JPS5948968A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JPS5948968A
JPS5948968A JP57159240A JP15924082A JPS5948968A JP S5948968 A JPS5948968 A JP S5948968A JP 57159240 A JP57159240 A JP 57159240A JP 15924082 A JP15924082 A JP 15924082A JP S5948968 A JPS5948968 A JP S5948968A
Authority
JP
Japan
Prior art keywords
layer
inp
active
active layer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57159240A
Other languages
Japanese (ja)
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57159240A priority Critical patent/JPS5948968A/en
Publication of JPS5948968A publication Critical patent/JPS5948968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the light-emitting diode (LED) having rectangular light intensity distribution by a method wherein an active layer and a P-type clad layer are superposed on the N type clad layer clocated on an N type semiconductor layer through the intermediary of a P type intermediate layer, a P type current blocking layer is provided on the side face of a circular cylinder, and an N type current squeezing layer is provided on the region other than the upper surface of said circular cylinder. CONSTITUTION:An N-InP layer 21, an InGaAsP active layer 22, a P-InP intermediate layer 23, an active layer 24 and a P-InP layer 25 are superposed on an N-InP substrate 1, and a cylindrical body of 5-20mum is formed by performing a mesa etching. The horizontal leak of current injected into the active layer can be prevented by surrounding the horizontal circumference of the active layers 22 and 24 with a P-InP 26 having large Eg, an N-InP current squeezing layer 27 is provided on the region other than the top surface of the circular cylinder, and a P-InP layer 28 and a P-InGaAsP cap layer 5 are superposed. According to this constitution, as the carrier leaked on the first active layer is caught by the second active layer, a saturation tendency is low in current and optical output, and besides, light intensity distribution is rectangularly formed even when the diameter of emitted light is reduced, the coupling efficiency of optical fibers is excellent and an LED of high output power can be obtained.

Description

【発明の詳細な説明】 本発明は元通信用の発光ダイオードに関する。[Detailed description of the invention] The present invention relates to a light emitting diode for original communications.

従来の光通信用発光ダイオード−例として、第1図に示
す様な波長1.3μmのInGaAsP/InP発光ダ
イオードがあった。図中、1はn・InP基板、2はn
・、InPからなるn型クラッド層、31d■nGaA
sP(22〜1.3μm)からなる活性層、4はp・I
nPからなるp型クラッド層、5は1)・InG−aA
sP  からなるキャップ層、6は5io211iH,
7はp電極、8はn電極である。この兄メILダイオー
ドは、n電極7とキャップ層5との間に5iOz膜6を
介在させることによって円形電極領域11にのみ、電極
全形成している。従って、この円形電極領域11の下の
活性層3が発光領製、となる。しかし、通常、p型クラ
ッド層4での低流の横方向への拡が9(矢印N)や、活
性層3の中でのキャリアの横方向への拡がり(矢印13
)のため、元光煩域の光強度分布は矩形状にならずに、
台形状となる。この円形電極径11の直径が小さくなる
程、この様な現象は顕著となりそめ光強変分イbがガウ
ス分布に近くなる。
An example of a conventional light emitting diode for optical communication is an InGaAsP/InP light emitting diode with a wavelength of 1.3 μm as shown in FIG. In the figure, 1 is an n-InP substrate, 2 is an n-InP substrate, and 2 is an n-InP substrate.
・, n-type cladding layer made of InP, 31d nGaA
Active layer consisting of sP (22-1.3 μm), 4 is p・I
p-type cladding layer made of nP, 5 is 1) InG-aA
A cap layer consisting of sP, 6 is 5io211iH,
7 is a p-electrode, and 8 is an n-electrode. In this older IL diode, the entire electrode is formed only in the circular electrode region 11 by interposing the 5iOz film 6 between the n-electrode 7 and the cap layer 5. Therefore, the active layer 3 under this circular electrode region 11 becomes a light emitting region. However, normally, the lateral spread of low flow in the p-type cladding layer 4 is 9 (arrow N), and the lateral spread of carriers in the active layer 3 (arrow 13).
), the light intensity distribution in the original light area is not rectangular, but
It becomes trapezoidal. As the diameter of the circular electrode 11 becomes smaller, such a phenomenon becomes more noticeable, and the light intensity variation a becomes closer to a Gaussian distribution.

