JPS61171185A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61171185A
JPS61171185A JP1084785A JP1084785A JPS61171185A JP S61171185 A JPS61171185 A JP S61171185A JP 1084785 A JP1084785 A JP 1084785A JP 1084785 A JP1084785 A JP 1084785A JP S61171185 A JPS61171185 A JP S61171185A
Authority
JP
Japan
Prior art keywords
substrate
layer
impurity
type
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084785A
Other languages
Japanese (ja)
Inventor
Yuichi Ono
小野 佑一
Yasutoshi Kashiwada
柏田 泰利
Takashi Kajimura
梶村 俊
Naoki Kayane
茅根 直樹
Shinichi Nakatsuka
慎一 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1084785A priority Critical patent/JPS61171185A/en
Publication of JPS61171185A publication Critical patent/JPS61171185A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the characteristics by method wherein an impurity introduced region is made to function as the current block layer by selectively introducing an N-type impurity to a P-type semiconductor substrate, and then a double-hetero structure is formed on the substrate and the impurity introduced region. CONSTITUTION:After a stripe mask is formed on the P<+> GaAs substrate 11, Si<+> is implanted. Thereafter, the mask on the substrate is removed, and the wafer is subjected to capless annealing in a thermal decomposition furnace of organic metal, thus forming an N-GaAs layer 12. At this time, a stripe section 13 is formed immediately under the mask. Then, organometallic compounds are introduced to successive growth of a P-Ga0.55Al0.45As clad layer 14, an undoped Ga0.86Al0.14As active layer 15, an N-Ga0.55Al0.45As clad layer 16, and an N<+> GaAs layer 17. An N-electrode 18 and a P-electrode 19 are formed to this epitaxial wafer. This process enables the flat formation of epitaxial grown layer because of the formation of a current structure layer in the flat substrate and the enlargement in selecting width of the growing method.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内部ストライプ構造を持つ半導体レーザの電流
狭窄層の形成方法に係シ、特に民生用ならびに情報端末
用の半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for forming a current confinement layer in a semiconductor laser having an internal stripe structure, and more particularly to a semiconductor laser for consumer use and information terminals.

〔発明の背景〕[Background of the invention]

従来の半導体レーザ装置は、特開昭57−211290
号に記載のようにストライプ状の溝(V溝や台形韓)を
ウェーハに加工形成して電流通過領域を限定しているた
め、電流狭窄幅は溝エッチマスク材のストライプ幅の加
工精度や、電流狭窄n−GaAS層の厚み精度等によっ
て値がバラツクなど、レーザ素子特性の不安定性があっ
た。
The conventional semiconductor laser device is disclosed in Japanese Patent Application Laid-Open No. 57-211290.
As described in the issue, striped grooves (V grooves or trapezoidal grooves) are formed on the wafer to limit the current passage area, so the current confinement width depends on the processing accuracy of the stripe width of the groove etch mask material, There was instability in the laser device characteristics, such as variations in values depending on the thickness accuracy of the current confinement n-GaAS layer.

また加工形成した溝を平坦に埋め込むためには液相成長
法のみが適用でき、結晶成長法の選択幅が狭かった。
In addition, only liquid phase growth can be applied to flatten the grooves formed by processing, and the selection range of crystal growth methods is narrow.

〔発明の目的〕[Purpose of the invention]

本発明の目的は内部ストライプ構造を具現する電流狭窄
層の形成法として有効な構造を提供し、かつ、量産性の
ある、安価な民生用あるいは情報端末用の可視半導体レ
ーザを提供することにある。
An object of the present invention is to provide a structure that is effective as a method for forming a current confinement layer that embodies an internal stripe structure, and to provide an inexpensive visible semiconductor laser for consumer use or information terminals that can be mass-produced. .

〔発明の概要〕[Summary of the invention]

従来の内部ストライプ4造をもつ半導体レーザはなんら
かの形で基板もしくはエピタキシャル層にV溝もしくは
台形溝が存在し、これを埋め込む形のレーザ作製法であ
り、特に有機金属の熱分解法では基板形状を保存して成
長が起るため、種々の問題が発生した。本発明では例え
ば基板に直接イオン打込み法により電流通過領域つまシ
レーザストライプを形成する方法であり、基板表面形状
は特に変化を受けず平坦であるため、次のステップであ
るダブルヘテロ接合形成が非常に容易であるという利点
をもつ。特に有機金属熱分解法ではイオン打込み後のア
ニール過程を結晶成長と同時に行なえるという製造工程
上非常に有利な面をもっている。なお、p基板へのn型
不純物導入はイオン打込み法、又、p型基板、n型基板
へのp型不純物導入はイオン打込み又は拡散法を用いる
のが良い。
Conventional semiconductor lasers with four internal stripes have some form of V-groove or trapezoidal groove in the substrate or epitaxial layer, and the laser fabrication method involves burying this. Particularly in organic metal pyrolysis, it is difficult to change the substrate shape. Since storage and growth occur, various problems have arisen. In the present invention, for example, the current passing region or laser stripe is formed directly on the substrate by ion implantation, and since the substrate surface shape is flat without any particular change, the next step, double heterojunction formation, is extremely difficult. It has the advantage of being easy to use. In particular, the organometallic thermal decomposition method has a very advantageous aspect in terms of the manufacturing process in that the annealing process after ion implantation can be performed simultaneously with crystal growth. Note that it is preferable to use an ion implantation method to introduce an n-type impurity into a p-type substrate, and to use an ion implantation or diffusion method to introduce a p-type impurity into a p-type substrate or an n-type substrate.

