JPS5948960A - Manufacture of insulated gate type transistor - Google Patents

Manufacture of insulated gate type transistor

Info

Publication number
JPS5948960A
JPS5948960A JP15984382A JP15984382A JPS5948960A JP S5948960 A JPS5948960 A JP S5948960A JP 15984382 A JP15984382 A JP 15984382A JP 15984382 A JP15984382 A JP 15984382A JP S5948960 A JPS5948960 A JP S5948960A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
silicon layer
insulating
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15984382A
Other languages
Japanese (ja)
Other versions
JPH0691103B2 (en
Inventor
Shigenobu Shirai
白井 繁信
Kiyohiro Kawasaki
清弘 川崎
Seiichi Nagata
清一 永田
Sadakichi Hotta
定吉 堀田
Hiroki Saito
弘樹 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15984382A priority Critical patent/JPH0691103B2/en
Publication of JPS5948960A publication Critical patent/JPS5948960A/en
Publication of JPH0691103B2 publication Critical patent/JPH0691103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To prevent the poor ohmic contact of the subject transistor by a method wherein an insulating layer, with which a channel part is shielded from the outside air, is provided and after an aperture has been formed and an etching has been performed in vapor phase, an N type amorphous Si is coated on the above without exposing to a contaminated atmosphere. CONSTITUTION:A gate metal layer 2 is formed on an insulating substrate 1, and an insulating layer 3, an amorphous Si 4 containing no additive and an insulating layer 13 are laminated in the same chamber without exposing to the air. An aperture 14 is provided overlapping on a gate layer 2, and immediately after a plasma etching has been performed on the surface of the amorphous Si 4 using raw gas having SiF4 and the like as a main component, an N type amorphous Si 5' is coated on the above. Then, island-like layers 4' and 5' are formed by selectively removing the layers 4, 5 and 13 successively. After a window has been provided on the layer 3, a metal layer is coated on the whole surface, and a gate wiring 9 is selectively formed on source and drain wirings 7 and 8 and the insulating layer 3. Lastly, the N type amorphous Si 5' located on the insulating layer 13' is removed using the wirings 7 and 8 as a mask, and an MISFET is completed. According to this constitution, no thinning off is generated on the channel part and the source and drain electrode can be completely ohmic contacted, thereby enabling to obtain a highly reliable device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、’747″JI
I:4半導体を活性領域とし7て用いた薄膜電界効果ト
ランジスタに関する・(1のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device,
1 concerning a thin film field effect transistor using an I:4 semiconductor as an active region.

従来例の構成、Iぞの問題点 原子結合対の不完全性を補償するためにその&11成中
に数チ程度の水素を含んで形成される非晶q〕1シリコ
ンは低温y[7成が可能なこと、大面積化が容易なこと
などのJ111山により低価格の太陽′市電として注目
されている1、シかしながら単結晶シリコンと比較する
と自由電子の移動度は0.1〜’ CnVY @ S[
ICと3桁以上小さく、集積化に値する性能の半導体、
1p−L+4得られない。それでも高速動作や大きな電
流を必要としない、例えば液晶セルと紹み合わせること
によって画像表示装置を構成するMISトランジスタの
スイッチングアレイを得ることは可能である。
The problem with the conventional configuration is I. Amorphous q]1 silicon, which is formed by including several atoms of hydrogen during the &11 formation, is formed at a low temperature y[7 formation. J111 is attracting attention as a low-cost solar streetcar due to the fact that it can be easily made into a large area and can be made into a large area1. However, compared to single crystal silicon, the free electron mobility is 0.1 ~ 'CnVY @S[
Semiconductors that are three orders of magnitude smaller than ICs and have performance worthy of integration.
1p-L+4 not obtained. Even so, it is possible to obtain a switching array of MIS transistors that does not require high-speed operation or large current, and which constitutes an image display device by combining them with, for example, a liquid crystal cell.

