JPS5891689A - Semiconductor light-emitting diode - Google Patents

Semiconductor light-emitting diode

Info

Publication number
JPS5891689A
JPS5891689A JP56190327A JP19032781A JPS5891689A JP S5891689 A JPS5891689 A JP S5891689A JP 56190327 A JP56190327 A JP 56190327A JP 19032781 A JP19032781 A JP 19032781A JP S5891689 A JPS5891689 A JP S5891689A
Authority
JP
Japan
Prior art keywords
active layer
light
layer
type
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56190327A
Other languages
Japanese (ja)
Inventor
Toshio Uji
俊男 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56190327A priority Critical patent/JPS5891689A/en
Publication of JPS5891689A publication Critical patent/JPS5891689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To increase light-emitting volume without enlarging the diameter of light emission, to improve the saturation of optical output and to obtain high fiber combination power by unevenly forming the upper surface and lower surface of an active layer. CONSTITUTION:The plane light emission type semiconductor light-emitting diode, which has double-hetero structure and extracts beams in the vertical direction to the main surface of a semicondutor substrate, is formed. The diode is formed in such a manner that an N type InP layer 13, an N type InGaAsP layer 14 functioning as the active layer and a P type InP layer 15 are shaped onto the N type InP substrate 11, a high-concentration region 17 through the diffusion of Zn is molded and ohmic electrodes 18, 19 are shaped. The upper surface and the lower surface in at least light-emitting section of the active layer 14 are formed in uneven and corrugated shape, and the thickness of the active layer is made approximately constant. Accordingly, substantial light-emitting volume is increased, the rate of Auger recombination currents is reduced, and optical output is augmented.

Description

【発明の詳細な説明】 本発明社、半導体発光ダイオード(以下LEDと呼ぶ)
、特に半導体基板に対し垂直な方向から光を取出す、い
わゆる千両発光111 Ia K関するものである。
[Detailed description of the invention] Semiconductor light emitting diode (hereinafter referred to as LED) manufactured by the present inventor
In particular, it relates to a so-called 111 Ia K light emitting device which extracts light from a direction perpendicular to a semiconductor substrate.

IJD a 、光通信システム、の光源として重要であ
り研究開発が精力的に行なわれている。特に発光波長0
.8μm帯のG6ムa/AJG−ムS系OLEりは既に
実用に供せられている。とζろでIaの光通信用光源と
しての利点れ、安価であること、信頼性に優れているこ
との他に電流−光出力特性の直線性が優れているという
利点かあ〕、特にアナログ変調方式の通信システムの光
源として重要な役割を果′ している。さて、近年の光
ファイバの低損失化に伴ない波長1μm〜1.7μmと
いったよシ長波長帯が伝送損失最小の領域となっ九。こ
れに伴ない光源としてもこの波長領域の光を出力するI
 nGa五sP/InP系のIaの研究開発が進められ
ている。しかしながら従来のInG−ムsP/InP系
のダブルへテロ構造・LED、では、電流増加とと4に
光出力が飽和し、電流−光出力特性の直線性が極めて悪
かり九。
It is important as a light source for IJD a and optical communication systems, and research and development are being actively conducted on it. In particular, the emission wavelength is 0.
.. The 8 μm band G6mua/AJG-muS OLE has already been put to practical use. The advantages of Ia as a light source for optical communications are that it is inexpensive, has excellent reliability, and has excellent linearity in current-light output characteristics, especially for analog It plays an important role as a light source in modulation type communication systems. Now, as the loss of optical fibers has decreased in recent years, the long wavelength band, such as wavelengths of 1 μm to 1.7 μm, has become the region with the lowest transmission loss. Along with this, I output light in this wavelength range as a light source.
Research and development of nGa5sP/InP-based Ia is progressing. However, in the conventional InG-P/InP double heterostructure LED, the optical output saturates as the current increases, and the linearity of the current-light output characteristic is extremely poor.

