JPH06136598A - Method for coloring aluminum anodic oxide film - Google Patents

Method for coloring aluminum anodic oxide film

Info

Publication number
JPH06136598A
JPH06136598A JP28776492A JP28776492A JPH06136598A JP H06136598 A JPH06136598 A JP H06136598A JP 28776492 A JP28776492 A JP 28776492A JP 28776492 A JP28776492 A JP 28776492A JP H06136598 A JPH06136598 A JP H06136598A
Authority
JP
Japan
Prior art keywords
voltage
oxide film
electrolysis
anodic oxide
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28776492A
Other languages
Japanese (ja)
Inventor
Seiji Hagino
清二 萩野
Tetsuji Fujita
哲司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aluminium Co Ltd
Original Assignee
Nippon Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aluminium Co Ltd filed Critical Nippon Aluminium Co Ltd
Priority to JP28776492A priority Critical patent/JPH06136598A/en
Publication of JPH06136598A publication Critical patent/JPH06136598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain various color tones which have not been attained by previously DC-anodizing an anodic oxide film at a specified voltage. CONSTITUTION:An aluminum anodic oxide film is formed by anodization. The film is electrolytically colored in an electrolytic bath contg. plural kinds of metals having a different voltage at which the essential deposition reaction occurs as their salts. In this case, the anodic oxide film is previously DC- anodized at an optional voltage higher than the anodization voltage and lower than 30V. Ni and Zn are used as the plural kinds of metals. Consequently, the color tone is optionally controlled and changed within the range determined by the metal to be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主たる析出反応の起こ
る電圧がそれぞれ異なっている複数種類の金属を用い
て、アルミニウム陽極酸化皮膜を電解着色処理して着色
する方法であって、得られる色調を制御できるようにし
た方法に関するものである。なお、上記アルミニウム陽
極酸化皮膜は、アルミニウム又はアルミニウム合金に形
成された陽極酸化皮膜を言う。
FIELD OF THE INVENTION The present invention relates to a method of electrolytically coloring an aluminum anodic oxide coating by using a plurality of kinds of metals having different voltages at which a main precipitation reaction occurs. It is related to the method of making it possible to control. The aluminum anodic oxide film is an anodic oxide film formed on aluminum or an aluminum alloy.

【0002】[0002]

【従来技術及びその問題点】近年の需要嗜好の多様化に
伴なって、アルミニウム陽極酸化皮膜を種々の色調に着
色することが要求されている。そこで、従来の電解着色
処理においては、複数種類の金属を用い、得られる色調
の多様化を図っていた。複数種類の金属はそれぞれ主た
る析出反応の起こる電圧が異なっているため、上記電解
着色処理の電圧は、通常は、主たる析出反応の起こる電
圧が最も高い金属に合わせていた。この場合、主たる析
出反応の起こる電圧が低い金属も析出し、その量はほぼ
定まっており、得られる色調もほぼ定まったものであっ
た。
2. Description of the Related Art With the diversification of demand and taste in recent years, it has been required to color aluminum anodic oxide coatings in various color tones. Therefore, in the conventional electrolytic coloring treatment, a plurality of kinds of metals are used to diversify the obtained color tone. Since a plurality of kinds of metals differ in the voltage at which the main precipitation reaction occurs, the voltage of the above electrolytic coloring treatment is usually adjusted to the metal having the highest voltage at which the main precipitation reaction occurs. In this case, a metal having a low voltage causing the main precipitation reaction was also deposited, the amount thereof was almost fixed, and the obtained color tone was also almost fixed.

【0003】しかし、同様の電解着色処理を行ないなが
らも、未だ得られていない種々の色調が得られるなら
ば、需要嗜好の多様化に更に満足がいくよう対応するこ
とができると考えられる。
However, if various color tones that have not yet been obtained can be obtained even though the same electrolytic coloring treatment is carried out, it is considered that it is possible to cope with the diversification of demand preference more.

【0004】[0004]

【発明の目的】本発明は、従来と同様の電解着色処理を
行ないながらも、未だ得られていない色調も含めた種々
の色調を制御して得ることのできるアルミニウム陽極酸
化皮膜の着色方法を提供することを目的とする。
An object of the present invention is to provide a method for coloring an aluminum anodic oxide film which can be obtained by controlling various color tones including those which have not been obtained yet, while performing the same electrolytic color treatment as in the prior art. The purpose is to do.

【0005】[0005]

【目的を達成するための手段】本発明は、陽極酸化処理
して形成したアルミニウム陽極酸化皮膜を、主たる析出
反応の起こる電圧がそれぞれ異なっている複数種類の金
属を塩として含む電解浴中で電解着色処理して着色する
方法であって、予め、上記陽極酸化皮膜に、上記陽極酸
化処理の電圧より大きく30V以下の範囲にある任意の
電圧で直流陽極電解を施したことを特徴とするものであ
る。
The present invention is characterized in that an aluminum anodic oxide film formed by anodizing is electrolyzed in an electrolytic bath containing a plurality of kinds of metals, each having a different voltage at which a main precipitation reaction occurs, as a salt. A method of coloring by performing a coloring treatment, characterized in that the anodized film is previously subjected to DC anodic electrolysis at an arbitrary voltage within a range of 30 V or less, which is higher than the voltage of the anodizing treatment. is there.

【0006】陽極酸化処理は常法により行なう。The anodizing treatment is performed by a conventional method.

【0007】複数種類の金属の塩としては、例えば、
(i) Ni及びZn、(ii)Ag及びCu、(iii) Ni、C
o、及びCu、などが挙げられる。2種に限らず、3種
以上でもよい。
Examples of salts of plural kinds of metals include, for example,
(i) Ni and Zn, (ii) Ag and Cu, (iii) Ni, C
o, Cu, and the like. Not limited to two types, three or more types may be used.