第1図、第2図は上記の目的を達成するために開発され
た非晶質シリコンMIS)ランジスタの平面図、A−A
’線上の工程断面図である。まず第2図aに示すように
絶縁性基板、例えばガラス板1上にゲート電極となる第
1の金属層2を選択的に被着形成する。次いで全面にグ
ー1絶縁層3゜不純物を含寸ない非晶質シリコン層4.
そして不純物を含む非晶質シリコン層5を被/;”f才
る。これらの被着方法はシラン系ガスのグロー放電によ
るプラズマ堆積が簡便で、ゲート絶縁層3に鷺化シリコ
ンを得んとするならばアンモニアイl1、寸だ不純物を
含む非晶質シリコンを得んとするならばジボランやホス
フィンを添加すればよい。
Figures 1 and 2 are plan views of an amorphous silicon MIS transistor developed to achieve the above objectives, A-A.
It is a process cross-sectional view on the ' line. First, as shown in FIG. 2a, a first metal layer 2, which will become a gate electrode, is selectively deposited on an insulating substrate, for example, a glass plate 1. As shown in FIG. Next, the entire surface is covered with a goo 1 insulating layer 3. an amorphous silicon layer containing no impurities 4.
Then, an amorphous silicon layer 5 containing impurities is coated. In these deposition methods, plasma deposition using glow discharge of a silane gas is simple, and it is possible to form a silicon layer 5 on the gate insulating layer 3. If this is the case, then ammonia I1 may be added, and if amorphous silicon containing significant impurities is to be obtained, diborane or phosphine may be added.

その後第2図すに示すように非晶質シリコン層4.5を
選択的に除去して島状の非晶質シリコン層4/ 、  
5/を形成する。さらに第2図では図示しないが第1の
金属層2上のゲート絶縁層3に開口部6(第1図に示す
)を形成して第1の金属層2を一部露出し/1−後に第
2図Cに/ドずようにオンセット・ゲート′構潰となら
ぬよう第1の金トチ層2と一部重なり合一・/ζ第2の
金属層よりなる1対のソース・ドレイン配線7,8が選
択的に被着形成される。もちろんこの時前記開1]部6
をrヤんてゲート絶縁層3上には第2の金属層よりなる
ゲート配線9も形成される。最後に第2図dに小才よC
)にソース・ドレイン配線7,8をマスクとして不純物
を含捷ないル晶III(シリコン層4′1−の不純物を
含む非晶質シリ:17層6′を除去してf;(l尤の構
造による非晶質シリコンのMIS型トランジスタが完成
する。
Thereafter, as shown in FIG. 2, the amorphous silicon layer 4.5 is selectively removed to form an island-shaped amorphous silicon layer 4/,
Form 5/. Further, although not shown in FIG. 2, an opening 6 (shown in FIG. 1) is formed in the gate insulating layer 3 on the first metal layer 2 to partially expose the first metal layer 2. In Fig. 2C, the onset gate is partially overlapped with the first gold strip layer 2 to prevent the structure from collapsing, and a pair of sources and drains made of the second metal layer are formed. Wirings 7 and 8 are selectively deposited. Of course, at this time, the opening 1] section 6
A gate wiring 9 made of a second metal layer is also formed on the gate insulating layer 3. Finally, in Figure 2 d, there is C.
), using the source/drain wirings 7 and 8 as a mask, remove impurity-free crystal III (silicon layer 4'1- impurity-containing amorphous silicon: 17 layer 6', f; (l) With this structure, an amorphous silicon MIS type transistor is completed.

ソース・ドレイン配線7,8と非晶質シリコン層4′と
の間に介在する不純物を含む非晶Ie「シリコン層10
.11は良好なオーミック接触が形成されるだめに必要
であり、非晶質シリコン層10゜11が存在しなくても
MIS)ランジスタとしての動作は可能であるが、動作
電圧が高くなる傾向は避けられないのではその場合には
ソース・ドレイン配線7,8の材質および被着方法には
注意が必要である。不純物を含む非晶質シリコン層10
゜11が介在する場合にはソース・ドレイン配線7゜8
は一般的なアルミニウムで十分である。
Amorphous Ie "silicon layer 10" containing impurities interposed between source/drain wirings 7 and 8 and amorphous silicon layer 4'
.. 11 is necessary to form a good ohmic contact, and it is possible to operate as an MIS transistor even without the amorphous silicon layer 10 and 11, but the tendency for the operating voltage to be high should be avoided. In that case, care must be taken regarding the material and deposition method of the source/drain wirings 7 and 8. Amorphous silicon layer 10 containing impurities
If ゜11 is present, source/drain wiring 7゜8
common aluminum is sufficient.

