JPH01272177A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01272177A
JPH01272177A JP10028388A JP10028388A JPH01272177A JP H01272177 A JPH01272177 A JP H01272177A JP 10028388 A JP10028388 A JP 10028388A JP 10028388 A JP10028388 A JP 10028388A JP H01272177 A JPH01272177 A JP H01272177A
Authority
JP
Japan
Prior art keywords
layers
layer
semiconductor laser
laser
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10028388A
Other languages
Japanese (ja)
Inventor
Fumiya Watanabe
渡辺 文也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP10028388A priority Critical patent/JPH01272177A/en
Publication of JPH01272177A publication Critical patent/JPH01272177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to form easily a plurality of pieces of semiconductor laser elements, which have high output and are large in the difference in oscillation wave, on the same semiconductor substrate by a method wherein the layers for actuating one piece of the element among a plurality of pieces of the laminated semiconductor laser elements are formed of an epitaxial growth layer having a double heterostructure different from that of an epitaxially grown layer, of which the layers for actuating the other elements are formed. CONSTITUTION:Multilayer crystal layers (a p-type Ga1-yAlyAs clad layer 4, a Ga1-xAlxAs active layer 5 and an n-type Ga1-yAlyAs clad layer 6) having a double heterostructure for actuating a first laser element 31 and multilayer crystal layers (a p-type Ga1-sAlsAs clad layer 10, a Ga1-zAlzAs active layer 11 and an n-type Ga1-sAlsAs clad layer 12) having a double heterostructure for actuating a second laser element 32 are respectively formed of each of epitaxially grown layers, whose double heterostructure are different from each other, in such a way that the layers 4, 5 and 6 and the layers 10, 11 and 12 are respectively formed right over a striped groove 3 and a striped groove 9. Accordingly, as the Al ratios (x) and (y) of mixed crystal of the layer 5 to the clad layers 4 and 6 and the Al ratios (s) and (t) of mixed crystal of the layer 11 to the clad layers 10 and 12 can be respectively set separately and the thicknesses of the layers 5 and 11 can be respectively set separately and uniformly, a laser beam, whose oscillation wavelengths are different from each other, are obtained from a laser oscillation part and a reduction in the thicknesses of the active layers indispensable to an increase in output can be attained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は1発振波長が異なる複数の半導体レーザ素子を
同一半導体基板上に一集積した半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor laser in which a plurality of semiconductor laser elements having different oscillation wavelengths are integrated on the same semiconductor substrate.

(従来の技術) 同一半導体基板上に発振波長の異なる複数の半導体レー
ザ素子を集積したものとして1例えば特開昭59−16
5487号公報に記載された第3図に示すものが知られ
ている。
(Prior Art) As a device in which a plurality of semiconductor laser elements having different oscillation wavelengths are integrated on the same semiconductor substrate, for example, JP-A-59-16
The one shown in FIG. 3 described in Japanese Patent No. 5487 is known.

これは次のようにして形成される。即ち、p型GaAs
基板41上にn−GaAs電流阻止層42を液相エピタ
キシャル成長した後、幅11t*Vs(V工〉w2)を
有するストライプ溝43.44を電流阻止層42が除去
されるまでエツチングし、電流通路を形成する。再度液
相エピタキシャル成長法でP−Ga1−vAlyAsク
ラッド層45、Ga、−1AQzAs活性層46(0<
工<y<1)、 n−Gaz−vA4yAsクラッド層
47、n−GaAsキャップ層48を順次積層し、更に
基板41上にp側電極49.キャップ層48上にn側電
極50を形成する。次に、ストライプ溝43.44単位
でレーザ動作用多層結晶を分割するため、n側電極50
表面より分離溝51をストライプ溝43.44と平行に
刻設し、その深さが電流阻止層42に達するまでエツチ
ングする。
This is formed as follows. That is, p-type GaAs
After growing an n-GaAs current blocking layer 42 on the substrate 41 by liquid phase epitaxial growth, stripe grooves 43 and 44 having a width of 11t*Vs (V process>w2) are etched until the current blocking layer 42 is removed to form a current path. form. A P-Ga1-vAlyAs cladding layer 45, a Ga, -1AQzAs active layer 46 (0<
process<y<1), an n-Gaz-vA4yAs cladding layer 47 and an n-GaAs cap layer 48 are sequentially laminated, and a p-side electrode 49 is further formed on the substrate 41. An n-side electrode 50 is formed on the cap layer 48. Next, in order to divide the multilayer crystal for laser operation into units of 43.44 stripe grooves, the n-side electrode 50 is
Separation grooves 51 are carved from the surface parallel to the stripe grooves 43 and 44, and etched until the depth reaches the current blocking layer 42.

