JPS62245693A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62245693A
JPS62245693A JP8947286A JP8947286A JPS62245693A JP S62245693 A JPS62245693 A JP S62245693A JP 8947286 A JP8947286 A JP 8947286A JP 8947286 A JP8947286 A JP 8947286A JP S62245693 A JPS62245693 A JP S62245693A
Authority
JP
Japan
Prior art keywords
substrate
electrode
layer
type
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8947286A
Other languages
Japanese (ja)
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8947286A priority Critical patent/JPS62245693A/en
Publication of JPS62245693A publication Critical patent/JPS62245693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To perform a stable and high-output laser oscillation by a method wherein the substrate rear surface of a laser of a double hetero structure is formed into a stripe form to inhibit the lateral spreading of current and the threshold current is lowered. CONSTITUTION:An N-type GaAs buffer layer 2, an N-type AlGaAs clad layer 3, a GaAs active layer 4, a P-type AlGaAs clad layer 5 and a P-type GaAs cap layer 6 are epitaxially grown on an N-type GaAs substrte 1. A substrate rear surface 11 is subjected to inverse mesa etching and an SiO2 film 7 is deposited on the etched-away parts. The substrate regions held by the SiO2 films 7 are etched away. An SiO2 film 10 is formed on the cap layer 6, an Au-Cu alloy P electrode 8 is attached thereon and an Au-Ge-Ni alloy electrode 9 is attached on the substrate side. Lastly, a cleavage is performed to complete a laser. By this constitution, a stable and high-output laser oscillation can be performed by the use of a low-threshold current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダブルへテロ構造を有する半導体レーダ9 ザの基板−のストライプ構造に関する。[Detailed description of the invention] [Industrial application field] The present invention provides a semiconductor radar 9 having a double heterostructure. This invention relates to the stripe structure of the substrate.

〔従来の技術〕[Conventional technology]

従来特開昭57−49291号公報に記載された第1図
及び峙開昭57−49289号公報に記載された第1図
に示すように、半導体レーザの基板裏面は平坦であっに
0 〔発明が解決しよ5とする問題点〕 しかし従来技術では、成長膜側の電極から注入された電
流は、基板側の電極に到達する前に、横方向に広がって
拡散する。その結果、しきい値電流が大きくなり、レー
ザの光出力電流特性の直線性のずれ及びキンクが発生し
たり、レーザービーム放射角の注入電流依存性も不安宇
であるといった問題点を有していた。
Conventionally, as shown in FIG. 1 described in Japanese Unexamined Patent Publication No. 57-49291 and FIG. However, in the prior art, the current injected from the electrode on the growing film side spreads and diffuses in the lateral direction before reaching the electrode on the substrate side. As a result, the threshold current increases, causing problems such as deviations and kinks in the linearity of the laser's optical output current characteristics, and the dependence of the laser beam radiation angle on the injection current. Ta.

そこで本発明はこのよへな問題点を解決するもので、そ
の目的は、基板裏面をストライブ状にし電流の横方向の
広がりを抑制し、し舞い値電流を低下させ、安定で高出
力なレーザ発振を可能にするところにある。
The present invention is intended to solve these problems, and its purpose is to suppress the horizontal spread of current by forming stripes on the back surface of the substrate, lowering the final value current, and achieving stable and high output. It is what makes laser oscillation possible.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の半導体レーザけ、ダブルへテロ構造を有する半
導体レーザにおいて、前記半導体レーザの基板裏面がス
トライプ構造を持つことを特徴とする特 〔実施例〕 以下に図面に基づいて本発明の詳細な説明する。第1図
は1本発明によるダブルへテロ構造を有する半導体レー
ザの一例を示す断面図であり、忙p、s/hLaa A
8ダブルへテロ接合を有するものである。同図において
、外型(MLk8基板1の上に、n型鴛峙バッファ層′
2.n型a侃A8クラッド層3、侃へ8活性層4.Lp
型M GIZ A、9クラッド層5、p型鞄Uキャップ
層6を順次形成する。p電極8は、前記p型Ga A8
干ヤップ層6の上に電流な遮断するため虻選択的に堆積
したSi o2上に、スパッタ法等で取りけける。n電
極9け、前記n′m侃A8基板1の裏面を逆メサ形にエ
ツチングし、電流を遮断するためにsj O2を堆積し
た後、残った前期n型()a A8基板1をエツチング
し、その後蒸着法等で取り付ける。
A semiconductor laser according to the present invention, a semiconductor laser having a double heterostructure, characterized in that the back surface of the substrate of the semiconductor laser has a stripe structure [Embodiment] A detailed description of the present invention will be given below based on the drawings. do. FIG. 1 is a sectional view showing an example of a semiconductor laser having a double heterostructure according to the present invention.
It has 8 double heterozygosity. In the same figure, the outer mold (on the MLk8 substrate 1, an n-type transparent buffer layer'
2. n-type a side A8 cladding layer 3, side 8 active layer 4. Lp
A type MGIZ A, 9 cladding layer 5, and a p-type bag U cap layer 6 are formed in this order. The p-electrode 8 is the p-type Ga A8
It can be removed by sputtering or the like on the SiO2 selectively deposited on the drying layer 6 to block current. After etching the back surface of the n'm-A8 substrate 1 into an inverted mesa shape and depositing sj O2 to cut off the current, the remaining n-type ()a A8 substrate 1 was etched. , and then attached using a vapor deposition method or the like.