そのために、アナログ変調方式の通信システムに適して
いるというLEDの大きな利点が損なわれていた。さら
にこの光出力の飽和のために通常動作条件での発光効率
が悪く、高出力を得ることができなかった。
For this reason, the great advantage of LEDs, which is that they are suitable for analog modulation communication systems, has been lost. Furthermore, due to the saturation of the optical output, the luminous efficiency was poor under normal operating conditions, making it impossible to obtain high output.

ところで、本発明者らO研究4含めた最近の研究により
この電流−光出力特性の飽和は、InGaAlIP活性
層への注入キャリヤ濃度nの約2乗に比例した発光電流
の他にnの約3乗に比例した非発光電流が存在しておシ
、電流を増加するとともにこの非発光電流成分の全電流
に対する割合が増大するためであり、この非発光電流は
オージェ再結合の可能性が極めて高いことが明らかにな
ってきた。
By the way, recent research by the present inventors, including O Research 4, shows that the saturation of this current-light output characteristic is not only due to the emission current proportional to the square of the carrier concentration n injected into the InGaAlIP active layer, but also due to the saturation of the current-light output characteristic, which is approximately 3 of n. This is because there is a non-luminescent current proportional to the power of the current, and as the current increases, the ratio of this non-luminescent current component to the total current increases, and this non-luminescent current is extremely likely to be caused by Auger recombination. It has become clear.

これらの研究結果に基づけば、電流−光出力特性の飽和
を低減するために活性層の厚さを厚くする、あるいは、
発光径を大きくすることによシ注入キャリヤ濃度の低い
状態で動作させるという方策が考えられる。実際活性層
を厚くする程、又発光径を大きくする程、飽和はある程
度改善されるニしかし、活性層を2〜3μ峨上に厚くす
ると、活性層内での光吸収の増大、注入キャリヤの活性
層内の厚み方向での分布が一様でなくなるといったこと
が起こり、光出力を大きく損なうという問題が(生じた
り、結晶成長上も厚くするにつれ実質の結することは極
めて困難であった。又発光径を大きくするととに関して
は光吸収、注入キャリヤの分布、結晶成長といった点で
の問題は少ないが、飽和を著しく改善するためには、発
光径を極めて大きくする必要があプ、通常光通信に用い
られているコア径数10μm11度の光ファイバに結合
させると結合損失が大きくなシ、ファイバ結合パワーを
著しく損なうという問題があった。
Based on these research results, increasing the thickness of the active layer to reduce the saturation of the current-light output characteristics, or
A possible strategy is to increase the emission diameter to operate in a state where the injected carrier concentration is low. In fact, as the active layer becomes thicker and the emission diameter becomes larger, the saturation is improved to some extent. The distribution in the thickness direction within the active layer may become non-uniform, resulting in the problem of a significant loss of optical output, and it has been extremely difficult to effectively control the crystal growth as the thickness increases. Increasing the emission diameter causes fewer problems in terms of light absorption, distribution of injected carriers, and crystal growth, but in order to significantly improve saturation, it is necessary to make the emission diameter extremely large. When coupled to an optical fiber with a core diameter of several 10 μm and 11 degrees used in communications, there is a problem in that the coupling loss is large and the fiber coupling power is significantly impaired.

さらに、このようなオージェ再結合aInGgAaPの
みで社なく波長1〜1.7μmの光源として使い得る他
の半導体材料でもInGgAsPと同程度あるいはそれ
以上起り得るという研究結果もあシ半導体材料を変える
ことKよる解決も困難である。仁のように電流−光出力
特性の飽和という問題に対し、実用上有効な手段社これ
まで得られていなかった7本発明はこのような欠点を除
くためになされたもので、電流−光出力特性の飽和を改
善し、ファイバ結合パワーの大きく、直線性の優れたL
EDを提供するものである。
Furthermore, there are research results that show that Auger recombination can occur to the same degree or more than InGgAsP with other semiconductor materials that can be used as light sources with wavelengths of 1 to 1.7 μm, rather than just aInGgAaP. It is also difficult to solve this problem. To solve the problem of saturation of the current-light output characteristics, no practically effective means have been found to date.The present invention has been made to eliminate these drawbacks. Improved characteristic saturation, large fiber-coupled power, and excellent linearity
It provides ED.