以上により1幅の異なるストライプ溝43.44の直上
に積層される多層結晶の活性層46をそれぞれ湾曲、平
坦化し溝幅に対応して活性層46を成長速度の異なるエ
ピタキシャル成長層に設定し、このエピタキシャル成長
層の成長速度に対応した発振波長の異なる発振動作部が
得られる。
As described above, the multilayer crystal active layers 46 stacked directly above the stripe grooves 43 and 44 with different widths are respectively curved and flattened, and the active layers 46 are set as epitaxial growth layers with different growth rates in accordance with the groove widths. It is possible to obtain an oscillation operating section with different oscillation wavelengths corresponding to the growth rate of the epitaxial growth layer.

(発明が解決しようとする課題) ストライプ溝の幅の差を利用して成長速度の異なる活性
層領域を形成し、異なる発振波長を得る半導体レーザで
は、ストライプ溝の幅の大きい領域の活性層を湾曲化す
るため、活性層を薄膜化し高出力を得るには、不十分で
あると共に、出力の変化に伴い横モードが不安定になり
易い。
(Problem to be Solved by the Invention) In a semiconductor laser that uses the difference in the width of the stripe grooves to form active layer regions with different growth rates and obtain different oscillation wavelengths, the active layer in the region where the width of the stripe grooves is large is Since it is curved, it is insufficient to make the active layer thin and obtain high output, and the transverse mode tends to become unstable as the output changes.

また各半導体レーザ素子の発振波長の差は5〜40+a
m程度と小さく、発振波長の差の大きい複数個の半導体
レーザ素子を安易にかつバラツキが少ないものを得るに
は大変困難である。
Also, the difference in the oscillation wavelength of each semiconductor laser element is 5 to 40+a
It is extremely difficult to easily obtain a plurality of semiconductor laser elements having a small wavelength of approximately m and a large difference in oscillation wavelength with little variation.

本発明はこの様な欠点を除去するもので、高出力で発振
波差が大きい複数個の半導体レーザ素子を同一半導体基
板上に安易に形成することができる、光通信用および光
情報処理用の発振波長の異なる半導体レーザを提供する
ことを目的とする。
The present invention eliminates these drawbacks, and provides a method for optical communications and optical information processing, in which multiple semiconductor laser elements with high output and a large oscillation wave difference can be easily formed on the same semiconductor substrate. The purpose is to provide semiconductor lasers with different oscillation wavelengths.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の半導体レーザは、同一半導体基板上に独立に動
作可能な複数個の半導体レーザ素子が集積された半導体
レーザにおいて、少なくとも1個の半導体レーザ素子の
ダブルヘテロ接合を、他の半導体レーザ素子のダブルヘ
テロ接合と異なるエピタキシャル成長層で形成したこと
を特徴とする。
(Means for Solving the Problems) The semiconductor laser of the present invention is a semiconductor laser in which a plurality of independently operable semiconductor laser elements are integrated on the same semiconductor substrate, in which at least one semiconductor laser element has a double heterostructure. The semiconductor laser device is characterized in that the junction is formed using an epitaxial growth layer different from the double heterojunction of other semiconductor laser devices.

(作  用) 複数の半導体レーザ素子のダブルヘテロ接合のエピタキ
シャル成長層を別個に形成することにより、三元又は四
元系の混晶半導体の組成比を個々大きい独立駆動可能な
複数の半導体レーザ素子を同一半導体基板上に形成でき
る。また、同様に活性層を容易に薄膜化できるので、高
出力の半導体レーザが形成できる。
(Function) By separately forming double heterojunction epitaxial growth layers of a plurality of semiconductor laser elements, a plurality of semiconductor laser elements can be independently driven to increase the composition ratio of the ternary or quaternary mixed crystal semiconductor. Can be formed on the same semiconductor substrate. Furthermore, since the active layer can be easily made thin, a high-output semiconductor laser can be formed.

(実 施 例) 第1図は本発明の一実施例に係る半導体レーザの斜視図
を示す。
(Embodiment) FIG. 1 shows a perspective view of a semiconductor laser according to an embodiment of the present invention.