さて、第2図Cに示したように不純物を含む非晶質シリ
コン層5′はソース・ドレイン配線7゜8をマスクとし
て選択的に除去されるのであるが、もし除去が不十分で
あるとソース・ドレイン10゜11間が残存した不純物
を含む非晶質シリコン層によって電気的に導通してし寸
い、ソース・ドレイン間のリーク電流を増大させること
か分−)でいる。しかしながら、不純物を含む非晶り′
(シリコンと不純物を含寸ない非晶質シリコンとの間で
選択比の太きい、換言すれば食刻速度の)「1″の大き
い食刻拐がなく、弗酸:硝酸−1:30液に適量の耐酸
を添加しても選択比は精々5程度で、1・】る。つ捷!
:l・Y″を含む非晶質シリコン層だけを選択的に7−
;−ることは極めて困難である。
Now, as shown in FIG. 2C, the amorphous silicon layer 5' containing impurities is selectively removed using the source/drain wiring 7.8 as a mask, but if the removal is insufficient. This is because the remaining impurity-containing amorphous silicon layer between the source and drain 10° and 11 becomes electrically conductive, increasing the leakage current between the source and drain. However, amorphous crystals containing impurities
(High selectivity between silicon and amorphous silicon that does not contain impurities, in other words, the etching speed) "1" without large etching defects, hydrofluoric acid: nitric acid - 1:30 solution Even if an appropriate amount of acid resistance is added to , the selectivity ratio is only about 5 at most, 1.]. Tsuyoshi!
: selectively remove only the amorphous silicon layer containing 7-
;- is extremely difficult.

七こで通常は第2図dに示したように不純物を含む非晶
質シリコン層5′を除去するとき、過食側によって不純
物を含まない非晶質シリコン層4′も一部除去して凹状
12とするのが一般的である。
Normally, when the amorphous silicon layer 5' containing impurities is removed as shown in FIG. Generally, it is set to 12.

この結果としてリーク電流の増大は抑制できるものの、
MIS型トランジスタのチャネルとなる不純物を含捷な
い非晶質シリコン層4′は確実に膜厚が減少する。ある
特定の組合ぜ、ゲート金属層2にモリブデン、不純物と
して燐を含む非晶質シリコン層5、ソースΦドレイン配
線7.aにアルミニウムを用い、食刻液に弗酸:硝酸−
1=30液を使うと非晶質シリコン層の食刻速度が6〜
10倍程度に増殖され、5000人の不純物を含すない
非晶質シリコン層4′までかわずか4〜6秒で消失して
し甘う、。
As a result, although the increase in leakage current can be suppressed,
The thickness of the impurity-free amorphous silicon layer 4', which becomes the channel of the MIS transistor, is certainly reduced. A certain combination of molybdenum in the gate metal layer 2, an amorphous silicon layer 5 containing phosphorus as an impurity, and a source Φ drain wiring 7. Aluminum was used for a, and hydrofluoric acid: nitric acid was used for the etching solution.
When using 1=30 liquid, the etching speed of the amorphous silicon layer is 6~
The amorphous silicon layer 4', which is multiplied by about 10 times and does not contain 5000 impurities, disappears in just 4 to 6 seconds.

チャネル部が乍りに薄くなるとM I S l−ランジ
スタのon電流は“としく減少し7、適正食刻の」温合
に比べて%以下に在ることも稀ではない1.t\らにや
っかいなことには従来の構造例、第2図dではチャネル
の反対側が外気に晒されるため、大気中の水分を吸着し
易い。吸着された水分中のOl(−基はチャネル部をp
形化してしまうのでnチャネル動作のMISトランジス
タのしきい値電圧は時間の経過とともに増大する。すな
わち動作電圧が一定であればソース・ドレイン間の、g
y’亀流は時間の経過とともに減少する。しかしながら
約150℃の乾燥窒素ガス中での加熱により吸着された
水分は失なわれ、再び製造直後の特性に復帰することが
分った。
As the channel becomes thinner, the on-current of the MIS l-transistor decreases considerably7, and it is not uncommon for it to be less than % of the temperature at proper etching.1. Another problem is that in the conventional structure shown in FIG. 2(d), the opposite side of the channel is exposed to the outside air, so it tends to absorb moisture from the atmosphere. The Ol(- group in the adsorbed water makes the channel part p
As a result, the threshold voltage of an n-channel MIS transistor increases with the passage of time. In other words, if the operating voltage is constant, g between the source and drain
The y′ turtle current decreases over time. However, it was found that the adsorbed moisture was lost by heating in dry nitrogen gas at about 150° C., and the properties returned to those immediately after manufacture.