製造方法の詳細は第2図に基づいて説明する。The details of the manufacturing method will be explained based on FIG. 2.

T電極8から注入されれ電流は、5i0210とで作ら
れるストライプ部からの入流れ、Bi O27と、n電
極9とで作られるストライブ部に到達する。
The current injected from the T electrode 8 flows from the stripe portion made of 5i0210 and reaches the stripe portion made of BiO27 and the n electrode 9.

両ストライブ部の幅は、2μ等から20μm程度と小さ
くする。前記両スト→イブ部を電流h″−流れる結果、
活性層内においても注入キャリヤのストライプ外領域へ
の拡散が抑えられるため、しきい値電流な低減すること
htできる。
The width of both stripes is made as small as about 2 μm to about 20 μm. As a result of the current h''- flowing through both the strike-to-wave parts,
Even in the active layer, diffusion of injected carriers to regions outside the stripe is suppressed, so that the threshold current can be reduced.

第1図に示された半導体レーザの製造工程を第2図に基
づいて説明する。第1図と同一部分は同一記号を用いて
いる。第2図(α)は−?L型L3a k8基板1上に
、順次nfJσAll バッファ層2%者、型aGa 
A&クラッド層3、侃A8活性Wi4、p型At眞A8
クラッド層5、p型侃へ8キャップ層6を、エピタキシ
ャル成長させた後の断面図である。次に第2図(b)に
示ス5i027の部分をつくるため、基板裏面11を逆
メサにエツチングし、前記エツチング部I/cSio2
7を堆積する。その後、第2図(C)のごとく、前記8
jO□7ではさまれた基板領域をエツチング法で除去す
る。一方、成長膜側は第2図(d)に示すようにpFj
JJaaAttv−ヤップ層6の上てEliO210を
選択的にCVD法等で堆積し、p電極8をAu −OK
等の蒸着法で取りけける。基板側電極は、Au −Ge
 −?:金合金を蒸着で取り付ける。最後に、骨間によ
り第1図に示すような半導体レーザができ上がる。
The manufacturing process of the semiconductor laser shown in FIG. 1 will be explained based on FIG. 2. The same symbols are used for the same parts as in FIG. Figure 2 (α) is -? On the L type L3a k8 substrate 1, sequentially nfJσAll buffer layer 2%, type aGa
A & cladding layer 3, A8 active Wi4, p-type Atshin A8
It is a sectional view after epitaxially growing a cladding layer 5 and a cap layer 6 on the p-type side. Next, in order to create a portion 5i027 shown in FIG. 2(b), the back surface 11 of the substrate is etched into a reverse mesa, and the etched portion
Deposit 7. After that, as shown in FIG. 2(C),
The substrate region sandwiched between the jO□7 is removed by etching. On the other hand, the grown film side has pFj as shown in Figure 2(d).
EliO210 is selectively deposited on the JJaaAttv-YAP layer 6 by CVD method etc., and the p electrode 8 is made of Au-OK.
It can be removed using vapor deposition methods such as The substrate side electrode is Au-Ge
−? : Gold alloy is attached by vapor deposition. Finally, a semiconductor laser as shown in FIG. 1 is created by the interosseous structure.

第3図は本発明のも51つの実施例を示す。第1図との
相異点け、基板のエツチング工程である。
FIG. 3 shows another embodiment of the invention. The difference from FIG. 1 is the etching process of the substrate.