半導体レーザ30は、同一の半導体基板1上に第1の半
導体レーザ素子31と第2の半導体レーザ素子32とが
集積形成されている。そして、第1の半導体レーザ素子
31のダブルヘテロ接合を構成するクラッド層4、活性
層5及びクラッド層6と、第2の半導体レーザ素子32
のダブルヘテロ接合を構成するクラッド層10、活性層
11及びクラッド層12とは、それぞれ異なるエピタキ
シャル成長により形成されている。
In the semiconductor laser 30, a first semiconductor laser element 31 and a second semiconductor laser element 32 are integrally formed on the same semiconductor substrate 1. The cladding layer 4, active layer 5, and cladding layer 6 forming the double heterojunction of the first semiconductor laser element 31 and the second semiconductor laser element 32
The cladding layer 10, active layer 11, and cladding layer 12 that constitute the double heterojunction are formed by different epitaxial growth methods.

以下、この半導体レーザ30の製造工程を第2図を参照
して説明する。
Hereinafter, the manufacturing process of this semiconductor laser 30 will be explained with reference to FIG.

まず、p型GaAs基板の表面にエツチングにより凹部
20を形成する(第2図(a))、次に、n−GaAs
電流阻止層2を液相エピタキシャル成長した後、凹部2
0において矩形状のストライプ溝3をエツチングにより
深さがp型GaAs基板1に達するまで形成する(同図
(b))、このストライプ溝3は、電流阻止層2が除去
されて第1のレーザ素子31の電流通りラッド層4 、
Ga、−xAjl、Ag活性層5 、n−Ga1−yA
ffiyAsクラッド層6 (0< x < y < 
1 )、n−GaAsオーミックM7を順次積層する(
同図(c))、これにより発振波長λ1の第1のレーザ
素子動作用のダブルヘテロ接合の多層結晶層4,5.6
が形成される6次に、第2のレーザ素子32を形成する
ため、凹部20間で深さが少なくとも電流阻止部2に達
すまで第1のダブルヘテロ接合の多層結合層4,5,6
およびオーミック層7をエツチングにより除去する(同
図(d))。
First, a recess 20 is formed on the surface of a p-type GaAs substrate by etching (FIG. 2(a)).
After the current blocking layer 2 is grown by liquid phase epitaxial growth, the recess 2 is
0, a rectangular stripe groove 3 is formed by etching until the depth reaches the p-type GaAs substrate 1 (FIG. 1(b)).The current blocking layer 2 is removed and this stripe groove 3 is formed by etching until the depth reaches the p-type GaAs substrate 1. Current carrying rad layer 4 of element 31,
Ga, -xAjl, Ag active layer 5, n-Ga1-yA
ffiyAs cladding layer 6 (0< x < y <
1), sequentially stacking n-GaAs ohmic M7 (
(c)), this results in double heterojunction multilayer crystal layers 4, 5, 6 for operation of the first laser element with oscillation wavelength λ1.
6 Next, in order to form the second laser element 32, the multilayer bonding layers 4, 5, 6 of the first double heterojunction are formed between the recesses 20 until the depth reaches at least the current blocking part 2.
Then, the ohmic layer 7 is removed by etching (FIG. 4(d)).

第1のレーザ素子31のダブルヘテロ接合部分が凸状に
残っている基板上に、再度液相エピタキシャル成長法で
n−GaAs電流阻止層8を積層する。この後、ストラ
イプ溝9をストライプ溝3と同じようにエツチングによ
り深さが少なくとも基板1上に達するまで形成する(同
図(e))、このストライプ溝9は第2のレーザ素子3
2の電流通路となる。
On the substrate in which the double heterojunction portion of the first laser element 31 remains in a convex shape, the n-GaAs current blocking layer 8 is laminated again by the liquid phase epitaxial growth method. Thereafter, stripe grooves 9 are formed by etching in the same manner as the stripe grooves 3 until the depth reaches at least the substrate 1 (FIG. 1(e)).
This becomes the second current path.

再度、液相エピタキシャル成長法、 p−Ga1−Bi
gAsクラッド層10、Ga1−tAj5As活性層1
1. n−Gn−Ga1−gA1クラッド層(0< t
 < s < 1 )12. n−GaAsオーミック
層13を順次積層する(同図(f))、これにより、発
振波数λ2の第2レーザ素子動作用のダプルヘテロ接合
の多層結晶層to、 11.12が形成される。
Again, liquid phase epitaxial growth method, p-Ga1-Bi
gAs cladding layer 10, Ga1-tAj5As active layer 1
1. n-Gn-Ga1-gA1 cladding layer (0<t
< s < 1 )12. The n-GaAs ohmic layers 13 are sequentially laminated (FIG. 2(f)), thereby forming a double heterojunction multilayer crystal layer to, 11.12 for operation of the second laser element with an oscillation wave number λ2.