【0008】[0008]

【作用】直流陽極電解を施すと、アルミニウム陽極酸化
皮膜のバリヤー層の厚さが増大する。このため、電解着
色処理の際に、低い電圧では電流が流れにくくなり、主
たる析出反応の起こる電圧が低い金属の析出反応は抑制
されてその析出量は少なくなり、直流陽極電解を施さな
い場合に比して色調は異なったものとなる。バリヤー層
の厚さは直流陽極電解の電圧が大きいほど大きくなり、
主たる析出反応の起こる電圧が低い金属の析出反応はバ
リヤー層の厚さが大きいほど抑制され、従って、直流陽
極電解の電圧に応じて、得られる色調は変化する。
When the direct current anodic electrolysis is applied, the thickness of the barrier layer of the aluminum anodic oxide film is increased. Therefore, during the electrolytic coloring treatment, it becomes difficult for the current to flow at a low voltage, the deposition reaction of the metal having a low voltage where the main deposition reaction occurs is suppressed and the deposition amount becomes small, and when direct current anodic electrolysis is not performed. In contrast, the color tone will be different. The thickness of the barrier layer increases as the voltage of DC anode electrolysis increases.
The deposition reaction of a metal having a low voltage causing the main deposition reaction is suppressed as the thickness of the barrier layer is increased, and thus the obtained color tone changes depending on the voltage of the DC anode electrolysis.

【0009】例えば、(i) Ni及びZnを用いた場合に
は、Niの析出が抑制され、色調は黄味のあるグレーか
ら無彩色のグレーの範囲で制御され、(ii)Ag及びCu
を用いた場合には、Agの析出が抑制され、色調は柿色
から赤茶色の範囲で制御され、(iii) Ni、Co、及び
Cuを用いた場合には、Ni及びCoの析出が抑制さ
れ、色調は赤味のあるライトグレーから赤味のあるダー
クグレーの範囲で制御される。
For example, when (i) Ni and Zn are used, the precipitation of Ni is suppressed, the color tone is controlled in the range from yellowish gray to achromatic gray, and (ii) Ag and Cu are used.
When Ag is used, the precipitation of Ag is suppressed, and the color tone is controlled in the range from persimmon to reddish brown. (Iii) When Ni, Co, and Cu are used, the precipitation of Ni and Co is suppressed. , The color tone is controlled in the range from reddish light gray to reddish dark gray.

【0010】なお、直流陽極電解の電圧が陽極酸化処理
の電圧以下であると、バリヤー層の厚さは増大しないの
で、直流陽極電解による上記作用は発揮されず、従っ
て、色調は変化しない。直流陽極電解の電圧が30Vよ
り大きいと、バリヤー層が厚くなりすぎて、電解着色処
理において電流が殆んど流れず、金属の析出が生じにく
くなり、従って、着色しない。
If the voltage of the DC anodic electrolysis is not more than the voltage of the anodic oxidation treatment, the thickness of the barrier layer does not increase, so that the above-mentioned action by the DC anodic electrolysis cannot be exhibited, and therefore the color tone does not change. When the DC anode electrolysis voltage is higher than 30 V, the barrier layer becomes too thick, and almost no current flows in the electrolytic coloring treatment, which makes it difficult for metal deposition to occur, and thus does not cause coloring.

【0011】[0011]

【実施例】【Example】

(比較例1)硫酸浴を用いる常法により陽極酸化処理し
て厚さ9μmの陽極酸化皮膜を形成したアルミニウム材
(A6063S)を、表1に示す条件(組成、浴槽、対
極)の電解浴中に浸漬し、30Vで3分間、ハードスタ
ートにより交流定電圧電解することによって電解着色処
理した。着色された陽極酸化皮膜の色調は、黄味のある
グレーであった。
(Comparative Example 1) An aluminum material (A6063S) on which an anodized film having a thickness of 9 μm was formed by anodizing by a conventional method using a sulfuric acid bath was placed in an electrolytic bath under the conditions (composition, bath, counter electrode) shown in Table 1. And was electrolyzed at 30 V for 3 minutes by a constant voltage AC electrolysis with a hard start. The color tone of the colored anodized film was a grayish yellow.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例1)比較例1と同じ陽極酸化処理
により形成したアルミニウム陽極酸化皮膜を、表1に示
す条件の電解浴中に浸漬し、予め、20Vで1分間、2
0秒のソフトスタートにより直流陽極電解し、続いて、
比較例1と同じ交流定電圧電解することにより電解着色
処理した。着色された陽極酸化皮膜の色調は、無彩色の
グレーであった。
(Example 1) An aluminum anodic oxide film formed by the same anodic oxidation treatment as in Comparative Example 1 was dipped in an electrolytic bath under the conditions shown in Table 1 and preliminarily kept at 20 V for 1 minute and 2 minutes.
DC anodic electrolysis by soft start for 0 seconds, then,
The same AC constant voltage electrolysis as in Comparative Example 1 was performed to perform electrolytic coloring treatment. The color tone of the colored anodized film was an achromatic gray.