即ち、m−v族化合物半導体から成り、ダブ゛ルヘテロ
構造を有し、半導体基板の主表面に対し垂直方向に光を
取出す平衝発光型半導体発光ダイオードにおいて、活性
層の少なくとも発光部における上面及び下面が凹凸で波
状となっておシ、かつ活性層の厚さかはぼ一定であるこ
とを特徴とする半導体発光ダイオードである。
That is, in a balanced light emitting type semiconductor light emitting diode made of an m-v group compound semiconductor, having a double heterostructure, and emitting light in a direction perpendicular to the main surface of a semiconductor substrate, at least the upper surface and the light emitting part of the active layer are This semiconductor light emitting diode is characterized in that the lower surface is uneven and wavy, and the thickness of the active layer is approximately constant.

本発明によれば、活性層の上面及び下面を凹凸状にして
いるため、発光径及び活性層厚を大きくすることなく発
光体積を大きくすることができそ。
According to the present invention, since the upper and lower surfaces of the active layer are made uneven, the light emitting volume can be increased without increasing the light emitting diameter and the active layer thickness.

のために、従来の欠点が除かれ光出力の飽和を改善し、
しかも高ファイバ結合パワーを得ることが可能となっ九
This eliminates the traditional drawbacks and improves the saturation of light output.
Moreover, it is now possible to obtain high fiber coupling power9.

以下に図面を用いて本発明について詳細に説明する。発
光波長1.3μmのInGgムsP/Imp系のLED
を例にとって実施例に沿って説明する。
The present invention will be explained in detail below using the drawings. InGg sP/Imp LED with emission wavelength of 1.3 μm
will be explained along with an example.

第1図は、本発明の一実施例のuO層構造示す図で、第
1図(、)はLEDの上面を、第1図(b)は、A−R
断面を、第1図(e)はB−B’断面をそれぞれ示して
いる。n型InP基板110表面に7オトレジストによ
シ、ストライプ状にマスクを形成する。
FIG. 1 is a diagram showing the uO layer structure of an embodiment of the present invention. FIG. 1(,) shows the top surface of the LED, and FIG. 1(b) shows the A-R
FIG. 1(e) shows a BB' cross section. A mask is formed in stripes on the surface of the n-type InP substrate 110 using a 7-layer photoresist.