−11蜜に、元ファイバと発光ダイオードとの′6占合
効率は5発光径を小さくすると良くなることが知られて
いるが、このIう光径を小さくするとM’ll :17
1iのtJ2に光強度分布が矩形、状とならずeこ台L
’6状あろいはガウス分布状となって良好な結合効率が
得られない欠点があった。例えば、光強度分イ(」がガ
ウス分布の場合には矩形分布の場合に比べて結合効率が
約2dB劣化する。この様に従来の元プロダイオードで
は、発光径を小さくしても結合効率があ捷り良好になら
ないため、元ファイバの入射)くワーはかえって小さく
なるという欠点があった。
-11 In particular, it is known that the occupancy efficiency between the original fiber and the light emitting diode improves by decreasing the light emitting diameter, but if the light diameter is made smaller, M'll:17
At tJ2 of 1i, the light intensity distribution does not have a rectangular shape.
The hexagonal alloy had the disadvantage that it had a Gaussian distribution, making it difficult to obtain good coupling efficiency. For example, when the light intensity A has a Gaussian distribution, the coupling efficiency deteriorates by about 2 dB compared to when it has a rectangular distribution.In this way, in conventional original pro diodes, the coupling efficiency decreases even if the emission diameter is made small. Since the splitting is not good, there is a drawback that the incident wave of the original fiber becomes smaller.

一方1.結合効率を良くするようi/i:発ン0径を小
さくすると、動作市、流が一定の場合に霜、光密度が非
常に太きくなり、このため活団層の注入キャリア密度が
大きくなり、活性層とクラッド層の間のへテロ障壁?乗
り越、t−でキャリアが()1!!れ出丁ことかある。
On the other hand 1. When the i/i: emission diameter is made smaller to improve the coupling efficiency, the frost and light density becomes very thick when the operating temperature and flow are constant, and therefore the injected carrier density in the active group layer increases. , a heterobarrier between the active layer and the cladding layer? Overcome, t- and carrier ()1! ! There is also a thing called ``re-debutsu''.

これはキャリアリーケージ(あるいはキャリアオーバー
フロー)と呼ばれる現俟である。このように従来の元)
°1−ダ・「オードにおいては% 4’l’i −/Y
:径が小さな場合に動作電流をしだいに上けてゆくとキ
ャリアリ−ゲージが顕著になるため光出力があまり増大
せず飽和状態となるという欠点があった。
This is a phenomenon called carrier leakage (or carrier overflow). Conventional original like this)
°1-da・In the ode, % 4'l'i −/Y
: When the diameter is small, when the operating current is gradually increased, the carrier leakage becomes noticeable, so the optical output does not increase much and becomes saturated, which is a drawback.

本発明の目的は、発光径を小さくした場合にも光強度分
布が矩形状でファイバとの結合効率が良好でかつキャリ
アリ−ゲージの影響が少なく、電流−光出力特性に飽和
傾向が少なく、光出力の大きな発光ダイオードを提供す
ることにある。
The purpose of the present invention is to have a rectangular light intensity distribution even when the emission diameter is made small, to have good coupling efficiency with the fiber, to have little influence of carrier leakage gauge, and to have little tendency to saturation in the current-light output characteristics. An object of the present invention is to provide a light emitting diode with a large light output.

本3G明の発光ダイオードの41り或は、第1導電型の
半導体基板上に形成された第1導電型クラッド層と、こ
の第1専電型クラツド層上に形成された少なくとも2層
以上の円板状の活性層と、この活性層で上下を挾まれた
円板状でかつこの活性層よりも大きな禁制螢幅を有する
第24t1、型中間層と、前記活性層及び前記中間層か
らなる積層)lI!f造の上に形成された円板状の第2
導電型クラッド層と、前記第1導電型クラッド層あるい
は前記半導体基板上に形成され前記積層構造の側面をネ
Aう第2導電型の電流ブロック層と、この電流ブロック
層上に形成され前記績1d 71’i&造の上方全薇わ
ない第1導電型の電流狭窄層と全備えること金・l′!
r i槙と1゛る。
41 of the present 3G light emitting diode, a first conductivity type cladding layer formed on a first conductivity type semiconductor substrate, and at least two or more layers formed on this first conductivity type cladding layer. consisting of a disc-shaped active layer, a disc-shaped intermediate layer sandwiched between the upper and lower sides by the active layer, and having a forbidden firefly width larger than that of the active layer; the active layer and the intermediate layer; Lamination) lI! A disk-shaped second plate formed on the f-structure
a conductive type cladding layer; a second conductive type current blocking layer formed on the first conductive type cladding layer or the semiconductor substrate and extending over the side surface of the laminated structure; 1d 71'i & is entirely provided with a current confinement layer of the first conductivity type which does not fall off.
I'm with Maki.