【0014】実施例1と比較例1とで得られた色調の差
異は、直流陽極電解に基づくものである。このことにつ
き、以下に説明する。実施例1と同じアルミニウム陽極
酸化皮膜を、表1に示す条件の電解浴中で交流電圧走査
すると、図1の破線Aに示す結果となる。なお、走査電
圧は、0.1V/secで昇圧するものとする。図1に
おいて、15V付近のピークA1はNiの析出反応によ
るものであり、26V付近のピークA2はZnの析出反
応によるものである。ちなみに、上記と同じアルミニウ
ム陽極酸化皮膜を、15V及び26Vでそれぞれ、通電
時間3分、ハードスタートにより交流定電圧電解したと
ころ、15Vではブロンズ色が、26Vでは黄味のある
グレーが得られた。26Vで黄味のあるグレーが得られ
たのは、まずNiの析出が生じ、続いてZnの析出が生
じたからである。
The difference in color tone obtained between Example 1 and Comparative Example 1 is based on direct current anodic electrolysis. This will be described below. When the same aluminum anodized film as in Example 1 was subjected to AC voltage scanning in an electrolytic bath under the conditions shown in Table 1, the result shown by the broken line A in FIG. 1 was obtained. The scanning voltage is boosted at 0.1 V / sec. In FIG. 1, the peak A 1 near 15 V is due to the Ni precipitation reaction, and the peak A 2 near 26 V is due to the Zn precipitation reaction. By the way, when the same aluminum anodic oxide coating as described above was subjected to AC constant voltage electrolysis by hard start for 3 minutes at 15 V and 26 V, respectively, a bronze color was obtained at 15 V and a yellowish gray was obtained at 26 V. A yellowish gray color was obtained at 26 V because the precipitation of Ni occurred first and the precipitation of Zn subsequently occurred.

【0015】一方、上記と同じアルミニウム陽極酸化皮
膜に、予め実施例1と同じ直流陽極電解を施しておき、
上記と同じ条件で交流電圧走査すると、図1の一点鎖線
Bに示す結果となる。Znの析出反応によるピークB2
は破線AのピークA2とほぼ同じ電圧及び電流密度とな
っているが、Niの析出反応によるピークB1は破線A
のピークA1に比して電流密度が低くなっている。即
ち、予め直流陽極電解を施した場合には、Niの析出反
応が少なくなっている。ちなみに、予め実施例1と同じ
直流陽極電解を施したアルミニウム陽極酸化皮膜を、ピ
ークB1及びピークB2の電圧でそれぞれ、通電時間3
分、ハードスタートにより交流定電圧電解したところ、
ピークB1の電圧では薄いブロンズ色が、ピークB2の電
圧では無彩色のグレーが得られた。
On the other hand, the same aluminum anodic oxide film as described above was previously subjected to the same direct current anodic electrolysis as in Example 1,
When AC voltage scanning is performed under the same conditions as above, the result shown by the alternate long and short dash line B in FIG. 1 is obtained. Peak B 2 due to Zn precipitation reaction
Has almost the same voltage and current density as the peak A 2 of the broken line A, but the peak B 1 due to the Ni precipitation reaction is the broken line A 2.
The current density is lower than the peak A 1 of the above. That is, when direct current anodic electrolysis is performed in advance, the precipitation reaction of Ni is reduced. By the way, the aluminum anodic oxide film, which had been subjected to the same direct current anodic electrolysis as in Example 1, was applied at a voltage of peak B 1 and a peak B 2 for 3 hours.
Min, when AC constant voltage electrolysis by hard start,
A light bronze color was obtained at the voltage of peak B 1 and an achromatic gray color was obtained at the voltage of peak B 2 .

【0016】また、上記と同じアルミニウム陽極酸化皮
膜に、予め、電圧が30Vで、その他は実施例1と同じ
直流陽極電解を施しておき、上記と同じ条件で交流電圧
走査すると、図1の実線Cに示す結果となる。Niの析
出反応によるピークC1及びZnの析出反応によるピー
クC2は、一点鎖線BのピークB1及びピークB2に比し
て電流密度が低くなっている。即ち、直流陽極電解の電
圧が高くなるほど、Ni及びZnの析出反応が少なくな
っている。ちなみに、予め、電圧が30Vで、その他は
実施例1と同じ直流陽極電解を施したアルミニウム陽極
酸化皮膜を、ピークC1及びピークC2の電圧でそれぞ
れ、通電時間3分、ハードスタートにより交流定電圧電
解したところ、ピークC1の電圧では薄いブロンズ色
が、ピークC2の電圧では薄い無彩色のグレーが得られ
た。
Further, the same aluminum anodic oxide film as described above was subjected in advance to the same DC anodic electrolysis as in Example 1 except that the voltage was 30 V and the other conditions were the same. The result is shown in C. The peak C 1 due to the precipitation reaction of Ni and the peak C 2 due to the precipitation reaction of Zn have lower current densities than the peaks B 1 and B 2 of the chain line B. That is, the higher the voltage of the DC anode electrolysis, the less the precipitation reaction of Ni and Zn. By the way, an aluminum anodized film having a voltage of 30 V and the same DC anodic electrolysis as in Example 1 was applied in advance for 3 minutes at a voltage of peak C 1 and a peak C 2 respectively, and an AC constant was determined by a hard start. When voltage electrolysis was performed, a light bronze color was obtained at the voltage of peak C 1 , and a light achromatic gray was obtained at the voltage of peak C 2 .

【0017】なお、予め実施例1と同じ直流陽極電解を
施したアルミニウム陽極酸化皮膜を、18V(ピークB
1に相当)、22V、26V(ピークB2に相当)、30
Vで、それぞれ表1に示す条件の電解浴中にて交流定電
圧電解し、得られた着色皮膜中のNi及びZnの析出量
を測定したところ、図2に示すようになった。即ち、電
圧が高くなるとともに、Ni量は少なくなり、Zn量は
逆に多くなっている。30Vにおいても、Niは析出し
ている。従って、ピークA2及びピークB2の電圧では、
Znのみが析出しているのではなく、NiとZn、及び
これらの金属間化合物が析出しているものと考えられ
る。上記各電圧により得られた着色皮膜の色差計による
測色結果(Hunterの表色系)を表2に示す。な
お、表2には、電圧が30Vで、その他は実施例1と同
じ直流陽極電解を施したアルミニウム陽極酸化皮膜を、
18V、30Vでそれぞれ交流定電圧電解した場合と、
直流陽極電解を施さないで、30Vで交流定電圧電解し
た場合とについても示す。
The aluminum anodic oxide film, which had been subjected to the same DC anodic electrolysis as in Example 1 in advance, was subjected to 18 V (peak B
1 )), 22V, 26V (equivalent to peak B 2 ), 30
When constant voltage AC electrolysis was performed in an electrolytic bath under the conditions shown in Table 1 at V, and the amounts of Ni and Zn deposited in the obtained colored film were measured, the results are shown in FIG. That is, as the voltage increases, the amount of Ni decreases and the amount of Zn increases. Even at 30V, Ni was precipitated. Therefore, at the voltage of peak A 2 and peak B 2 ,
It is considered that not only Zn was deposited, but Ni and Zn and their intermetallic compounds were deposited. Table 2 shows the color measurement results (Hunter color system) of the colored film obtained by each of the above voltages with a color difference meter. Table 2 shows the aluminum anodic oxide film having a voltage of 30 V and the same DC anodic electrolysis as in Example 1 except that
In case of alternating voltage electrolysis at 18V and 30V respectively,
The case where AC constant voltage electrolysis at 30 V is performed without performing DC anodic electrolysis is also shown.