化学工、チ又はイオンエッチによシ基板11の表面を選
択的に工、チし、深さ1〜5μm程度の溝を発光領域内
に溝が複数個人る程度の間隔、例えば数μm〜数10μ
−間隔で形成する。マスクを除去した後、溝の形成され
た基板11の上にn型InP層又はn型InGaム8P
層(バンドギヤ、プ波長く1.3.am ) 13、活
性層となるn MliInGaAsP層(/(ンドギャ
、プ波長1.3μm ) 14、PtliInP層15
を液相エビタ+7/−4J法、側相エピタキシャル法、
分子線エピタキシャル法等により連続して形成する。n
l!InP層13を厚さ約1μm以下、n型InGaA
sP活性層14を厚さ1〜2μm以下にすると、活性層
14の上面及び下面が凹凸状で厚さが?’!F!!’一
定の活性層14が形成される。p型InPM*15を2
−3μm以上にするとこの層15の表面はほぼ平坦にな
り全体として第1図(b)に示したような層構造が得ら
れる。次に、p型I nP 15の表面にGのによシ8
1う膜16を形成した後、フォトレジストによシバター
ン形成し、直径20〜40μmの円形状にJi+QJを
除・去する。このE?+Q、膜16をマスクにしてCd
X也nを拡散し、高濃度領域17を形成する。、SiO
* 膜16及び高濃度領域17の表面上に、蒸着により
AuZn膜18全18し、b又はへ雰囲気中で熱処理し
てAuZnをアロイすることによりP型オーミック電極
18を形成する。続いてn fjl I nP基板11
を研摩して約100μmの厚さにした後、この表面にA
uGeNi蒸着IE19を形成する。フォトレジストに
より5iONt6の円形バター/に合せ1juGeNi
膜19上にパターン形成して、直径約120μmの円形
状にAuGeNiを除去し、光取出し窓20を形成する
。最後に几又はN2雰囲気中で熱処理して、AuGeN
i t−アロイすることにより、n型オーミ。
The surface of the substrate 11 is selectively etched by chemical etching, etching, or ion etching to form grooves with a depth of about 1 to 5 μm at intervals such that a plurality of grooves are formed within the light emitting region, for example, from several μm to several μm. 10μ
- formed at intervals. After removing the mask, an n-type InP layer or an n-type InGa layer 8P is formed on the substrate 11 in which the groove is formed.
Layer (band gear, wave length: 1.3 am) 13, n MliInGaAsP layer (/(band gear, wave length: 1.3 μm), active layer) 14, PtliInP layer 15
Liquid phase Evita +7/-4J method, side phase epitaxial method,
It is formed continuously by a molecular beam epitaxial method or the like. n
l! The InP layer 13 has a thickness of about 1 μm or less and is made of n-type InGaA.
When the sP active layer 14 is made to have a thickness of 1 to 2 μm or less, the upper and lower surfaces of the active layer 14 are uneven and have a thickness of 1 to 2 μm. '! F! ! 'An active layer 14 is formed. 2 p-type InPM*15
When the thickness is -3 .mu.m or more, the surface of this layer 15 becomes almost flat, resulting in an overall layered structure as shown in FIG. 1(b). Next, G is applied to the surface of the p-type I nP 15.
After forming the membrane 16, a pattern is formed using photoresist, and Ji+QJ is removed in a circular shape with a diameter of 20 to 40 μm. This E? +Q, Cd using film 16 as a mask
A high concentration region 17 is formed by diffusing X and n. , SiO
*A P-type ohmic electrode 18 is formed by depositing an AuZn film 18 on the surface of the film 16 and the high concentration region 17 by vapor deposition, and alloying AuZn by heat treatment in an atmosphere. Next, n fjl I nP substrate 11
After polishing to a thickness of approximately 100 μm, A is applied to this surface.
Form uGeNi vapor deposition IE19. Photoresist with 5iONt6 circular butter/1juGeNi
A pattern is formed on the film 19, and the AuGeNi is removed in a circular shape with a diameter of about 120 μm to form a light extraction window 20. Finally, the AuGeN
It is n-type ohmic by t-alloying.

り電極19を形成する。Then, an electrode 19 is formed.

本実施例のLEDは、活性層の上面及び下面が凹凸状で
いわば波状の活性層となっており又、厚さがほぼ一定で
あるため従来の様な平坦な活性層のIJD に比べると
発光径、活性層厚が同じでも発σ 光体積が大きくなる。例えば第1図に示した様に活性層
の断面がV字状の波形と4ってお)、その角度が約60
度の場合、発光体積は平坦な活性層12) LEDに比
べ約2倍となる。その結果同じ電流値で比べた場合の注
入キャリヤ鎖度が下が9、オージェ再結合電流の割合が
減シ、光出力が増大し、電流−光出力特性の直線性も向
上する。第2図は、本実施例のυりの電流対ファイバ結
合パワー特性を示したもので比較のために同に活性層厚
、発光径の従来のIaの特性も合せて示した。この様に
本実施例により従来に比べて、ファイバ結合パワーは数
101増大し、電流−光出力特性の直線性も向上した。
In the LED of this example, the upper and lower surfaces of the active layer are uneven, making it a so-called wavy active layer, and the thickness is almost constant, so it emits less light than the conventional IJD, which has a flat active layer. Even if the diameter and active layer thickness are the same, the σ emission volume becomes larger. For example, as shown in Figure 1, if the cross section of the active layer is a V-shaped waveform (4), the angle is approximately 60°.
In the case of a flat active layer 12), the light emitting volume is approximately twice that of an LED. As a result, when compared at the same current value, the injected carrier chain degree is lowered by 9, the proportion of Auger recombination current is reduced, the optical output is increased, and the linearity of the current-optical output characteristic is also improved. FIG. 2 shows the current vs. fiber coupling power characteristics for υ of this example, and for comparison, the characteristics of the conventional active layer thickness and emission diameter Ia are also shown. As described above, in this embodiment, the fiber coupling power was increased by several hundred points and the linearity of the current-light output characteristic was also improved compared to the conventional one.