以下図面により本Iれ明全評ノドillに祝明する。I would like to congratulate you on the complete review of this book with the following drawings.

第2図は本発明の一笑が6例の波1に13μm (n(
1a−AsP / InP  発光ダイオードの断面図
で、i、lx t +各;と同一;m号は同−溝成要素
を示す。図中、21はn・、[nPからなる11型クラ
ツドIa、22 &i J n(Ja−AsP(3g〜
13μmη)からなる第1のiZi 1′:に1¥4.
23Id、n4nPからなるp v(1,中間j曽、2
4はIJ ・111Ga−AsP(λg〜1.3 μm
 )からなる第2の活1゛十ノ曽、25は■゛・InP
からなるp :;Wクラッド層、26は1)・InP 
からなる電流ブロックハリ、27&J11・l、 n 
、L’からなる電流狭窄層、28はしI n Pからな
る埋め込み層、29は電流狭窄のための4)+11) 
n 、j・1″・¥謂、30は無反射コーティング、3
1r」、発光領域、32は平担部である。
Figure 2 shows that the present invention has a wave of 13 μm (n(
1a-A cross-sectional view of an AsP/InP light emitting diode, i, lx t + each; m indicates a groove component; In the figure, 21 is a type 11 clad Ia consisting of n・, [nP, 22 &i J n(Ja-AsP(3g~
1\4.
23Id, p v (1, intermediate j so, 2
4 is IJ ・111Ga-AsP (λg ~ 1.3 μm
) consists of the second life 1゛Junoso, 25 is ■゛・InP
p:;W cladding layer, 26 is 1) InP
Current block consisting of 27 & J11 l, n
, a current confinement layer consisting of L', 28 a buried layer consisting of I n P, and 29 4) + 11) for current confinement.
n, j・1″・¥謂, 30 is non-reflective coating, 3
1r'' is a light emitting region, and 32 is a flat portion.

本実施例では、・、INlの活性層22及び第2の活性
層24は瀬方向の°まわシを禁制帯11騎の大きな0・
InP からなる電流プロックノ曽26で囲まれている
ため、活1生層に注入された・tヤリアが清刀回に漏れ
て拡がることはほとんど無い。父、発光領域31の横方
向のまわりには、n型クラッド層21、p InPから
なる電流ブロック層26.11・I n Pからなる電
流狭窄層27、p・InPからなる埋め込み層28で構
成されるpnpnt?J造29があるため、発光1屓域
31全迂回して流れる電流は阻止される。この様に活性
層から横方向に拡がるキャリア漏れや、発光領域31を
迂回して流れる電流漏れがほとんど4()(いため、発
光領域31の光強度分布は矩形状となる。従ってファイ
バとの結合効率も良好で、ファイバ内に入射される光パ
ワーを大きくすることが出来る。
In this embodiment, the active layer 22 and the second active layer 24 of .
Because it is surrounded by a current block made of InP, it is almost impossible for the ・T Yaria injected into the active layer to leak into the active layer and spread. The light emitting region 31 is laterally surrounded by an n-type cladding layer 21, a current blocking layer 26 made of p-InP, a current confinement layer 27 made of p-InP, and a buried layer 28 made of p-InP. pnpnt? Because of the J structure 29, the current flowing around the entire light emitting area 31 is blocked. In this way, the carrier leakage that spreads laterally from the active layer and the current leakage that flows around the light emitting region 31 are almost 4( ) (), so the light intensity distribution of the light emitting region 31 becomes rectangular. It also has good efficiency and can increase the optical power input into the fiber.