【0018】[0018]

【表2】 [Table 2]

【0019】このように、アルミニウム陽極酸化皮膜に
予め直流陽極電解を施しておくと、バリヤー層が改質さ
れ、即ちバリヤー層の厚さが増大し、低い電圧では電流
が流れにくくなり、Znよりも低い電圧で主たる析出反
応の起こるNiの析出反応が抑制され、即ちNiの析出
量が少なくなり、色調は黄味のあるグレーから無彩色の
グレーの範囲で変化する。実施例1では、直流陽極電解
の電圧を20V、30Vとしているが、直流陽極電解の
電圧は、陽極酸化皮膜を形成するための陽極酸化処理の
電圧より大きく30V以下の範囲にあれば、20V、3
0Vに限るものではない。直流陽極電解の電圧を上記範
囲内で任意に設定することにより、バリヤー層の厚さを
任意に増大でき、Niの析出反応を任意に抑制でき、色
調を黄味のあるグレーから無彩色のグレーの範囲で任意
に変えることができる。
As described above, when direct current anodic electrolysis is performed on the aluminum anodic oxide film, the barrier layer is modified, that is, the thickness of the barrier layer increases, and it becomes difficult for current to flow at a low voltage. The precipitation reaction of Ni, which is the main precipitation reaction at a low voltage, is suppressed, that is, the amount of Ni precipitation is reduced, and the color tone changes from a yellowish gray to an achromatic gray. In Example 1, the voltage of DC anodic electrolysis is set to 20V and 30V, but the voltage of DC anodic electrolysis is 20V if the voltage is higher than the voltage of anodic oxidation treatment for forming an anodic oxide film and is 30V or less, Three
It is not limited to 0V. By arbitrarily setting the voltage of DC anode electrolysis within the above range, the thickness of the barrier layer can be arbitrarily increased, the Ni precipitation reaction can be arbitrarily suppressed, and the color tone can be changed from yellowish gray to achromatic gray. It can be arbitrarily changed within the range.

【0020】(比較例2)硫酸浴を用いる常法により陽
極酸化処理して厚さ9μmの陽極酸化皮膜を形成したア
ルミニウム材(A1050P)を、表3に示す条件(組
成、浴槽、対極)の電解浴中に浸漬し、25Vで3分
間、ハードスタートにより交流定電圧電解することによ
り電解着色処理した。着色された陽極酸化皮膜の色調
は、柿色であった。
Comparative Example 2 An aluminum material (A1050P) on which an anodized film having a thickness of 9 μm was formed by anodizing by a conventional method using a sulfuric acid bath was used under the conditions (composition, bath, counter electrode) shown in Table 3. It was immersed in an electrolytic bath and subjected to AC constant voltage electrolysis by hard start at 25V for 3 minutes to perform electrolytic coloring treatment. The color tone of the colored anodized film was persimmon.

【0021】[0021]

【表3】 [Table 3]

【0022】(実施例2)比較例2と同じ陽極酸化処理
により形成したアルミニウム陽極酸化皮膜を、表3に示
す条件の電解浴中に浸漬し、予め、22Vで1分間、2
2秒のソフトスタートによる直流陽極電解し、続いて、
比較例2と同じ交流定電圧電解することにより電解着色
処理した。着色された陽極酸化皮膜の色調は、赤茶色で
あった。
(Example 2) An aluminum anodic oxide film formed by the same anodic oxidation treatment as in Comparative Example 2 was immersed in an electrolytic bath under the conditions shown in Table 3 and preliminarily kept at 22 V for 1 minute for 2 minutes.
DC anode electrolysis with 2 seconds soft start, followed by:
The same AC constant voltage electrolysis as in Comparative Example 2 was performed to carry out electrolytic coloring treatment. The color tone of the colored anodized film was reddish brown.

【0023】実施例2と比較例2とで得られた色調の差
異は、直流陽極電解に基づくものである。このことにつ
き、以下に説明する。実施例2と同じアルミニウム陽極
酸化皮膜を、表3に示す条件の電解浴中で交流電圧走査
すると、図3の破線Dに示す結果となる。なお、走査電
圧は、0.1V/secで昇圧するものとする。図3に
おいて、18V付近のピークD1はAgの析出反応によ
るものであり、25V付近のピークD2はCuの析出反
応によるものである。ちなみに、上記と同じアルミニウ
ム陽極酸化皮膜を、25Vで通電時間3分、ハードスタ
ートにより交流定電圧電解したところ、表4の*に示す
ように、柿色が得られた。これは、まずAgの析出が生
じ、続いてCuの析出が生じたからである。
The difference in color tone obtained between Example 2 and Comparative Example 2 is based on DC anodic electrolysis. This will be described below. When the same aluminum anodized film as in Example 2 was subjected to AC voltage scanning in an electrolytic bath under the conditions shown in Table 3, the result shown by the broken line D in FIG. 3 was obtained. The scanning voltage is boosted at 0.1 V / sec. In FIG. 3, the peak D 1 near 18 V is due to the precipitation reaction of Ag, and the peak D 2 near 25 V is due to the precipitation reaction of Cu. By the way, when the same aluminum anodic oxide film as described above was subjected to AC constant voltage electrolysis by a hard start at 25 V for an energization time of 3 minutes, a persimmon color was obtained as indicated by * in Table 4. This is because the precipitation of Ag occurred first, and the precipitation of Cu subsequently occurred.

