A (en) P-type electrode structure and a semiconductor light emitting element using the same structure
JP2866527B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS6132583A (en) Semiconductor light-emitting element
JPH0327577A (en) Light emitting diode array
JPH0319369A (en) Semiconductor device
KR0179018B1 (en) Method of manufacturing laser diode
JPH11238915A (en) Light-emitting diode array
JPS6244440B2 (en)
JPH09275237A (en) Semiconductor laser device
JPH01179469A (en) Junction-type semiconductor light-emitting element
JP2000286446A (en) Nitride semiconductor device and manufacture of the same, and gan substrate and manufacture of the same
JPS622718B2 (en)
JPS627719B2 (en)
JPS59165418A (en) Manufacture of semiconductor light emitting element
JPS62226674A (en) Light-emitting diode
JPH01296678A (en) Manufacture of semiconductor heterojunction
JPS5990971A (en) Light-emitting diode
JPS62245693A (en) Semiconductor laser
JPH11121792A (en) Infrared emitting diode and manufacture thereof
JPS5871682A (en) Semiconductor light emitting device