以下、本発明につき、実施例を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using Examples.

〔発明の実施例〕[Embodiments of the invention]

実施例1 p0形QaAs基板にn型不純物をイオン打込み、電流
狭窄層を形成した半導体レーザ。
Example 1 A semiconductor laser in which a current confinement layer was formed by ion-implanting n-type impurities into a p0-type QaAs substrate.

第1図において、p”−GaAa基板11に幅2μmの
ストライプ状のマスクを形成した後、イオン打込み装置
内で加速適圧200kVで、ドース量として2X10”
tMI−雪のSi0を打込む。この後基板上のマスクを
除去し、ウェーハを有機金属の熱分解炉内で、約800
0で約2時間砒素雰囲気中でキャップレスアニールヲ行
ない、n−QaAs  ′層12を形成する。この時マ
スクの直下部にストライブ部13が形成される。引続き
、有機金属化金物を導入、9  G ao、ss At
6.41A 1にクラッド層14(厚み1.5 μms
 I)〜I X 10”cnl−”)、ア    Jン
ドープGao、s@Ato 14A11活性層15(厚
み0、08 p m ) 、n  Gao、5sAto
、 4sAI クラッド層16(厚みL5 pm、 n
−1x I Qll、、−3)、n”−GaAsキャッ
プ層17(厚みQ、5μm、n−1X 10”tM−”
)の順に成長する。このエピタキシャルウェーハにn電
極18、p電極19を形成した後、へき開法により共振
器長300μmのレーザ素子を作製した。
In FIG. 1, after forming a striped mask with a width of 2 μm on a p''-GaAa substrate 11, the dose amount is 2×10” at an acceleration appropriate pressure of 200 kV in an ion implantation device.
tMI-Insert snow Si0. After this, the mask on the substrate is removed and the wafer is placed in an organometallic pyrolysis furnace for approximately 800
Capless annealing is performed in an arsenic atmosphere for about 2 hours at zero temperature to form an n-QaAs' layer 12. At this time, a stripe portion 13 is formed directly below the mask. Subsequently, organometallated metals were introduced, 9 Gao, ss At
6.41A 1 has a cladding layer 14 (thickness 1.5 μms
I)~I
, 4sAI cladding layer 16 (thickness L5 pm, n
-1x I Qll,, -3), n"-GaAs cap layer 17 (thickness Q, 5 μm, n-1x 10"tM-"
) grows in the order of After forming an n-electrode 18 and a p-electrode 19 on this epitaxial wafer, a laser element with a cavity length of 300 μm was fabricated by a cleavage method.

作製した素子は発振波長7gQnmにおいて、しきい値
電流30〜50mAで室温連続発振し、光出力は10m
Wまで安定な横基本モードで発振した。
The fabricated device continuously oscillates at room temperature with a threshold current of 30 to 50 mA at an oscillation wavelength of 7 gQ nm, and an optical output of 10 mA.
It oscillated in a stable transverse fundamental mode up to W.

実施例2) p” −GaAs基板にp−GaAsを一担成長した後
n型イオン打込みを行ない、電流狭窄層を形成した半導
体レーザ。
Example 2) A semiconductor laser in which p-GaAs is grown in one step on a p''-GaAs substrate, and then n-type ions are implanted to form a current confinement layer.

第2図において、p”−GaAl!基板21にまずp−
GaAs層(厚さ0.5 A ffh I’ 〜I X
IO″”crn−”)22を形成した後、実施例pで説
明したのと同様に 3 t +をイオン打込み、アニー
ル処理を施し、n型電流ブロック層23を形成する。次
いで有機金属熱分解法によりp−クラッド層24、アン
ドープ活性層25、n−クラッド層26、n−キャップ
層27を順次結晶成長する。このエピタキシャルウェー
ハにn電極2B、p電極29を形成した後、やはシへき
開法により共振器長300μmのレーザ素子を作製した
ところ、実施例pと同様の効果が得られた。
In FIG. 2, the p''-GaAl! substrate 21 is first
GaAs layer (thickness 0.5 A ffh I' ~ I
After forming the IO""crn-") 22, 3t+ ions are implanted and annealing is performed in the same manner as described in Example P to form the n-type current blocking layer 23. Next, metal organic pyrolysis is performed. A p-cladding layer 24, an undoped active layer 25, an n-cladding layer 26, and an n-cap layer 27 are successively crystal-grown by a method.After forming an n-electrode 2B and a p-electrode 29 on this epitaxial wafer, it is then cleaved. When a laser device with a cavity length of 300 μm was manufactured by the method, the same effect as in Example P was obtained.