次に第1のレーザ素子31上に積層された、少なくとも
第2のレーザ素子32動作用のダブルヘテロ接合の多層
結晶層10.11.12およびオーミック層13をエツ
チングにより除去して、第1のレーザに電流が流れるよ
うにする(同図(g))。
Next, the double heterojunction multilayer crystal layer 10, 11, 12 and the ohmic layer 13, which are laminated on the first laser element 31 and are used to operate at least the second laser element 32, are removed by etching. Allow current to flow through the laser ((g) in the same figure).

再度、液相エピタキシャル成長法により、第1のレーザ
素子31と第2のレーザ素子32がそれぞれ凹部21、
凸部22に形成された基板上に、n−GaAsオーミッ
ク層14を積層し平坦にする0次に、基板1の裏面を研
磨してヘキ開の可能な厚さにした後、蒸着によりp側電
極15、n側電極16をそれぞれ基可能にするようにレ
ーザ動作用多層結晶層を分割するため、n側電極16の
表面より分離溝17およびヘキ開溝18をストライプ溝
3,9と平行に刻設し。
Again, by the liquid phase epitaxial growth method, the first laser element 31 and the second laser element 32 are formed into the recesses 21 and 32, respectively.
An n-GaAs ohmic layer 14 is laminated and flattened on the substrate formed on the convex portion 22.Next, the back surface of the substrate 1 is polished to a thickness that can be cleaved, and then the p-side layer is formed by vapor deposition. In order to divide the multilayer crystal layer for laser operation so that the electrode 15 and the n-side electrode 16 can be formed as bases, separation grooves 17 and cleavage grooves 18 are formed from the surface of the n-side electrode 16 parallel to the stripe grooves 3 and 9. Engraved.

その深さがGaAs基板1に達するまでエツチング加工
する(同図(i))。
Etching is performed until the depth reaches the GaAs substrate 1 (FIG. 1(i)).

次にヘキ開溝18に沿って分離して、第1図に示すスト
ライプ溝3,9の直上にそれぞれ対応する活性層5,1
1の領域でそれぞれ独立に駆動可能なレーザ発振動作部
が形成された本発明の半導体レーザが得られる。
Next, active layers 5 and 1 are separated along the groove 18 and placed directly above the stripe grooves 3 and 9 shown in FIG.
A semiconductor laser of the present invention is obtained in which laser oscillation operating parts that can be driven independently in one region are formed.

本発明によれば、ストライプ溝3の直上に第1のレーザ
素子31動作用のダブルヘテロ接合の多層結晶層4,5
,6、ストライプ溝9の直上に第2のレーザ素子32動
作用のダブルヘテロ接合の多層結晶層10.11.12
というように、ダブルヘテロ接合を異なるエピタキシャ
ル成長層で形成する。これにより、第1のレーザ素子動
作用のダブルヘテロ接合の活性層5とクラッド層4,6
とのAQ混晶比工、ソと第2のレーザ素子動作用のダブ
ルヘテロ接合の活性層11とクラッド層10.12との
A2混晶比s、tとをそれぞれ別個に設定でき、また活
性層5,11厚をそれぞれ別個になおかつ平坦に設定が
きるので、レーザ発振部からそれぞれ発振波長の異なる
レーザ出力光が得られると共に、高光出力化に不可欠な
活性層の薄膜化ができる。
According to the present invention, the double heterojunction multilayer crystal layers 4 and 5 for operating the first laser element 31 are placed directly above the stripe groove 3.
, 6. Double heterojunction multilayer crystal layer 10.11.12 for operating the second laser element 32 directly above the stripe groove 9
Thus, a double heterojunction is formed using different epitaxially grown layers. As a result, the active layer 5 and the cladding layers 4 and 6 of the double heterojunction for the operation of the first laser element are formed.
The AQ mixed crystal ratio s and t of the active layer 11 and cladding layer 10.12 of the double heterojunction for operating the second laser element can be set separately, and the active Since the thicknesses of the layers 5 and 11 can be set separately and flatly, laser output lights with different oscillation wavelengths can be obtained from the laser oscillation section, and the active layer can be made thinner, which is essential for achieving high optical output.