【0024】一方、上記と同じアルミニウム陽極酸化皮
膜に、予め実施例2と同じ直流陽極電解を施しておき、
上記と同じ条件で交流電圧走査すると、図3の実線Eに
示す結果となる。Cuの析出反応によるピークE2は破
線CのピークD2とほぼ同じ電圧及び電流密度となって
いるが、Agの析出反応によるピークE1は破線Dのピ
ークD1に比して電流密度が低くなっている。即ち、予
め直流陽極電解を施した場合には、Agの析出反応が少
なくなっている。ちなみに、予め実施例2と同じ直流陽
極電解を施したアルミニウム陽極酸化皮膜を、18V
(ピークE1に相当)及び25V(ピークE2に相当)で
それぞれ、通電時間3分、ハードスタートにより交流定
電圧電解したところ、表4に示すように、18Vではゴ
ールド色が、25Vでは赤茶色が得られた。
On the other hand, the same aluminum anodic oxide film as described above was previously subjected to the same DC anodic electrolysis as in Example 2,
When the AC voltage is scanned under the same conditions as above, the result shown by the solid line E in FIG. 3 is obtained. The peak E 2 due to the Cu precipitation reaction has almost the same voltage and current density as the peak D 2 of the broken line C, but the peak E 1 due to the precipitation reaction of Ag has a current density lower than that of the peak D 1 of the broken line D. It's getting low. That is, when direct current anodic electrolysis is performed in advance, the precipitation reaction of Ag is reduced. By the way, an aluminum anodic oxide film that had been subjected to the same direct current anodic electrolysis as in Example 2 in advance was set to 18 V.
(Equivalent to peak E 1 ) and 25V (corresponding to peak E 2 ) were subjected to AC constant voltage electrolysis by hard start for 3 minutes respectively, as shown in Table 4, and as shown in Table 4, gold was colored at 18V and red at 25V. A brown color was obtained.

【0025】[0025]

【表4】 [Table 4]

【0026】このように、アルミニウム陽極酸化皮膜に
予め直流陽極電解を施しておくと、バリヤー層の厚さが
増大し、低い電圧では電流が流れにくくなり、Cuより
も低い電圧で主たる析出反応の起こるAgの析出反応が
抑制され、即ちAgの析出量が少なくなり、色調は柿色
から赤茶色の範囲で変化する。実施例2では、直流陽極
電解の電圧を22Vとしているが、直流陽極電解の電圧
は、陽極酸化皮膜を形成するための陽極酸化処理の電圧
より大きく30V以下の範囲にあれば、22Vに限るも
のではない。直流陽極電解の電圧を上記範囲内で任意に
設定することにより、バリヤー層の厚さを任意に増大で
き、Agの析出反応を任意に抑制でき、色調を柿色から
赤茶色の範囲で任意に変えることができる。
As described above, when direct current anodic electrolysis is performed on the aluminum anodic oxide film, the thickness of the barrier layer increases, and it becomes difficult for the current to flow at a low voltage, and the main deposition reaction at a voltage lower than Cu occurs. The precipitation reaction of Ag that occurs is suppressed, that is, the amount of Ag precipitation is reduced, and the color tone changes in the range from persimmon to reddish brown. In Example 2, the voltage of the DC anodic electrolysis is set to 22V, but the voltage of the DC anodic electrolysis is limited to 22V as long as it is in the range of 30V or less higher than the voltage of the anodizing treatment for forming the anodized film. is not. By arbitrarily setting the voltage of the DC anode electrolysis within the above range, the thickness of the barrier layer can be arbitrarily increased, the precipitation reaction of Ag can be arbitrarily suppressed, and the color tone can be arbitrarily changed within the range from persimmon to reddish brown. be able to.

【0027】(比較例3)硫酸浴を用いる常法により陽
極酸化処理して厚さ9μmの陽極酸化皮膜を形成したア
ルミニウム材(A1100P)を、表5に示す条件(組
成、浴槽、対極)の電解浴中に浸漬し、28Vで3分
間、ハードスタートにより交流定電圧電解することによ
り電解着色処理した。着色された陽極酸化皮膜の色調
は、赤味のあるライトグレーであった。
Comparative Example 3 An aluminum material (A1100P) on which an anodized film having a thickness of 9 μm was formed by anodizing by a conventional method using a sulfuric acid bath was prepared under the conditions (composition, bath, counter electrode) shown in Table 5. It was immersed in an electrolytic bath and subjected to an AC constant voltage electrolysis by a hard start at 28 V for 3 minutes to carry out an electrolytic coloring treatment. The color tone of the colored anodized film was reddish light gray.

【0028】[0028]

【表5】 [Table 5]

【0029】(実施例3)比較例3と同じ陽極酸化処理
により形成したアルミニウム陽極酸化皮膜を、表5に示
す条件の電解浴中に浸漬し、予め、20Vで1分間、2
0秒のソフトスタートにより直流陽極電解し、続いて、
比較例3と同じ交流定電圧電解することにより電解着色
処理した。着色された陽極酸化皮膜の色調は、赤味のあ
るダークグレーであった。
(Example 3) An aluminum anodic oxide film formed by the same anodic oxidation treatment as in Comparative Example 3 was immersed in an electrolytic bath under the conditions shown in Table 5 and preliminarily kept at 20 V for 1 minute for 2 minutes.
DC anodic electrolysis by soft start for 0 seconds, then,
The same AC constant voltage electrolysis as in Comparative Example 3 was performed to perform electrolytic coloring treatment. The color tone of the colored anodized film was reddish dark gray.