本≠施例の発光ダイオードは2つの活性層を備えておシ
、電子及び正孔はまず第1のI’を層711層22に注
入され、そこで再結合して発光する。ここで次第に電流
全壇加するとa、1の活性1曽22の6゛入キャリア苫
度が【1i太しキャリアリークー−ジが起こる様になる
。一般に正孔は「b、子よりも有劫質Iが太きいため、
キャリアリーケージがtl’c 子り了: 、1.’P
べて少なく無視出来る程である。従って、キャリアリ−
ケージは注入電子についてのみ顕著に起こ−リ、第1の
活性層22からp型中間t<:h 2 :3に′電子が
あふtし出る。このね’4[あふれ出た1は子はほとん
ど1)5中間層23をノ由過して@2の活・柱層24に
注入される。この尾2の活性層24の佳人′tjj、子
杆11ルはあまり大きくないため、注入電子はキャリア
リーケージすることなく、再結合してπ5元する。
The light emitting diode of this example has two active layers, and electrons and holes are first injected into the first layer 711 and the hole 22, where they recombine and emit light. At this point, when the current is gradually added to the full range, the active 1, 22, and 6' carrier intensities become [1i thick] and carrier leakage occurs. In general, a hole has a ``b,'' because the material I is thicker than the child.
Career leakage is tl'c child completion: , 1. 'P
The total amount is so small that it can be ignored. Therefore, career
Caging occurs significantly only for injected electrons, and electrons overflow from the first active layer 22 to the p-type intermediate t<:h 2 :3. This '4 [most of the overflowing 1] passes through the 1)5 intermediate layer 23 and is injected into the active/column layer 24 of @2. Since the active layer 24 of the tail 2 is not very large, the injected electrons are recombined into π5 elements without carrier leakage.

この様に不実施例の発光ダイオードでは、キャリアリー
ケージが生じても漏れたキャリアヶもう一度捕獲する第
2の活性層24ヶmえている7゛ζめに、キャリアリー
ケージの影響がlj、とんと;1.ljE (、従って
電流−光出力詩性に飽/l’ll li、’(4回か少
ない待ij”<金屑する。
As described above, in the light-emitting diode of the non-example, even if carrier leakage occurs, the influence of carrier leakage is lj, and the effect of carrier leakage is lj, which is 1. ljE (Thus, the current-light output is saturated with poetry/l'll li,'(4 times or less ij"<golden dust.

、〕(に/f:芙施例の宅)Y、ダイオードの・ン°旧
′「方法の++y+’。
, ] (ni/f: FU Example's house) Y, diode's ·n ° old' ``Method of ++y+'.

明をする。make light.

まずnIrrP基板1上にn型クラッド層21 (nI
 nP ) k  1〜2 0  It  n1lj−
4ト しく (rJ、  51Zln  4呈ml 、
 1.l31 )t+’;i%ffj 2 2  (,
1nQa八sへ  λg、 1.3 μl]l ) k
 ’0.1〜4μmn 好ましくは1μm 4j@ l
規、p型中間1ザ・イ23(p−InP)ko、05〜
3 μIY1tl−j−4: L、<は0.2μnl程
度、第2の活性層24 (p−1nQsASPλR・〜
1..3 tJ+i )を0.1〜4μm好ましlj:
1μm程度、 pメ1yクジッドM 25 (p・In
、P) ’e 0.1〜5μm  好ましくは0.5μ
m程度結晶成長する。この場合の結晶成長法は液相成長
法気相成長法、分子馴エビタクシー法等のどの方法によ
っても良い。次にホトエツチングによって発光領域31
のみを残して、メサエッチングする。このメサエッチン
グの径は40μIn以下好ましくは5〜20μmが適当
である。このメサエッチング深さはn型クラッド層21
に達するまで行なう。このエツチングの際平担S32に
おいてn型クラッド層21全除去する寸でエツチングを
行なっても良いし、[ヌiに示す様にn型クラッド層2
1の途中あるいは上の界面でエツチングを止めても艮い
First, an n-type cladding layer 21 (nI
nP ) k 1~2 0 It n1lj-
4 pieces (rJ, 51Zln 4ml,
1. l31 )t+';i%ffj 2 2 (,
1nQa8s λg, 1.3 μl]l) k
'0.1~4μm preferably 1μm 4j@l
Ki, p-type intermediate 1 the i23 (p-InP) ko, 05~
3 μIY1tl-j-4: L, < is about 0.2 μnl, second active layer 24 (p-1nQsASPλR・~
1. .. 3 tJ+i) is preferably 0.1 to 4 μm lj:
Approximately 1 μm, p.In
, P) 'e 0.1-5μm Preferably 0.5μm
The crystal grows to about m. In this case, the crystal growth method may be any method such as liquid phase growth, vapor phase growth, and molecular adaptation method. Next, the light emitting area 31 is etched by photo etching.
Mesa etching is performed, leaving only the chisel. The diameter of this mesa etching is suitably 40 μIn or less, preferably 5 to 20 μm. This mesa etching depth is the n-type cladding layer 21
Continue until you reach . During this etching, etching may be carried out to completely remove the n-type cladding layer 21 on the planar surface S32, or the etching may be carried out to the extent that the n-type cladding layer 21 is completely removed as shown in [nui].
There is no problem even if the etching is stopped in the middle or at the upper interface of 1.