実施例3) ウェーハ全面にn型GaAs層を形成した後、ス1ドラ
イブ部分にznイオン打込みを施して、電流狭窄層を形
成した半導体レーザ。
Example 3) A semiconductor laser in which an n-type GaAs layer was formed on the entire surface of a wafer, and then Zn ions were implanted into the S1 drive portion to form a current confinement layer.

第3図においてp”−QaAs基板31にn1lQ a
 A 8層32(厚み0.7μm、 n=3X 10”
cIn’)を有機金属熱分解法によって形成した後、マ
スクを用いてストライプ状にzn0イオン打込み法によ
りミ流通過領域33を形成した。マスクを除去した後、
上記実施例と同様の工程により半導体レーザを形成した
In FIG. 3, n1lQ a is applied to the p''-QaAs substrate 31
A 8 layers 32 (thickness 0.7μm, n=3X 10”
cIn') was formed by an organometallic thermal decomposition method, and then the mi flow passing region 33 was formed in a stripe shape by a Zn0 ion implantation method using a mask. After removing the mask,
A semiconductor laser was formed by the same steps as in the above example.

その結果、上記実施例とほぼ同様の結果が得られた。As a result, almost the same results as in the above example were obtained.

実施例4) 上記実施例においてp型電流通過領域がストライブ方向
に幅の異なる半導体レーザ。
Embodiment 4) A semiconductor laser in which the p-type current passing region has different widths in the stripe direction in the above embodiment.

第4図は上記実施例p〜3)の半導体レーザ装置の製造
工程途中の1平面図を示したもので、43は基板表面を
示す。p型の電流通過領域、つまシストライプが、レー
ザの両端面付近41で、図に示す様に狭く、中央部付近
42は広く設計した。ストライプ以外の領域43は電流
狭窄層である。次の工程で、上記実施例と同様にダブル
ヘテロ接合を形成、半導体レーザ素子を作製した。その
結果、光出力10mW迄安定な横基本モードで発振した
。波長は780nm、また励起領域をストライプ方向に
変化させたことにより、モード変換が起り、結果として
レーザビームの非点収差が、約5μm以下と小さくなっ
た。また発振のスペクトルは多モードであった。
FIG. 4 shows a plan view of the semiconductor laser device of Examples p to 3) in the middle of the manufacturing process, and 43 indicates the surface of the substrate. The p-type current passing region, or stripe, is designed to be narrow near both end faces 41 of the laser, as shown in the figure, and wide near the center 42. The region 43 other than the stripe is a current confinement layer. In the next step, a double heterojunction was formed in the same manner as in the above example, and a semiconductor laser device was manufactured. As a result, it oscillated in a stable transverse fundamental mode up to an optical output of 10 mW. The wavelength was 780 nm, and by changing the excitation region in the stripe direction, mode conversion occurred, and as a result, the astigmatism of the laser beam was reduced to about 5 μm or less. Moreover, the oscillation spectrum was multimode.