どのように従来の構造例による非晶質シリコンのMIS
型トランジスタではチャネル部の膜べりに帰因する特性
の不揃いを避けられず、棟だ信頼性も極めて不安であっ
た。
How amorphous silicon MIS with conventional structure example
In conventional transistors, unevenness in characteristics due to film deformation in the channel region cannot be avoided, and reliability is extremely unstable.

発明の目的 本発明はこのような従来の問題に鑑み、チャネル部の膜
べりを防止しかつソース・ドレイン電極のオーミック接
触を確実に形成しon状態の動作電流を確保することを
目的とする。丑だ本発明の別の目的は信頼性の高いMO
8型トランジスタを捉供することにある。
OBJECTS OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to prevent film deterioration in the channel portion, to form ohmic contact between the source and drain electrodes reliably, and to secure an operating current in the on state. Another purpose of the present invention is to provide a highly reliable MO
The purpose is to capture and provide an 8-type transistor.

発明の構成 本発明は、チャネル部を外気より遮断する絶縁層を形成
し、かつ絶縁層に開口部を形成し、気相エツチング後汚
染性雰囲気に曝すことなく引き続き全面にnタイプ非晶
質シリコン層を形成することでオーミック接触不良を改
善するものである。
Structure of the Invention The present invention forms an insulating layer that shields the channel portion from the outside air, forms an opening in the insulating layer, and subsequently forms n-type amorphous silicon over the entire surface without being exposed to a contaminating atmosphere after vapor phase etching. By forming a layer, poor ohmic contact can be improved.

実施例の説明 ノ智齢同じ番郵・を付す。Description of examples Add the same postal code as Nochiro.

まず第3図aに示したように絶縁性基板1」二にゲート
となる第1の金属層2を選択的に被ノと1形成する。つ
いでは全面に第1の絶縁層3.不純物を含まない非晶質
シリコン層4.第2の絶縁層13を順次被着する。好捷
しくは6被W1′f #f:に人気に1ltjされるこ
とがないよう、同一のチェンバ内寸たは真空搬送路と複
数のチェンバ内て被着する。このだめにはシラン系ガス
のグロー放電分解による被着方法が簡便である。次に第
3図すに示したように第2の絶縁層13にゲート金属層
2と一部小なり合った一対の開1」部14を形成し、不
純物を含まない非晶質シリコン層4を選択的に露出させ
る。
First, as shown in FIG. 3a, a first metal layer 2, which will become a gate, is selectively formed on an insulating substrate 1. Next, a first insulating layer 3 is applied to the entire surface. Amorphous silicon layer containing no impurities 4. A second insulating layer 13 is applied one after the other. Preferably, it is applied within the same chamber internal dimensions or vacuum conveyance path and within a plurality of chambers so that six coats W1'f #f: are not commonly used. For this purpose, a simple method of deposition is by glow discharge decomposition of a silane gas. Next, as shown in FIG. 3, a pair of open 1'' portions 14 which are partially smaller than the gate metal layer 2 are formed in the second insulating layer 13, and an amorphous silicon layer 4 containing no impurities is formed. selectively exposed.

次にS ! F 4+  X e F 2  などを主
成分とする原料ガスで表面をプラズマエツチングし、そ
の後表面を大気など汚染性雰囲気に曝すことなく連続的
に全面に第3図Cに示すごとく不純物を含む非晶質シリ
コン層6′を被5着する。
Next S! The surface is plasma etched with a raw material gas containing F 4+ A layer of silicon 6' is then deposited.