次に2回目の結晶成長を行なう。この結晶/JIC−J
交は、液相成−1に法を用いた方が好チしい。すずp・
InP からなる電流ブロック層26 ’!i? (1
,1〜3μm好ましくは1μm程度、次にnInPか1
“ンなる電流狭窄層27をo、 i〜3μm好ましくt
よJl、tm程度、次にpfnP からなる埋め込み/
G12に8で(]55〜10μmましくは2〜:(A 
Jn 程度、最後にpIn(、+a−AsP  からな
るキYツブ層15(22〜12μm)を0.2〜3μm
好ましく(d1μm程jW県絖的に結晶jJy−閲づ−
る。この2回11の結晶成長にをいて、元丸領域径が4
0μm1人下と小さな」I、・9合で、かつIJ、1、
・、]之浴液の過冷却度を小さく設足することによって
、・、1−、流ブロック層2 (i及び′「b、流鍼窄
層27が尤う1.. :ICi域31で欠損して11′
、1晶b1シ快し、第21ン)に承り一様な’I’+l
ノ、’jji h”l’j’lられる。(g VCS 
i O2l17.5 J・L’ V J) 7去J57
.、)いはスパッタリング法及びホトエッナング、去葡
用いて形成し、欠にp電極30 f 燕ノ:II大ある
いはスパッタリング法等葡用いて形成づ−る。1′友に
1詩間に無反射コーティング30を1[そ成しさらVC
n届4iflv8全形成する。
Next, a second crystal growth is performed. This crystal/JIC-J
It is preferable to use the method for liquid phase formation-1. Suzu p・
Current blocking layer 26' made of InP! i? (1
, 1 to 3 μm, preferably about 1 μm, then nInP or 1
The current confinement layer 27 has a thickness of 0, i to 3 μm, preferably t
yoJl, about tm, then embedding consisting of pfnP/
G12 with 8 (] 55-10 μm or 2-: (A
Finally, a key layer 15 (22 to 12 μm) made of pIn(,+a-AsP) is formed to a thickness of 0.2 to 3 μm.
Preferably (about 1 μm crystalline)
Ru. After these two times 11 crystal growth, the diameter of the original round region is 4
As small as 0 μm 1 person, I, ・9 go, and IJ, 1,
・,] By setting a small degree of supercooling of the bath liquid, ・, 1-, flow block layer 2 (i and 'b, flow acupuncture layer 27 is 1..: in ICi area 31. Missing 11'
, 1st b1 was recovered, and uniform 'I'+l was accepted in the 21st n)
ノ、'jji h"l'j'l" (g VCS
i O2l17.5 J・L' V J) 7 left J57
.. , ) or by using a sputtering method, photoetching, or rinsing, and the p-electrode 30 is formed by using a sputtering method or the like. 1' 1 anti-reflective coating 30 for 1 poem [Sonari Sara VC
n notification 4iflv8 complete formation.