【0030】実施例3と比較例3とで得られた色調の差
異は、直流陽極電解に基づくものである。このことにつ
き、以下に説明する。実施例3と同じアルミニウム陽極
酸化皮膜を、表5に示す条件の電解浴中で交流電圧走査
すると、図4の破線Fに示す結果となる。なお、走査電
圧は、0.1V/secで昇圧するものとする。図4に
おいて、14V付近のピークF1はNiの析出反応によ
るものであり、18V付近のピークF2はCoの析出反
応によるものであり、28V付近のピークF3はCuの
析出反応によるものである。ちなみに、上記と同じアル
ミニウム陽極酸化皮膜を、28Vで通電時間3分、ハー
ドスタートにより交流定電圧電解したところ、表6の*
に示すように、赤味のあるライトグレーが得られた。こ
れは、まずNiの析出が生じ、次にCoの析出が生じ、
続いてCuの析出が生じたからである。
The difference in color tone obtained between Example 3 and Comparative Example 3 is based on DC anodic electrolysis. This will be described below. When the same aluminum anodized film as in Example 3 was subjected to AC voltage scanning in an electrolytic bath under the conditions shown in Table 5, the result shown by the broken line F in FIG. 4 was obtained. The scanning voltage is boosted at 0.1 V / sec. In FIG. 4, the peak F 1 near 14 V is due to the Ni precipitation reaction, the peak F 2 near 18 V is due to the Co precipitation reaction, and the peak F 3 near 28 V is due to the Cu precipitation reaction. is there. By the way, the same aluminum anodic oxide coating as above was electrolyzed by constant-voltage AC at 28 V for 3 minutes with a current-carrying time of 3 minutes.
As shown in, a reddish light gray was obtained. This is because the precipitation of Ni first occurs, then the precipitation of Co occurs,
This is because the precipitation of Cu subsequently occurred.

【0031】一方、上記と同じアルミニウム陽極酸化皮
膜に、予め実施例3と同じ直流陽極電解を施しておき、
上記と同じ条件で交流電圧走査すると、図4の実線Gに
示す結果となる。Cuの析出反応によるピークG3は破
線EのピークF3とほぼ同じ電圧及び電流密度となって
いるが、Niの析出反応によるピークG1及びCoの析
出反応によるピークG2は破線EのピークF1及びピーク
2に比して電流密度が低くなっている。即ち、予め直
流陽極電解を施した場合には、Ni及びCoの析出反応
が少なくなっている。ちなみに、予め実施例3と同じ直
流陽極電解を施したアルミニウム陽極酸化皮膜を、18
V(ピークG2に相当)及び28V(ピークG3に相当)
でそれぞれ、通電時間3分、ハードスタートにより交流
定電圧電解したところ、表6に示すように、18Vでは
ブロンズ色が、28Vでは赤味のあるダークグレーが得
られた。
On the other hand, the same aluminum anodic oxide film as described above was previously subjected to the same DC anodic electrolysis as in Example 3,
When AC voltage scanning is performed under the same conditions as above, the result shown by the solid line G in FIG. 4 is obtained. The peak G 3 due to the Cu precipitation reaction has almost the same voltage and current density as the peak F 3 of the broken line E, but the peak G 1 due to the Ni precipitation reaction and the peak G 2 due to the Co precipitation reaction are the peaks of the broken line E. The current density is lower than that of F 1 and peak F 2 . That is, when direct current anodic electrolysis is performed in advance, the precipitation reactions of Ni and Co are reduced. By the way, the aluminum anodic oxide film previously subjected to the same DC anodic electrolysis as in Example 3
V (corresponding to peak G 2 ) and 28V (corresponding to peak G 3 )
When a constant-current AC electrolysis was carried out by a hard start for 3 minutes each with an energizing time, a bronze color was obtained at 18V and a reddish dark gray was obtained at 28V, as shown in Table 6.

【0032】[0032]

【表6】 [Table 6]

【0033】このように、アルミニウム陽極酸化皮膜に
予め直流陽極電解を施しておくと、バリヤー層の厚さが
増大し、低い電圧では電流が流れにくくなり、Cuより
も低い電圧で主たる析出反応の起こるNi及びCoの析
出反応が抑制され、即ちNi及びCoの析出量は少なく
なり、色調は赤味のあるライトグレーから赤味のあるダ
ークグレーの範囲で変化する。実施例3では、直流陽極
電解の電圧を20Vとしているが、陽極酸化皮膜を形成
するための陽極酸化処理の電圧より大きく30V以下の
範囲にあれば、直流陽極電解の電圧は、20Vに限るも
のではない。直流陽極電解の電圧を上記範囲内で任意に
設定することにより、バリヤー層の厚さを任意に増大で
き、Ni及びCoの析出反応を任意に抑制でき、色調を
赤味のあるライトグレーから赤味のあるダークグレーの
範囲で任意に変えることができる。
As described above, when direct current anodic electrolysis is performed on the aluminum anodic oxide film, the thickness of the barrier layer increases, and it becomes difficult for the current to flow at a low voltage, and the main deposition reaction at a voltage lower than Cu occurs. The precipitation reaction of Ni and Co that occurs occurs is suppressed, that is, the precipitation amount of Ni and Co is reduced, and the color tone changes from a reddish light gray to a reddish dark gray. In Example 3, the voltage of DC anodic electrolysis is set to 20V, but the voltage of DC anodic electrolysis is limited to 20V as long as it is within the range of 30V or less higher than the voltage of the anodic oxidation treatment for forming the anodic oxide film. is not. By arbitrarily setting the voltage of the DC anode electrolysis within the above range, the thickness of the barrier layer can be arbitrarily increased, the precipitation reaction of Ni and Co can be arbitrarily suppressed, and the color tone from reddish light gray to red. It can be changed as desired within the range of tasteful dark gray.