その後、第3図dに示したように非晶質シリコン層6.
第2の絶縁層13.非晶質シリコン層4を順次選択的に
除去して前記開口部を含む島状の非晶質シリコン層6’
、4’を形成する。さらに図示はしないが、ゲート金属
層2への接続を与えるだめの開口部6を第1の絶縁層3
に形成した後に・、全面に金属層を被着し、不純物を含
まシ:い非晶質シリコン層り′上に被着された不純物を
含む非晶質シリコン層上を含んで第1の絶縁層3」二に
はソース・ドレイン配線7,8を、まノ扛前記開1]部
らを含んで第1の絶縁層3−ににC1、クー l−配線
9を形成する。最後にソース・ドレイン配線7,8をマ
スクとして第2の絶縁層13’−)Hの不純物を含む非
晶質シリコン層5′を除去して;’l’−3(71eに
示すように本発明によるMIS)ランジスタが完成する
Thereafter, as shown in FIG. 3d, an amorphous silicon layer 6.
Second insulating layer 13. The amorphous silicon layer 4 is sequentially and selectively removed to form an island-shaped amorphous silicon layer 6' including the opening.
, 4'. Further, although not shown, an opening 6 is formed in the first insulating layer 3 to provide a connection to the gate metal layer 2.
After forming the first insulating film, a metal layer is deposited on the entire surface of the amorphous silicon layer containing impurities, and a first insulating film is formed on the amorphous silicon layer containing impurities. Source/drain wirings 7 and 8 are formed in the layer 3'2, and C1 and coolant wirings 9 are formed in the first insulating layer 3-, including the opening 1' in the mano-layer. Finally, the amorphous silicon layer 5' containing impurities of the second insulating layer 13'-)H is removed using the source/drain wirings 7 and 8 as a mask; The MIS) transistor according to the invention is completed.

第2図dと第3図eとの比較からも明らかなように、ソ
ース・ドレイン配線7,8をマスクとして不純物を含む
非晶質シリコン層5′を選択的に除去する工程において
、本発明では第2の絶縁層13の存在によってチャネル
部となる不純物を含まない非晶質シリコン層4が食刻さ
れることは皆無である。したがってチャネル部の膜べり
によるトランジスタ特性のばらつきも生じない。“二1
、だ第2゛の絶縁層13′は同時にチャネル部を+11
1f成する不純物を含まない非晶質シリコン層4′を大
気より遮断している。このため空気中の水分が吸〃j−
シても第2の絶縁層13′を通してチャネル部をp型化
するには致らず長時間の動作に対しても安定に動作する
。もちろん一般的な意味でのパシベーションすなわち第
2図dの後の工程で全面に適当な絶縁層を被着すること
によっても同様な効果は期待できるが、ソース・ドレイ
ン配線7,8が存在するためにパシベーション絶縁層が
金属によって汚染され易く、また材質によってはバシベ
ーンヨン絶縁層とソース・ドレイン配線との化合反応に
よってソース・ドレイン配線層の抵抗値が高?なる欠点
がある。これに対して本発明ではパシベーション機能を
有する第2の絶縁層13は不純物を含ま々い非晶質シリ
コン層4の被着に引き続いて行なわれるために、非晶質
シリコン層と第2の絶縁層との界面および第2の絶縁層
自体は半導体的レベルで純度が高く、パシベーション膜
でもある第2の絶縁層の導入によってMIS)ランジス
タの諸物件が変動しないといった優れた効果が得られた
As is clear from the comparison between FIG. 2 d and FIG. 3 e, the present invention Because of the presence of the second insulating layer 13, the impurity-free amorphous silicon layer 4 that will become the channel portion is never etched. Therefore, variations in transistor characteristics due to film deterioration in the channel portion do not occur. “21
At the same time, the second insulating layer 13' has a channel area of +11
The amorphous silicon layer 4' which does not contain impurities and which forms 1f is shielded from the atmosphere. For this reason, moisture in the air is absorbed
However, the channel portion cannot be made p-type through the second insulating layer 13', and the device operates stably even over a long period of time. Of course, the same effect can be expected by passivation in a general sense, that is, by depositing an appropriate insulating layer over the entire surface in the step after the process shown in FIG. The passivation insulating layer is easily contaminated by metal, and depending on the material, the resistance value of the source/drain wiring layer may be high due to a chemical reaction between the passivation insulating layer and the source/drain wiring. There is a drawback. On the other hand, in the present invention, since the second insulating layer 13 having a passivation function is formed subsequent to the deposition of the amorphous silicon layer 4 containing impurities, the amorphous silicon layer and the second insulating layer 13 are The interface with the MIS transistor and the second insulating layer itself have high purity on a semiconductor level, and the introduction of the second insulating layer, which is also a passivation film, has the excellent effect that various properties of the MIS transistor do not change.