/1(りしく(1例は2層の活・1生層について署明し
fcか、これに1収らず31曽以上の多]曽(1゛・¥
」?7であってもIJい。
/1(Rishiku (1 case is signed fc for the 2nd layer active layer and 1st layer, or 1 does not fit this and more than 31 so)) So (1゛・¥
”? Even if it's 7, it's IJ.

又、活・四層とクラッド層との間にそれらの中(川の禁
制・117幅のバッフ了となる半冑一体層か分合ニレC
いても良い。父、本実施例ではn型、?+l;版全14
4いたがp型基板を用いても良い。又、本実77Ri例
ではp型電極’zsi02狭窄構造としているが、必ら
ずしもこれに限定する必要なく、例えばn型キャップ層
にp型不純物尋人全発光領域の近傍のみに行ない電流通
路を形成するいわゆるプレーナー構造、あるいは全面電
極構造等種々の構造を採用することが出来る。本実施例
では、活性層の組成を1.3μrnのIn()aAsP
  のものを用いたが、これに限らすInPとほぼ格子
整合する波長1.0〜1.7μIn¥1:でのInGa
AsPあるいはInGaAs  k活性層に用いても、
不発明が適用できることは明らかである。
In addition, between the active fourth layer and the cladding layer, there is a semi-integrated layer or split elm C which becomes a buff of 117 width (river prohibition).
It's okay to stay. The father is n-type in this example, ? +l; 14 editions in total
4, but a p-type substrate may also be used. In addition, although the p-type electrode 'zsi02 constricted structure is used in the present 77Ri example, it is not necessarily limited to this, and for example, p-type impurities may be applied to the n-type cap layer only in the vicinity of the entire light emitting region to generate current. Various structures such as a so-called planar structure forming a passage or a full-surface electrode structure can be adopted. In this example, the composition of the active layer is 1.3μrn In()aAsP.
InGa with a wavelength of 1.0 to 1.7μIn¥1: which is almost lattice matched to InP was used.
Even if used for AsP or InGaAs k active layer,
It is clear that non-invention is applicable.

又、不実施例では制料として、I nGa /is J
’/I n P系を用いたがこれに限らず他の月相Ga
A6As/GaAs%においても不発明を増剤すること
が出来る。
In addition, in non-examples, InGa /is J
'/I n P system is used, but not limited to this, other moon phases Ga
The non-invention can also be increased in A6As/GaAs%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の波長1.3μmの1 nG a A 5
 P/ I nP発光ダイオードの断面図、第2図は本
−Iぺ明の一実施例に係わる波長1.3 μmのI n
 G a A s P/ ’、1 n P<it!;)
Y;ダイオードの断面図である。図において、1・・・
・・n・I n P 、I、!:板、2,21・・・・
・n型クラッド層、3・・・・・活性層、4.25・・
・・・・1)型、クランドハη、5・・・・・・キャッ
プJtへ 6・・・・・・5iU21臭、7 ・・p電
極、8・・・・・・n fll極、11・・・・円形l
−11i’、、 )肉追呟、12・・・・・・4白光窓
、22・・・・・月番1の7占・1生1冒、23・・・
・・p型中間層、24・・・・・・第2の活1生1曽、
26・・・・電流ブロック層、27・・・・・・霜;流
狭華層、28・・・・埋め込み層、29・・・・・・I
)nl)IN1′’#ノe−130・・・・・轄(1−
反射コーティング、31・・・・・・発つ°C領域、3
2・・・・・・平」旦9NIS 、である。 斤71 し) /l pc、 2y−+ 304
Figure 1 shows the conventional 1 nGa A 5 at a wavelength of 1.3 μm.
A cross-sectional view of a P/I nP light emitting diode, FIG.
G a A s P/', 1 n P<it! ;)
Y; is a cross-sectional view of a diode. In the figure, 1...
... n・I n P , I,! : Board, 2, 21...
・N-type cladding layer, 3...active layer, 4.25...
.....1) type, clandestine η, 5......to cap Jt 6...5iU21 odor, 7...p electrode, 8...n fll pole, 11.・・・Circular l
-11i',,) Meat pursuit, 12...4 white light window, 22...7 fortune-telling of month number 1, 1st life, 1st adventure, 23...
...p-type intermediate layer, 24...second life 1 life 1 so,
26...Current block layer, 27...Frost; Nagasaka layer, 28...Buried layer, 29...I
) nl) IN1''#ノe-130... control (1-
Reflective coating, 31...°C range of origin, 3
It is 9 NIS per day. 71 catties) /l pc, 2y-+ 304