【0034】(実施例4)実施例1〜3では、直流陽極
電解と、その後の電解着色処理とを、同じ電解浴で行な
っているが、異なる電解浴で行なってもよく、同様の作
用効果を奏する。例えば、実施例3における直流陽極電
解と電解着色処理とを異なる浴で行なう場合には、表5
に示す浴組成の内、pH3.8、浴温20℃で、成分と
してH3BO3のみを含む浴を直流陽極電解の浴として用
い、pH3.8、浴温20℃で、成分として残りの金属
塩を含む浴を電解着色処理の浴として用いればよい。実
施例1、2の場合についても同様であり、表1、表2に
示す浴組成の内、直流陽極電解の浴としては、成分とし
てNH4753(実施例1の場合)、H2SO4(実施
例2の場合)のみを含む浴を用いればよく、電解着色処
理の浴としては、成分として残りの金属塩を含む浴を用
いればよい。
(Example 4) In Examples 1 to 3, the DC anode electrolysis and the subsequent electrolytic coloring treatment are carried out in the same electrolytic bath, but they may be carried out in different electrolytic baths. Play. For example, when the DC anode electrolysis in Example 3 and the electrolytic coloring treatment are performed in different baths, Table 5
Among the bath compositions shown in (1), a bath containing pH 3.8 and a bath temperature of 20 ° C. and containing only H 3 BO 3 as a component was used as a DC anode electrolysis bath. A bath containing a metal salt may be used as a bath for electrolytic coloring treatment. The same applies to the cases of Examples 1 and 2, and among the bath compositions shown in Tables 1 and 2, NH 4 C 7 H 5 O 3 as a component for the DC anodic electrolysis bath (in the case of Example 1) , H 2 SO 4 (in the case of Example 2) only, and a bath containing the remaining metal salt as a component may be used as the electrolytic coloring treatment bath.

【0035】[0035]

【発明の効果】以上のように本発明の着色方法は、陽極
酸化処理して形成したアルミニウム陽極酸化皮膜を、主
たる析出反応の起こる電圧がそれぞれ異なっている複数
種類の金属を塩として含む電解浴中で電解着色処理して
着色する方法であって、予め、上記陽極酸化皮膜に、上
記陽極酸化処理の電圧より大きく30V以下の範囲にあ
る任意の電圧で直流陽極電解を施したので、上記陽極酸
化皮膜のバリヤー層を任意の厚さに増大させ、主たる析
出反応の起こる電圧が低い金属の析出量を電解着色処理
において抑制することができる。即ち、直流陽極電解の
電圧を上記範囲内で任意に変えることにより、主たる析
出反応の起こる電圧が低い金属の析出量を任意に抑制し
て、色調を、用いる金属によって定まる範囲内にて任意
に制御して変えることができる。従って、従来と同じ金
属を用いた電解着色処理でありながらも、未だ得られて
いない種々の色調を得ることができ、需要嗜好の多様化
に更に満足がいくよう対応することができる。
As described above, according to the coloring method of the present invention, the aluminum anodic oxide film formed by the anodic oxidation treatment is an electrolytic bath containing as a salt a plurality of kinds of metals having different voltages at which the main precipitation reactions occur. In this method, the anodic oxide film is subjected to direct current anodic electrolysis at an arbitrary voltage in the range of 30 V or less, which is higher than the voltage of the anodic oxidation treatment. By increasing the thickness of the barrier layer of the oxide film to an arbitrary thickness, it is possible to suppress the deposition amount of the metal having a low voltage causing the main deposition reaction in the electrolytic coloring treatment. That is, by arbitrarily changing the voltage of the DC anode electrolysis within the above range, the deposition amount of the metal having a low voltage in which the main deposition reaction occurs is arbitrarily suppressed, and the color tone is arbitrarily set within the range determined by the metal used. It can be controlled and changed. Therefore, it is possible to obtain various color tones that have not yet been obtained, even though the electrolytic coloring treatment is performed using the same metal as in the past, and it is possible to cope with the diversification of demand tastes.

【0036】例えば、金属として、Ni及びZnを用い
れば、非常に強く要望されている無彩色のグレーを得る
ことができる。
For example, if Ni and Zn are used as the metal, a very strongly desired achromatic gray can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1における直流陽極電解の作用を説明
するための図である。
FIG. 1 is a diagram for explaining the action of DC anode electrolysis in Example 1.

【図2】 実施例1における直流陽極電解の作用を説明
するための図である。
FIG. 2 is a diagram for explaining the action of direct current anode electrolysis in Example 1.

【図3】 実施例2における直流陽極電解の作用を説明
するための図である。
FIG. 3 is a diagram for explaining the action of DC anode electrolysis in Example 2.