またソース・ドレイン電極7,8とトランジスタの活性
領域である半導体層4′とのオーミック接触については
、次に説明するように完全に形成される。例えばオーミ
ック接触の形成層としてP(リン)をドープしたアモル
ファスシリコンヲ被着させる。この被着時の前処理とし
て水洗・乾燥工程だけを通し被着させると、大面fti
’(素子・の中で一部オーミック接触を形成しない箇所
ができる。
Furthermore, ohmic contact between the source/drain electrodes 7 and 8 and the semiconductor layer 4', which is the active region of the transistor, is completely formed as described below. For example, amorphous silicon doped with P (phosphorus) is deposited as an ohmic contact forming layer. If the pretreatment for this deposition is done through only the washing and drying process, a large area of fti
(Some parts of the element do not form ohmic contact.

ところが、本発明清らが先に提示したように、SiF 
 やX e F 2などでMIS型トランジスタの界面
をエツチングl−1連続して半導体層を被/7′1する
と、電気的特性及びその安定性から見て清浄な界面が得
られている。
However, as previously presented by Inventor Kiyoshi et al., SiF
When the interface of a MIS type transistor is etched with 1-1 layers of 1-1/7'1 of semiconductor layer, a clean interface is obtained in terms of electrical characteristics and stability.

そこで前記オーミック接触の形成層被着前に、SiX 
 またはX e F 2などの非晶質シリコン層を汚染
しない原料ガスでのプラズマエツチングを行ない、その
表面を大気などの汚染性雰囲気に!1ハずことなく引き
続きplドープした非晶質シリコン層を被着すれば半導
体素子全面にわたって、高信頼性のもとにオーミック接
触の形成ができる。1発明の効果 第2図dに示されているMIS型、トランジスタでは、
ソース・ドレイン電接間の活性領域コ1′導体層に、極
性のある水分子などが吸着した隻1合トシンジスタの電
気的特性、特に暗電流に与える影響が大きい。この不安
定性を改善するために、パシベーション膜でもある第2
の絶縁層を導入すると、MIS型トランジスタの諸物件
(電気的特性・熱的安定性・時間的安定性)に優れた効
果が得られる。
Therefore, before depositing the ohmic contact forming layer, SiX
Alternatively, perform plasma etching with a raw material gas such as X e F 2 that does not contaminate the amorphous silicon layer, and expose the surface to a polluting atmosphere such as the air! By successively depositing a pl-doped amorphous silicon layer without fail, ohmic contact can be formed over the entire surface of the semiconductor element with high reliability. 1 Effect of the invention In the MIS type transistor shown in Fig. 2d,
When polar water molecules and the like are adsorbed to the conductor layer of the active region between the source and drain electrical connections, this has a large effect on the electrical characteristics of the syndyster, especially the dark current. In order to improve this instability, a second layer, which is also a passivation film, is used.
By introducing an insulating layer, excellent effects can be obtained on various properties (electrical characteristics, thermal stability, and temporal stability) of the MIS transistor.

また、本発明にともなう構造変化によるオーミック接触
形成の不安定性は、半導体層とオーミック接触形成層と
の界面となる表面を気相エツチングすることにより清浄
な表面を得、その表面を汚染性雰囲気に曝すことなく引
き続きオーミック接触形成層を被着させることにより、
大面積にわたって高信頼性のもとにオーミック接触の形
成ができる。
In addition, the instability of ohmic contact formation due to the structural changes associated with the present invention can be solved by vapor phase etching the surface that will become the interface between the semiconductor layer and the ohmic contact formation layer to obtain a clean surface and leaving the surface in a contaminating atmosphere. By subsequently applying the ohmic contact-forming layer without exposing the
Ohmic contact can be formed over a large area with high reliability.