上記実施例では半導体材料をGaAl/G、aA、/、
A8系としたが、InP/InGaASP系あるいはI
 nGaP/InGaAtP系など他の材料を用いても
上記実施例と同様に実施することができる。
In the above embodiments, the semiconductor materials are GaAl/G, aA, /,
A8 type, but InP/InGaASP type or I
Even if other materials such as nGaP/InGaAtP are used, the same implementation as in the above embodiment is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、平坦な基板内に電流狭窄層を形成する
ために、その後のエピタキシャル成長層も平坦に形成で
き、従来の液相成長以外に有機金属熱分解法や分子線エ
ピタキシ法など、成長法の選択幅が広がるという効果が
ある。また電流狭窄層の形成方法としてイオン打込み法
を用いるため、ウェーハ内のストライプ幅の均一性が良
いとか、大面積比が容易であり、歩留りの良いレーザ作
製法として、その効果は大きい。
According to the present invention, in order to form a current confinement layer in a flat substrate, the subsequent epitaxial growth layer can also be formed flatly. This has the effect of widening the range of legal options. In addition, since the ion implantation method is used as a method for forming the current confinement layer, the uniformity of the stripe width within the wafer is good, it is easy to form a large area ratio, and it is highly effective as a laser manufacturing method with a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の1実施例を示すためのレーザ
断面構造図、また第4図は本発明の他の実施例を説明す
るためのレーザ平面図を示す。
1 to 3 are cross-sectional structural diagrams of a laser to illustrate one embodiment of the present invention, and FIG. 4 is a plan view of a laser to explain another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、p型の半導体基板にn型不純物を外部より選択的に
導入し、既不純物導入領域を電流の阻止層として機能せ
しめ、しかる後に既基板及び不純物導入領域上にダブル
ヘテロ構造を形成せしめたことを特徴とする半導体レー
ザ装置。 2、p型の半導体基板にp型導電層をキャリア濃度1×
10^1^7cm^−^3〜1×10^1^8cm^−
^3の範囲で気相成長法もしくは分子線エピタキシー法
で成長せしめ、しかる後、n型不純物を外部より選択的
に導入、既領域を電流阻止層として機能せしめ、しかる
後に既基板及び不純物導入領域上にダブルヘテロ構造を
形成せしめたことを特徴とする半導体レーザ装置。 3、p型半導体基板上に不純物を導入してn型導電層を
形成し、さらに、基板と同一のp型不純物を選択的にス
トライプ状に導入せしめ、しかる後に既基板上にダブル
ヘテロ構造を形成せしめたことを特徴とする半導体レー
ザ装置。
[Claims] 1. N-type impurities are selectively introduced into a p-type semiconductor substrate from the outside, the already impurity-introduced region is made to function as a current blocking layer, and then a double layer is formed on the existing substrate and the impurity-introduced region. A semiconductor laser device characterized by forming a heterostructure. 2. A p-type conductive layer on a p-type semiconductor substrate with a carrier concentration of 1×
10^1^7cm^-^3~1x10^1^8cm^-
It is grown by vapor phase epitaxy or molecular beam epitaxy within the range of ^3, and then an n-type impurity is selectively introduced from the outside to make the existing region function as a current blocking layer, and then the existing substrate and the impurity introduced region are grown. A semiconductor laser device characterized by having a double heterostructure formed thereon. 3. Introduce an impurity onto a p-type semiconductor substrate to form an n-type conductive layer, and then selectively introduce the same p-type impurity as the substrate in a stripe pattern, and then form a double heterostructure on the existing substrate. A semiconductor laser device characterized in that:
JP1084785A 1985-01-25 1985-01-25 Semiconductor laser device Pending JPS61171185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084785A JPS61171185A (en) 1985-01-25 1985-01-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084785A JPS61171185A (en) 1985-01-25 1985-01-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61171185A true JPS61171185A (en) 1986-08-01

Family

ID=11761742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084785A Pending JPS61171185A (en) 1985-01-25 1985-01-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61171185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286482A (en) * 1988-05-13 1989-11-17 Toshiba Corp Semiconductor laser device
JPH03125488A (en) * 1989-10-11 1991-05-28 Oki Electric Ind Co Ltd Semiconductor light-emitting device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286482A (en) * 1988-05-13 1989-11-17 Toshiba Corp Semiconductor laser device
JPH03125488A (en) * 1989-10-11 1991-05-28 Oki Electric Ind Co Ltd Semiconductor light-emitting device and manufacture thereof

Similar Documents

Publication Publication Date Title
KR100187778B1 (en) Buried heterostructure lasers using mocvd growth over patterned substrates
US5153890A (en) Semiconductor device comprising a layered structure grown on a structured substrate
JPS62200785A (en) Semiconductor laser device and manufacture thereof
US4783425A (en) Fabrication process of semiconductor lasers
JPS61171185A (en) Semiconductor laser device
JPH0376288A (en) Buried type semiconductor laser
JPH05267797A (en) Light-emitting semiconductor diode
JPH05211372A (en) Manufacture of semiconductor laser
JPH04111487A (en) Manufacture of semiconductor layer
US7046708B2 (en) Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JPH065986A (en) Manufacture of semiconductor laser
JP2924435B2 (en) Semiconductor laser and method of manufacturing the same
JPH11284276A (en) Semiconductor laser device and its manufacture
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JP2001230490A (en) Manufacturing method for semiconductor laser
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JP2679358B2 (en) Semiconductor laser device
KR100278629B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS6086889A (en) Manufacture of semiconductor laser
JPH01162397A (en) Semiconductor laser element
JP2001024278A (en) Method for growing semiconductor thin film and fabrication of semiconductor laser device
JPH06314850A (en) Semiconductor laser
JPH02250386A (en) Manufacture of semiconductor laser
JPH0745903A (en) Semiconductor laser and manufacture thereof
JPH0770784B2 (en) Lateral injection laser and manufacturing method thereof