第3図は、本発明の別の実施例を示す図で、第3図(α
)は、LEDの上面を、第3図(b)はA−N断面を、
第3図(c)はB−B’断面をそれぞれ示している。
FIG. 3 is a diagram showing another embodiment of the present invention, and FIG.
) is the top surface of the LED, FIG. 3(b) is the A-N cross section,
FIG. 3(c) shows a BB' cross section.

n型1nP基板11の表面にフォトレジストにより基盤
の目状のマスクを形成した後、工、チングによ)基板1
1の表面に基盤の目状に溝12を形成する。後は、第1
の実施例で述べた方法と同様にしてn型InpH3、n
型InGgAsP層14、p型InP層15を形成し電
極18.19を形成する。
After forming an eye-shaped mask on the surface of the n-type 1nP substrate 11 using photoresist, the substrate 1 is
A groove 12 is formed on the surface of the substrate 1 in the shape of a base. After that, the first
n-type InpH3, n
A type InGgAsP layer 14 and a p-type InP layer 15 are formed, and electrodes 18 and 19 are formed.

本実施例のLEDは、活性層の上面及び下面が凹凸状に
なりておシ波状の活性層となっていることはζ第1の実
施例と同じであるが異なる点線、波の方向が2方向ある
という点である。即ち、第3図に示し九様KA−に断面
もこれと直角なり−B’断面も活性層は波状になってい
る。そのため、発光体積は第1の実施例に比べさらに大
きくなる。
The LED of this example is the same as the first example in that the upper and lower surfaces of the active layer are uneven to form a wavy active layer, but the dotted line and wave direction are different. The point is that there is a direction. That is, the active layer has a wavy shape in the cross section KA- shown in FIG. 3, which is perpendicular to the cross-section B'. Therefore, the light emitting volume becomes larger than that of the first embodiment.

平坦な活性層のI@に比べ発光体積は3〜5倍となる。The light emitting volume is 3 to 5 times larger than I@ of a flat active layer.

その結果電流−光出力特性はさらに改善され、第4図に
示した様にファイバ結合パワーは従来の約2倍と大巾に
向上し、かつ、電流−光出力特性も著しく改善された。
As a result, the current-light output characteristics were further improved, and as shown in FIG. 4, the fiber-coupled power was greatly improved to about twice that of the conventional one, and the current-light output characteristics were also significantly improved.

又、第5図に示した様に活性層が同心円状の波形をして
いる場合も第2の実施例と同等の効果が得られる。
Also, when the active layer has a concentric waveform as shown in FIG. 5, the same effect as in the second embodiment can be obtained.

本発明のUりには、以上述べてきた様な効果に加えて、
光出力を向上させる次の様な効果をも有している。即ち
、活性層が凹凸状になっているため、例えば活性層の凹
部からクラッド層に一度出た光がクラ、ド層を通過し、
再び活性層の隣の凹部に入射し、キャリヤを再励起する
、いわゆるフォトンリサイクリングが増える効果を有し
ている。
In addition to the effects described above, the advantages of the present invention include:
It also has the following effect of improving light output. In other words, since the active layer is uneven, for example, light that once exits from the recesses of the active layer to the cladding layer passes through the cladding and cladding layers.
This has the effect of increasing so-called photon recycling, in which carriers are re-excited by entering the recess next to the active layer.

そのため、光出力がさらに向上するという利点を有して
いる。
Therefore, it has the advantage that the optical output is further improved.