第1図E3フ;027 、の部分h;、第3図では、n
 m Ga 1g基板31となっており、前記n型kA
、9基板31裏面が、ストライプ構造である。この実施
例でも注入電流が両電極のストライプ間を流れるため、
活性層内での注入キャリヤのストライプ外領域への拡散
が抑圧され、しきい値電流を低減することができる。
In Fig. 1, part h; of E3 f; 027;
mGa 1g substrate 31, and the n-type kA
, 9 The back surface of the substrate 31 has a striped structure. In this example as well, since the injection current flows between the stripes of both electrodes,
Diffusion of injected carriers in the active layer to regions outside the stripe is suppressed, and the threshold current can be reduced.

第4図は、本発明の更に別の実施例である。p型−A8
基板41上に、nFJ眞Mバッファ層42、n型uGa
 Asクラッド層43、(MAJ活性層44、p型1v
l (hZ A8クラッド層45、P型(mkBキャッ
プ層46を順次形成する。p’[極48側は、第1図p
電極8側と同様な方法で作成し、n電極49側はp型G
4 At基板41を第4図のようにエツチングし、Te
イオン打込み等により、n型の拡散領域50な形成した
後、蒸着法によりn電極49を取り付ける。
FIG. 4 shows yet another embodiment of the invention. p-type-A8
On the substrate 41, an nFJ true M buffer layer 42, an n-type uGa
As cladding layer 43, (MAJ active layer 44, p-type 1v
l (hZ A8 cladding layer 45 and P type (mkB cap layer 46 are formed in sequence.
It is made in the same way as the electrode 8 side, and the n electrode 49 side is made of p-type G.
4 Etch the At substrate 41 as shown in FIG.
After forming an n-type diffusion region 50 by ion implantation or the like, an n-electrode 49 is attached by vapor deposition.

以上、本発明の半導体レーザの実施例を説明したが、特
許請求の範囲は基板側のストライプ構造に関するもので
あり、成長膜側の電極構造については、実施例だ示す電
極ストライプ構造に限らず、V溝ストライプ、拡散スト
→イブ等、他のストライプ構造にも適用され得るし、ス
トライプがなくてもよい。
The embodiments of the semiconductor laser of the present invention have been described above, but the claims relate to the stripe structure on the substrate side, and the electrode structure on the growth film side is not limited to the electrode stripe structure shown in the embodiments. It can also be applied to other stripe structures such as V-groove stripes, diffused stripes, etc., and there is no need for stripes.

また実施例では、侃AJ/gaaA8系材料を使りて記
述したが、工R,(m、 M、 A8.P、 sb、 
Sue &、Tgまたは他の光放出材料を含むような他
の半導体結晶材料を使用することもできる。
In addition, in the example, description was made using 侃AJ/gaaA8-based materials, but
Other semiconductor crystal materials can also be used, such as those containing Sue&Tg or other light emitting materials.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、基板側電極又は基板
裏面をストライプ構造にすることにより、注入電流の横
方向への広がりを抑制し、しきい値電流を低下させ、安
定で高出力なレーザ発振を可能にできる。更に、従来は
、活性層に近い成長層側電極をヒートシンクに接着し、
活性層付近で発生した熱を放ち、レーザ光の長寿命化を
行っていた。接着剤としてIn、kg−EJn等のろう
材な使用していたが、ろう材がレーザ発光端面に付着し
、不良品を発生していた。しかし本発明の半導体レーザ
け、基板側の電極のストライブ部と、活性層との距離は
成長層側の電極から活性層との距離と大差ないため、基
板側の電極をヒートシンクに接着しても、十分な・熱放
散効果を得ることができる。
As described above, according to the present invention, by forming the substrate side electrode or the back surface of the substrate into a striped structure, the spread of the injected current in the lateral direction is suppressed, the threshold current is lowered, and stable and high output is achieved. It can enable laser oscillation. Furthermore, conventionally, the electrode on the growth layer side near the active layer was glued to the heat sink.
The heat generated near the active layer is released to extend the life of the laser beam. A brazing material such as In or kg-EJn was used as an adhesive, but the brazing material adhered to the laser emitting end face, resulting in defective products. However, in the semiconductor laser of the present invention, the distance between the striped part of the electrode on the substrate side and the active layer is not much different from the distance from the electrode on the growth layer side to the active layer, so the electrode on the substrate side is bonded to the heat sink. Also, sufficient heat dissipation effect can be obtained.