【図4】 実施例3における直流陽極電解の作用を説明
するための図である。
FIG. 4 is a view for explaining the action of direct current anode electrolysis in Example 3;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極酸化処理して形成したアルミニウム
陽極酸化皮膜を、主たる析出反応の起こる電圧がそれぞ
れ異なっている複数種類の金属を塩として含む電解浴中
で電解着色処理して着色する方法であって、予め、上記
陽極酸化皮膜に、上記陽極酸化処理の電圧より大きく3
0V以下の範囲にある任意の電圧で直流陽極電解を施し
たことを特徴とするアルミニウム陽極酸化皮膜の着色方
法。
1. A method for coloring an aluminum anodic oxide film formed by anodizing treatment by electrolytic coloring treatment in an electrolytic bath containing a plurality of kinds of metals, each of which has a different voltage at which a main precipitation reaction occurs, as a salt. In advance, the voltage applied to the anodized film should be greater than the voltage applied in the anodizing treatment.
A method for coloring an aluminum anodic oxide film, which comprises subjecting a DC anodic electrolysis to an arbitrary voltage within a range of 0 V or less.
【請求項2】 複数種類の金属が、Ni及びZnである
請求項1記載のアルミニウム陽極酸化皮膜の着色方法。
2. The method for coloring an aluminum anodic oxide film according to claim 1, wherein the plurality of kinds of metals are Ni and Zn.
JP28776492A 1992-10-26 1992-10-26 Method for coloring aluminum anodic oxide film Pending JPH06136598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28776492A JPH06136598A (en) 1992-10-26 1992-10-26 Method for coloring aluminum anodic oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28776492A JPH06136598A (en) 1992-10-26 1992-10-26 Method for coloring aluminum anodic oxide film

Publications (1)

Publication Number Publication Date
JPH06136598A true JPH06136598A (en) 1994-05-17

Family

ID=17721455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28776492A Pending JPH06136598A (en) 1992-10-26 1992-10-26 Method for coloring aluminum anodic oxide film

Country Status (1)

Country Link
JP (1) JPH06136598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197481A (en) * 2011-03-22 2012-10-18 Lixil Corp Functional aluminum material and surface treatment method therefor
CN103276428A (en) * 2013-05-08 2013-09-04 江苏和兴汽车科技有限公司 Oxidation process of aluminum alloy titanium-color-imitated anode
CN103276432A (en) * 2013-05-08 2013-09-04 江苏和兴汽车科技有限公司 Titanium color simulated electrolytic coloring formula and anodic oxidation technology utilizing same
CN107937953A (en) * 2017-12-12 2018-04-20 北京小米移动软件有限公司 Al-alloy casing and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816098A (en) * 1981-07-17 1983-01-29 Tateyama Alum Kogyo Kk Coloring method for aluminum or aluminum alloy
JPS5948960A (en) * 1982-09-14 1984-03-21 Matsushita Electric Ind Co Ltd Manufacture of insulated gate type transistor
JPS5950199A (en) * 1982-09-17 1984-03-23 U A:Kk Method for coloring aluminum alloy russet or bronze by electrolysis
JPS59190389A (en) * 1983-04-13 1984-10-29 Tateyama Alum Kogyo Kk Method for coloring aluminum or aluminum alloy
JPS61110797A (en) * 1984-11-02 1986-05-29 Pilot Precision Co Ltd Surface treatment of aluminum or aluminum alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816098A (en) * 1981-07-17 1983-01-29 Tateyama Alum Kogyo Kk Coloring method for aluminum or aluminum alloy
JPS5948960A (en) * 1982-09-14 1984-03-21 Matsushita Electric Ind Co Ltd Manufacture of insulated gate type transistor
JPS5950199A (en) * 1982-09-17 1984-03-23 U A:Kk Method for coloring aluminum alloy russet or bronze by electrolysis
JPS59190389A (en) * 1983-04-13 1984-10-29 Tateyama Alum Kogyo Kk Method for coloring aluminum or aluminum alloy
JPS61110797A (en) * 1984-11-02 1986-05-29 Pilot Precision Co Ltd Surface treatment of aluminum or aluminum alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197481A (en) * 2011-03-22 2012-10-18 Lixil Corp Functional aluminum material and surface treatment method therefor
CN103276428A (en) * 2013-05-08 2013-09-04 江苏和兴汽车科技有限公司 Oxidation process of aluminum alloy titanium-color-imitated anode
CN103276432A (en) * 2013-05-08 2013-09-04 江苏和兴汽车科技有限公司 Titanium color simulated electrolytic coloring formula and anodic oxidation technology utilizing same
CN107937953A (en) * 2017-12-12 2018-04-20 北京小米移动软件有限公司 Al-alloy casing and preparation method thereof

Similar Documents

Publication Publication Date Title
US3787295A (en) Method of electrolytic coloring of oxide layers on aluminum and aluminum base alloys
US3930966A (en) Method of forming colored oxide film on aluminum or aluminum alloy
JPH05125589A (en) Improved electrolytic method for coloring anodized aluminum
JPH06136598A (en) Method for coloring aluminum anodic oxide film
US3729396A (en) Rhodium plating composition and method for plating rhodium
US3977948A (en) Process for coloring, by electrolysis, an anodized aluminum or aluminum alloy piece
JP3391252B2 (en) Manufacturing method of electrodeposited aluminum
JPS61143593A (en) Method for electrolytically coloring aluminum material
US2307551A (en) Method of producing a white, platinumlike color chromium plate and the product thereof and bath therefor
CA2105814A1 (en) Platinum alloy electrodeposition bath and process for manufacturing platinum alloy electrodeposited product using the same
JP3266084B2 (en) Method for electrolytic coloring of aluminum or aluminum alloy
JPH0718484A (en) Gold alloy plating solution
JPH07188974A (en) Gold alloy plating solution
SU789638A1 (en) Silver-plating electrolyte
JPS5920759B2 (en) Coloring method for aluminum or aluminum alloy
SU802409A1 (en) Method of dyeing aluminium and its alloy articles
JPH0250988B2 (en)
CA1299135C (en) Process for electrolytically coloring aluminum material
KR890001830B1 (en) Electrolytic coloring method of anodized film of aluminum of its alloy
JP3379482B2 (en) Electrolytic coloring of aluminum material
JP3379481B2 (en) Electrolytic coloring method of aluminum material
JP3239828B2 (en) Method for electrolytic coloring of aluminum or aluminum alloy
JPH0450400B2 (en)
JPS6328999B2 (en)
JPS5925039B2 (en) Method for forming a colored anodic oxide film with improved durability on aluminum or aluminum alloys