なお、以上の説明からも明らかなように本発明の主旨は
単結晶シリコンを除くシリコン半導体層てに適用可能で
あり、実施例で取り上げた非晶質シリコンの他に微結晶
シリコンや多結晶シリコンでも何ら支障ない。また第1
と第2の、1.1・1縁層も窒化シリコンの他に酸化シ
リコンや炭化シリコンが適宜使用されることは言う寸で
もない、。
As is clear from the above description, the gist of the present invention can be applied to any silicon semiconductor layer other than single crystal silicon, and is applicable to microcrystalline silicon and polycrystalline silicon in addition to amorphous silicon mentioned in the examples. But there's no problem. Also the first
It goes without saying that for the second 1.1.1 edge layer, silicon oxide or silicon carbide may be used as appropriate in addition to silicon nitride.

トランジスタの平面図、工程断面図、E゛H′);’ 
s図a −eは本発明の一実施例にかかるMIS型トラ
ンジスタの工程断面図である。
Transistor plan view, process cross-sectional view, E゛H');'
Figures a to e are process cross-sectional views of a MIS type transistor according to an embodiment of the present invention.

1・・・・・・絶縁恰−基板、2・・・・・・ゲート金
属層、3・′・・・・・第1の絶縁層、4,4′・・・
・・・不純物を含まない非晶質シリコン層、5,6′・
・・・・・不純物を含む非晶質シリコン層、6・・・・
・・開口部、7,8・・・・・・ソース・ドレイン配線
、9・・・・・・ゲート配線、10.11・・・・・・
ソース・ドレイン、12・・・・・・凹部、13・・・
・・第2の絶縁層、14・・・・・・開口部。
1...Insulating substrate, 2...Gate metal layer, 3'...First insulating layer, 4, 4'...
...Amorphous silicon layer containing no impurities, 5,6'・
...Amorphous silicon layer containing impurities, 6...
...Opening, 7, 8...Source/drain wiring, 9...Gate wiring, 10.11...
Source/drain, 12... Concavity, 13...
...Second insulating layer, 14...Opening.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
11 第2図
Name of agent: Patent attorney Toshio Nakao and 1 other person
11 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性基板上に第1の金属層を選択的に被着形成
する工程と、全面に第1の絶経層、不純物を含まない非
単結晶シリコン層、第2の絶縁層を順次被着する工程と
、第1の金属層の一部と重なる1対の開口部を第2の絶
縁層に形成する工程ど、気相エツチングする工程と、前
記エツチング後の主面を汚染性雰囲気に曝すことなく引
j\続き全面に不純物を含む非単結晶シリコン層を′0
ν沼−する工程と、前記開口部を含んで不純物を含lJ
・非看′I結晶シリコン層と不純物を含壕ない日月、l
l’l結晶シリ17層よりなる非単結晶シリコン層を・
島状に形成する工程と、前記開口部上の不純物を含む非
単結晶シリコン層を完全に含む第2の金属層を連枢的に
被着形成する工程と、第2の金属層をマスクとして第2
の絶縁層上の不純物を含む非単結晶シリコン層上を除去
する工程とからなる絶縁クー ト型トランジスタの製造
方法。 (2ン  第1の絶縁層、不純物を含まない非単結晶シ
リコン層、第2の絶縁層の被着が大気中に晒されること
なく連続的に行なわれることを特徴とする特許請求の範
囲第1項に記載の絶縁ゲート型トランジスタの製造方法
(1) A step of selectively depositing a first metal layer on an insulating substrate, and sequentially applying a first insulating layer, an impurity-free non-single crystal silicon layer, and a second insulating layer over the entire surface. a step of depositing the metal layer, a step of forming a pair of openings in the second insulating layer overlapping a portion of the first metal layer, a step of vapor phase etching, and a step of exposing the main surface after the etching to a contaminating atmosphere. The non-single-crystal silicon layer containing impurities on the entire surface is
ν-containing process and impurity-containing process including the opening.
・Non-containing crystalline silicon layer and impurity-free sun/moon, l
A non-single crystal silicon layer consisting of 17 layers of l'l crystal silicon.
a step of forming an island shape, a step of sequentially depositing a second metal layer completely containing a non-single crystal silicon layer containing impurities on the opening, and using the second metal layer as a mask. Second
1. A method for manufacturing an insulating coat type transistor, comprising a step of removing a non-single crystal silicon layer containing impurities on an insulating layer. (2) The first insulating layer, the impurity-free non-single-crystal silicon layer, and the second insulating layer are deposited continuously without being exposed to the atmosphere. A method for manufacturing an insulated gate transistor according to item 1.
JP15984382A 1982-09-14 1982-09-14 Method for manufacturing insulating gate type transistor Expired - Lifetime JPH0691103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15984382A JPH0691103B2 (en) 1982-09-14 1982-09-14 Method for manufacturing insulating gate type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15984382A JPH0691103B2 (en) 1982-09-14 1982-09-14 Method for manufacturing insulating gate type transistor