上記実施例では、ダブルヘテロ接合の多層結晶層毎に1
個づつレーザ動作部を形成したものについて説明したが
、同一のダブルヘテロ接合の多層結晶層に独立動作可能
なレーザを複数形成してもかまわない。
In the above embodiment, each multilayer crystal layer of the double heterojunction has one
Although a case has been described in which a laser operating section is formed individually, a plurality of independently operable lasers may be formed in the same double heterojunction multilayer crystal layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同一半導体基板上に独立に動作可能な
発振波長が異なり高出力で横モードが安定な複数個の半
導体レーザ素子を容易に集積形成できる。また、個々の
レーザ素子のダブルヘテロ接合の多層結晶層を異なるエ
ピタキシャル成長層で形成したので、発振波長を容易に
設定でき、かつ発振波長差の大きい半導体レーザが得ら
れる。
According to the present invention, a plurality of semiconductor laser elements that can operate independently and have different oscillation wavelengths and have high output and stable transverse modes can be easily integrated on the same semiconductor substrate. Furthermore, since the double-heterojunction multilayer crystal layer of each laser element is formed of different epitaxial growth layers, the oscillation wavelength can be easily set, and a semiconductor laser with a large difference in oscillation wavelength can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す半導体レーザの斜線図、
第2図は本発明の半導体レーザの製造工程を示す図、第
3図は従来例の半導体レーザの斜視線である。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
FIG. 1 is a diagonal diagram of a semiconductor laser showing an embodiment of the present invention;
FIG. 2 is a diagram showing the manufacturing process of the semiconductor laser of the present invention, and FIG. 3 is an oblique view of the conventional semiconductor laser. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] 同一半導体基板上に独立に動作可能な複数個の半導体レ
ーザ素子が集積された半導体レーザにおいて、少なくと
も1個の半導体レーザ素子のダブルヘテロ接合が、他の
半導体レーザ素子のダブルヘテロ接合と異なるエピタキ
シャル成長層から形成されたことを特徴とする半導体レ
ーザ。
In a semiconductor laser in which a plurality of semiconductor laser elements that can operate independently are integrated on the same semiconductor substrate, the double heterojunction of at least one semiconductor laser element is an epitaxial growth layer that is different from the double heterojunction of other semiconductor laser elements. A semiconductor laser characterized in that it is formed from.
JP10028388A 1988-04-25 1988-04-25 Semiconductor laser Pending JPH01272177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10028388A JPH01272177A (en) 1988-04-25 1988-04-25 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10028388A JPH01272177A (en) 1988-04-25 1988-04-25 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01272177A true JPH01272177A (en) 1989-10-31

Family

ID=14269867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10028388A Pending JPH01272177A (en) 1988-04-25 1988-04-25 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01272177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646975B1 (en) 1998-06-26 2003-11-11 Kabushiki Kaisha Toshiba Semiconductor laser array and its manufacturing method, optical integrated unit and optical pickup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646975B1 (en) 1998-06-26 2003-11-11 Kabushiki Kaisha Toshiba Semiconductor laser array and its manufacturing method, optical integrated unit and optical pickup

Similar Documents

Publication Publication Date Title
US4758532A (en) Method for making a heterostructure semiconductor laser device by pressure cleaving of a cantilever structure
US4719633A (en) Buried stripe-structure semiconductor laser
JP2716693B2 (en) Semiconductor laser
JPH01272177A (en) Semiconductor laser
JP2687495B2 (en) Manufacturing method of semiconductor laser
JPH03238813A (en) Epitaxial growth method
JP3505913B2 (en) Method for manufacturing semiconductor light emitting device
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPS6242592A (en) Semiconductor laser array device and manufacture of same
JPH046113B2 (en)
JP3057188B2 (en) Independently driven multi-beam laser and its manufacturing method
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPH084176B2 (en) Method for manufacturing semiconductor laser device
JPH0671115B2 (en) Quantum well semiconductor laser
JPS61171185A (en) Semiconductor laser device
JPH01293686A (en) Manufacture of semiconductor laser element
JPH03244178A (en) Semiconductor laser
JPH04296081A (en) Visible beam semiconductor laser
JP2000244073A (en) Multi-wavelength integrated semiconductor laser device
JPH07202339A (en) Semiconductor laser element and manufacture thereof
JPH03153090A (en) Semiconductor laser
JPS60161688A (en) Manufacture of semiconductor laser device
JPH01175791A (en) Manufacture of buried structure semiconductor laser
JPH02231785A (en) Manufacture of semiconductor laser device