Claims (1)

【特許請求の範囲】[Claims] i括1導市j!;ljの半導体基板上に形成された第1
導電型クラッド層と、この第1導電型クラッド層上に形
成さハ、た少なくとも2層以上の円板状の活性ノーと、
これら活性層で上下を挾まれ円板状でかつそれら活性ハ
Qよりも大きな禁制帯幅を有する第2導′屯型中間層と
、前記活性層及びt’+tJ記中間層小中間層積層構造
上に形成された円板状の第2導電型クラッド層と、11
丁記第1得電型クラッド層あるいは前記半導体基板上に
形成され前記積層構造の側UkI全唖う第2得策型の′
電流ブロック層と、この電流ブロック層上に形成されA
iJ記多増多層構造方を覆わない第1導電型の電流狭窄
層全能えることを%徴とする発光ダイオード。
i group 1 guide city j! ;lj formed on the semiconductor substrate;
a conductive type cladding layer; and at least two or more disk-shaped active layers formed on the first conductive type cladding layer;
A second conductive type intermediate layer sandwiched between the upper and lower active layers and having a disk shape and a forbidden band width larger than the active layer Q, the active layer and the t'+tJ intermediate layer small intermediate layer laminated structure. a disk-shaped second conductivity type cladding layer formed on the cladding layer 11;
A first power-gaining type cladding layer or a second power-gaining type cladding layer formed on the semiconductor substrate and covering the entire side UkI of the laminated structure;
a current blocking layer and a current blocking layer formed on the current blocking layer;
A light emitting diode characterized by having a current confinement layer of a first conductivity type that does not cover a multilayer structure.
JP57159240A 1982-09-13 1982-09-13 Light-emitting diode Pending JPS5948968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159240A JPS5948968A (en) 1982-09-13 1982-09-13 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159240A JPS5948968A (en) 1982-09-13 1982-09-13 Light-emitting diode

Publications (1)

Publication Number Publication Date
JPS5948968A true JPS5948968A (en) 1984-03-21

Family

ID=15689404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159240A Pending JPS5948968A (en) 1982-09-13 1982-09-13 Light-emitting diode

Country Status (1)

Country Link
JP (1) JPS5948968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237948U (en) * 1985-08-27 1987-03-06
US6570189B1 (en) * 1999-03-03 2003-05-27 Oki Electric Industry Co., Ltd. Semiconductor device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109801A (en) * 1974-02-05 1975-08-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109801A (en) * 1974-02-05 1975-08-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237948U (en) * 1985-08-27 1987-03-06
US6570189B1 (en) * 1999-03-03 2003-05-27 Oki Electric Industry Co., Ltd. Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
JPH077183A (en) Semiconductor light emitting device and fabrication thereof
JPS5948968A (en) Light-emitting diode
JPS61121373A (en) Surface light-emitting element and manufacture thereof
JP2758472B2 (en) Light modulator
JPS61102086A (en) Semiconductor laser
JP2003177367A (en) Semiconductor optical element
JP2738040B2 (en) Semiconductor light emitting device
JPS5891689A (en) Semiconductor light-emitting diode
KR100320172B1 (en) Semiconductor laser diode and its manufacturing method
JPS62217689A (en) Semiconductor light-emitting device
JPS63216389A (en) Surface emitting type light emitting diode
JPH0548889B2 (en)
JPS6386581A (en) Light emitting diode
JPS63169093A (en) Semiconductor laser
JPS6318874B2 (en)
JPH07202259A (en) Gaalas light emitting diode
JPH03203282A (en) Semiconductor laser diode
JPS59108385A (en) Photo semiconductor device
JPS5791574A (en) Light emitting diode
JPH05160509A (en) Quantum well structure buried semiconductor laser
JPS5858783A (en) Semiconductor laser
JPS59112671A (en) Semiconductor laser
JPH0227829B2 (en)
JPS6136720B2 (en)