以上述べてきた様に、本発明により電流−光出力特性の
直線性に優れ、しかもファイバ結合パワーの大きいUの
を得ることがで!!友。なお、本発明はI nGaAa
P/I nP系のみではなく、他の辺−V族化合物半導
体材料により構成され九圓について龜有効である。
As described above, according to the present invention, it is possible to obtain U with excellent linearity of current-optical output characteristics and high fiber-coupled power! ! friend. Note that the present invention relates to InGaAa
It is constructed not only from P/I nP system but also from other side-V group compound semiconductor materials and is effective for nine circles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のUの構造を、82図は
その特性を、第3図は第2の実施例のLID構造を、第
4図はそO%性を、第5図は第3の実施例の構造をそれ
ぞれ示す。 図中、11は基板、14は活性層、16はS i Oを
膜、18.19は電極を示す。 電  遭 憚 4 図 電  歳
FIG. 1 shows the structure of U in the first embodiment of the present invention, FIG. 82 shows its characteristics, FIG. 3 shows the LID structure in the second embodiment, FIG. 5 each shows the structure of the third embodiment. In the figure, 11 is a substrate, 14 is an active layer, 16 is a SiO film, and 18 and 19 are electrodes. Electric Distress 4 Zuden Years Old

Claims (1)

【特許請求の範囲】[Claims] ■−■族化合物半導体から成)、ダブルへテロ構造を有
し、半導体基板の主表面に対し垂直方向に光を取出す、
平面発光型半導体発光ダイオードにおいて、活性層の少
なくとも発光部におする上面及び下面が凹凸で波状とな
っておシ、かつ、活性層の厚みかはぼ一定であることを
特徴とする半導体発光ダイオード。
■-■ group compound semiconductor), has a double heterostructure and extracts light in a direction perpendicular to the main surface of the semiconductor substrate.
A semiconductor light emitting diode of flat light emitting type, characterized in that at least the upper and lower surfaces of the active layer, which are located in the light emitting part, are uneven and wavy, and the thickness of the active layer is approximately constant. .
JP56190327A 1981-11-27 1981-11-27 Semiconductor light-emitting diode Pending JPS5891689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190327A JPS5891689A (en) 1981-11-27 1981-11-27 Semiconductor light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190327A JPS5891689A (en) 1981-11-27 1981-11-27 Semiconductor light-emitting diode

Publications (1)

Publication Number Publication Date
JPS5891689A true JPS5891689A (en) 1983-05-31

Family

ID=16256333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190327A Pending JPS5891689A (en) 1981-11-27 1981-11-27 Semiconductor light-emitting diode

Country Status (1)

Country Link
JP (1) JPS5891689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006043400A1 (en) * 2006-09-15 2008-03-27 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2010021513A (en) * 2008-07-08 2010-01-28 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element including pattern forming substrate, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006043400A1 (en) * 2006-09-15 2008-03-27 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2010021513A (en) * 2008-07-08 2010-01-28 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element including pattern forming substrate, and its manufacturing method
US8372669B2 (en) 2008-07-08 2013-02-12 Samsung Electronics., Ltd. Semiconductor light emitting device having patterned substrate and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US3981023A (en) Integral lens light emitting diode
US6083769A (en) Method for producing a light-emitting diode
US5565694A (en) Light emitting diode with current blocking layer
JP3027095B2 (en) Semiconductor light emitting device
CN112542769B (en) Wide-spectrum multi-wavelength Fabry-Perot laser and manufacturing method thereof
EP0293000B1 (en) Light emitting device
JPH07176788A (en) Light emitting diode
JPH01164077A (en) Light-emitting diode and its manufacture
JPS5891689A (en) Semiconductor light-emitting diode
JPH0497575A (en) Light emitting diode array
CN100521259C (en) Method for producing wide-spectral band wide super-radiation light-emitting diode and diode thereof
JPS61121373A (en) Surface light-emitting element and manufacture thereof
US4989050A (en) Self aligned, substrate emitting LED
US4416011A (en) Semiconductor light emitting device
JPH077232A (en) Optical semiconductor device
JPS5879791A (en) Two wave-length buried hetero-structure semiconductor laser
US6528337B1 (en) Process of producing semiconductor layer structure
JPH0513811A (en) Semiconductor light emitting element and manufacture thereof
JPS609186A (en) Semiconductor light-emitting device and manufacture thereof
JPS5948968A (en) Light-emitting diode
JPS6386581A (en) Light emitting diode
KR100323673B1 (en) Laser diode and method for fabricating the same
JPS5990972A (en) Semiconductor light-emitting diode
JPS57139984A (en) Buried photo emitting and receiving semiconductor integrated device
JPS5944878A (en) Semiconductor light emitting diode