この時ヒートシンク接着面は、基板側電極端にすること
ができるので、レーザ発光端面へのろう材付着割合が減
少し、歩留りが上がる。また、両電極を2つのヒートシ
ンクではさむことにより、冷却効果を高め、より高出力
なレーザを発振させることができる、このように本発明
における実用的効果は極めて大きい。
At this time, since the heat sink adhesive surface can be the electrode end on the substrate side, the proportion of the brazing material adhering to the laser emitting end face is reduced and the yield is increased. Further, by sandwiching both electrodes between two heat sinks, the cooling effect can be enhanced and a higher output laser can be oscillated.As described above, the practical effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の半導体レーザの実施例を、示すm面
図。 第2図は、第1図に示す半導体レーザの製造゛工程を示
す製造工穆萌面図。 第3図は、本発明の半導体レーザで、第1図とけ異なる
実施例を示す動面図。 第4図は、本発明の半導体レーザで、第1図。 第3図とは異なる実施例を示す断面図。 7・・・・・・si o2 8・・・・・・p電極 9・・・・・・n電極 11・・・・・・基板裏面 31・・・・・・nu櫂A8基板 38・・・・・・p電極 39・・・・・・n電極 41・・・・・・pfJ侃A8基板 48・・・・・・pt極 49・・・・・・n電極 以  上 出願人 セイコーエプソン株式会社 第2図 第41!1
FIG. 1 is an m-plane view showing an embodiment of a semiconductor laser according to the present invention. FIG. 2 is a manufacturing process diagram showing the manufacturing process of the semiconductor laser shown in FIG. 1. FIG. 3 is a dynamic view showing a semiconductor laser according to an embodiment of the present invention, which is different from that shown in FIG. FIG. 4 shows a semiconductor laser according to the present invention, and FIG. FIG. 4 is a sectional view showing a different embodiment from FIG. 3; 7...si o2 8...p electrode 9...n electrode 11...substrate back side 31...nu paddle A8 board 38... ...p electrode 39...n electrode 41...pfJ A8 board 48...pt electrode 49...n electrode and above Applicant: Seiko Epson Co., Ltd. Figure 2 Figure 41!1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、複数層の半導体薄膜を有し、前記半導
体基板裏面及び前記半導体薄膜上に電極をもつ半導体レ
ーザにおいて、少なくとも前記半導体基板裏面又は、半
導体基板側電極にストライプがあることを特徴とする半
導体レーザ。
A semiconductor laser having a plurality of layers of semiconductor thin films on a semiconductor substrate, and having electrodes on the back surface of the semiconductor substrate and on the semiconductor thin film, characterized in that at least the back surface of the semiconductor substrate or the electrodes on the semiconductor substrate side have stripes. semiconductor laser.
JP8947286A 1986-04-18 1986-04-18 Semiconductor laser Pending JPS62245693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8947286A JPS62245693A (en) 1986-04-18 1986-04-18 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8947286A JPS62245693A (en) 1986-04-18 1986-04-18 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62245693A true JPS62245693A (en) 1987-10-26

Family

ID=13971664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8947286A Pending JPS62245693A (en) 1986-04-18 1986-04-18 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62245693A (en)

Similar Documents

Publication Publication Date Title
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
JP2000261088A (en) Light emitting element
JP3179511B2 (en) Semiconductor laser
JPH05251824A (en) Manufacture of semiconductor laser
JPS62245693A (en) Semiconductor laser
JP3521792B2 (en) Manufacturing method of semiconductor laser
JPS6377186A (en) Manufacture of semiconductor laser
JPS62128586A (en) Manufacture of optoelectronic integrated circuit
JP2000138417A (en) Multi-beam laser diode
JPS6318874B2 (en)
JPS5882587A (en) Manufacture of buried hetero structure semiconductor laser
JPS61168982A (en) Semiconductor photoamplifying element
JP2812069B2 (en) Semiconductor laser
JPS6132583A (en) Semiconductor light-emitting element
JPS59168687A (en) Semiconductor laser and manufacture thereof
JPS61166087A (en) Manufacture of semiconductor laser element
JPS63289888A (en) Semiconductor laser device
JPH01293686A (en) Manufacture of semiconductor laser element
JPH01272177A (en) Semiconductor laser
JPH0479275A (en) Edge emitting type light emitting diode
JPS6241436B2 (en)
JPS63197395A (en) Semiconductor laser device and its manufacture
JPH02114690A (en) Semiconductor laser element
JPS6273789A (en) Buried hetero structure semiconductor laser
JPS627719B2 (en)