Publications (2)

Publication Number Publication Date
JPS5948960A true JPS5948960A (en) 1984-03-21
JPH0691103B2 JPH0691103B2 (en) 1994-11-14

Family

ID=15702445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15984382A Expired - Lifetime JPH0691103B2 (en) 1982-09-14 1982-09-14 Method for manufacturing insulating gate type transistor

Country Status (1)

Country Link
JP (1) JPH0691103B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237395A (en) * 1985-08-08 1987-02-18 Fujisash Co Method for electrolytically coloring aluminum or aluminum alloy
JPH01205094A (en) * 1988-02-08 1989-08-17 Nippon Alum Mfg Co Ltd White color treatment for aluminum or aluminum alloy using magnesium salt
JPH02164042A (en) * 1988-12-19 1990-06-25 Sanyo Electric Co Ltd Manufacture of thin film transistor
JPH06136598A (en) * 1992-10-26 1994-05-17 Nippon Alum Co Ltd Method for coloring aluminum anodic oxide film
JPH06240494A (en) * 1993-02-18 1994-08-30 Nippon Alum Co Ltd Method for coloring anodically oxidized film of aluminum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108213A1 (en) 2006-03-20 2007-09-27 Mitsubishi Chemical Corporation Method of purifying ethylene carbonate, process for producing purified ethylene carbonate and ethylene carbonate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237395A (en) * 1985-08-08 1987-02-18 Fujisash Co Method for electrolytically coloring aluminum or aluminum alloy
JPH0121877B2 (en) * 1985-08-08 1989-04-24 Fuji Satsushi Kk
JPH01205094A (en) * 1988-02-08 1989-08-17 Nippon Alum Mfg Co Ltd White color treatment for aluminum or aluminum alloy using magnesium salt
JPH02164042A (en) * 1988-12-19 1990-06-25 Sanyo Electric Co Ltd Manufacture of thin film transistor
JPH06136598A (en) * 1992-10-26 1994-05-17 Nippon Alum Co Ltd Method for coloring aluminum anodic oxide film
JPH06240494A (en) * 1993-02-18 1994-08-30 Nippon Alum Co Ltd Method for coloring anodically oxidized film of aluminum

Also Published As

Publication number Publication date
JPH0691103B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US4746628A (en) Method for making a thin film transistor
JPS5948960A (en) Manufacture of insulated gate type transistor
JPS58212177A (en) Insulated gate type transistor and manufacture thereof
JPS6165477A (en) Semiconductor device
JPH02228042A (en) Manufacture of thin film semiconductor device
JPS6159873A (en) Thin film field effect transistor and manufacture thereof
JPH0512852B2 (en)
JPH0371768B2 (en)
JPH11274505A (en) Thin film transistor structure and its manufacture
JPH0564862B2 (en)
JPS6136705B2 (en)
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
JPS5968975A (en) Semiconductor device and manufacture thereof
KR100200346B1 (en) Thin film transistor having contact layer and making method thereof
JPS58219767A (en) Manufacture of mis type transistor
JP3388076B2 (en) Method for manufacturing staggered thin film transistor
JP2635086B2 (en) Method for manufacturing semiconductor device
JPS62115868A (en) Manufacture of semiconductor device
JPS5919379A (en) Insulated gate type transistor and manufacture thereof
KR100246777B1 (en) Method of manufacturing semiconductor device
JPS58212179A (en) Mis transistor and manufacture thereof
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPH04373124A (en) Semiconductor device and manufacture thereof
JPH04268734A (en) Thin film transistor and manufacture thereof
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices