JPH0450400B2 - - Google Patents

Info

Publication number
JPH0450400B2
JPH0450400B2 JP2013182A JP1318290A JPH0450400B2 JP H0450400 B2 JPH0450400 B2 JP H0450400B2 JP 2013182 A JP2013182 A JP 2013182A JP 1318290 A JP1318290 A JP 1318290A JP H0450400 B2 JPH0450400 B2 JP H0450400B2
Authority
JP
Japan
Prior art keywords
salt
salts
metal
aluminum
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013182A
Other languages
Japanese (ja)
Other versions
JPH03219097A (en
Inventor
Seishiro Ito
Shinichi Ishida
Seiji Hagino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aluminium Co Ltd
Original Assignee
Nippon Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aluminium Co Ltd filed Critical Nippon Aluminium Co Ltd
Priority to JP1318290A priority Critical patent/JPH03219097A/en
Publication of JPH03219097A publication Critical patent/JPH03219097A/en
Publication of JPH0450400B2 publication Critical patent/JPH0450400B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、例えばサツシ、引戸、玄関等の建築
製品や、シヨーケース、日用品、鋳物、車両の部
品等に用いられるアルミニウム又はその合金の陽
極酸化皮膜を着色する方法に関するものであり、
色調のコントロールを容易にでき、またつきまわ
り性も良好にできるようにしたものである。 (従来技術及びその問題点) 近来の消費生活、需要嗜好の多様化に伴なつ
て、アルミニウム又はその合金からなる製品につ
いても種々の色に着色することが要求されるよう
になつている。この着色は、アルミニウム又はそ
の合金の陽極酸化皮膜(アルミニウム陽極酸化皮
膜と称する)を電解着色することにより行なわれ
るのが一般的である。 この着色方法としては、例えば特開昭53−
22834、54−85137号に示されるように、所謂3次
電解法がよく知られている。この方法は、アルミ
ニウム陽極酸化皮膜を再陽極酸化処理した後、金
属塩の水溶液中で電解液中で電解処理して着色す
る方法であり、第7図に示すように皮膜11の孔
12中に析出する金属13の層高さHを均一に
し、光の干渉作用を利用して赤、黄、緑、青等の
原色系を得ることを特徴とする方法である。この
方法により所望の色調を得るためには、金属13
の析出をコントロールして層高さHを均一にする
ことが重要である。しかし着色浴としてNi、Co、
Sn等の金属塩のみを用いるので、皮膜11の孔
12底に析出した金属13の抵抗が小さいことか
ら、金属13の析出が迅速に生じてしまい、層高
さHをコントロールすることが困難である。従つ
て金属13の析出量が場所によつて異なるように
なり層高さHにばらつきが生じ、即ちつきまわり
性がが悪く、また色調の再現性も悪い。特に需要
の多い青系統の色調を良好に得るのが困難であ
る。 ころで青系統の色調を良好に得る方法として
は、特開昭51−99640号に記載の方法が知られて
いる。この方法は、リン酸又はクロム酸、又は
各々に硫酸を加えた混酸の電解浴を用い、40〜
150Vの直流電圧を加えて、第8図に示すような
枝分れ状の多孔質層を有する陽極酸化皮膜21を
形成し、多枝分れ22の底部に金属23を析出さ
せるものである。しかしこの方法では、加える直
流電圧が高いため、工業的に設備費が高くなる。 なお本件出願人は既に、Ni、Sn、Ca、Ba、
Ti、Zn、Mg、Cu、Se等の金属塩にAlを添加し
た浴中で電解着色することにより、パステル調カ
ラーを得る方法について出願している(特願昭62
−42300号(特開昭63−210295号)。 (発明の目的) 本発明は、色調のコントロールを容易にでき、
またつきまわり性も良好にできるアルミニウム陽
極酸化皮膜の着色方法を提供することを目的とす
る。 (目的を達成するための手段) 本発明のアルミニウム陽極酸化皮膜の着色方法
は、アルミニウム陽極酸化皮膜を、リン酸、ピロ
リン酸、硫酸、又はこれらの混酸の電解浴中で再
陽極酸化処理した後、Al塩、Ti塩、Mg塩、Ba
塩、Ca塩の内の1種又は複数種の塩、及びNi塩、
Co塩、Zn塩、Fe塩、Sn塩、Cu塩、Ag塩の内の
1種又は複数種の塩のみを含む電解着色浴中で交
丁流電解処理することを特徴とするものである。 アルミニウム陽極酸化皮膜の形成には、通常の
陽極酸化法が採用される。即ちアルミニウム陽極
酸化皮膜は、例えば硫酸、リン酸、クロム酸等の
無機酸、又はシユウ酸、スルホサリチル酸、マロ
ン酸等の有機酸、又は水酸化ナトリウム、リン酸
三ナトリウム等のアルカリ性の水溶液の電解浴中
で、直流、交流、パルス、PR波、又は交直重畳
法による電解によつて形成される。これにより、
断面模式図である第1図に示すような多孔質の陽
極酸化皮膜1が得られる。図において、2は孔、
4はアルミニウム又はその合金である母材、5は
バリヤー層、6は孔2の底である。 再陽極酸化処理は、リン酸、ピロリン酸、硫
酸、又はこれらの混酸の電解浴中で、上記の陽極
酸化処理と同様に電解することによつて行なわれ
る。これにより、皮膜1の孔2の径L(第1図)
が拡大され、第2図に示すような孔2aが得られ
る。 電解着色浴は、Al塩、Ti塩、Mg塩、Ba塩、
Ca塩(以下第1群の金属塩と称する)の内の1
種又は複数種の塩、及びNi塩、Co塩、Zn塩、Fe
塩、Sn塩、Cu塩、Ag塩(以下第2群の金属塩と
称する)の内の1種又は複数種の塩のみを含んで
いる。第1群、第2群の金属塩の種類、濃度は着
色したい色調に応じて適宜選択する。一般に第1
群の金属塩の濃度が高くなるにつれて白味が増
し、第2群の金属塩の濃度が高くなるにつれてそ
の金属特有の色が濃くなる。 電解着色は、浴中にて対極に例えばカーボンを
用いて、15〜25V程度の交流電圧を印加して行な
う。 (作 用) 電解着色浴中にて交流電圧を印加すると、第3
図に示すように、陽極酸化皮膜1の孔2中に、上
記第1群の金属塩に基づく白色の金属酸化物(又
は金属水和物)7が析出すると同時に、上記第2
群の金属塩に基づく金属3が析出する。金属3は
金属酸化物(又は金属水和物)7中に分散して得
られる。従つて金属3が迅速に析出することはな
く、金属3の析出量は分単位でコントロールされ
る。また金属3は皮膜1の電流の流れ易い所、流
れ難い所に拘らず、均一に析出する。即ちつれま
わり性は良好となり、均一な色調が得られる。更
に分散した金属3に基づく光の散乱効果によつ
て、特に青系統の色調が良好に得られる。 (発明の効果) 本発明のアルミニウム陽極酸化皮膜の着色方法
は、アルミニウム陽極酸化皮膜を、リン酸、ピロ
リン酸、硫酸、又はこれらの混酸の電解浴中で再
陽極酸化処理した後、Al塩、Ti塩、Mg塩、Ba
塩、Ca塩の内の1種又は複数種の塩、及びNi塩、
Co塩、Zn塩、Fe塩、Sn塩、Cu塩、Ag塩の内の
1種又は複数種の塩のみを含む電解着色浴中で交
流電解処理するようにしたので、色調のコントロ
ールを容易にでき、またつれまわり性も良好にし
て均一な色調を得ることができる。 (実施例) 第4図及びそのV矢視図である第5図に示すよ
うに、平板状のアルミニウム材(A1100P−H24
材)30を電解枠32の電解棒34に吊り、これ
を硫酸浴中にて陽極酸化処理し、所定の厚さの陽
極酸化皮膜を得た。 [第1実施例] 上記方法により9μの厚さの陽極酸化皮膜を得、
これを20℃、10%リン酸浴中にて、16Vの直流電
圧を10分間印加して再陽極酸化処理する。次いで
第1表に示すように、種々の組成の浴中にて種々
の通電条件により電解着色を行なつた。なお印加
する電圧は交流である。第1表中の右欄には得ら
れた色調を示す。
(Industrial Application Field) The present invention relates to a method for coloring anodized coatings of aluminum or its alloys used for building products such as sashes, sliding doors, entrances, etc., housing cases, daily necessities, castings, vehicle parts, etc. and
The color tone can be easily controlled and the throwing power can also be improved. (Prior Art and its Problems) With the recent diversification of consumer lifestyles and demand preferences, there is a growing demand for products made of aluminum or its alloys to be colored in various colors. This coloring is generally performed by electrolytically coloring an anodic oxide film of aluminum or its alloy (referred to as an aluminum anodic oxide film). As this coloring method, for example, JP-A-53-
22834, 54-85137, the so-called tertiary electrolysis method is well known. This method is a method in which the aluminum anodic oxide film is re-anodized and then electrolytically treated in an electrolytic solution in an aqueous solution of a metal salt to be colored.As shown in FIG. This method is characterized by making the layer height H of the deposited metal 13 uniform and by utilizing the interference effect of light to obtain primary colors such as red, yellow, green, and blue. In order to obtain the desired color tone by this method, metal 13
It is important to control the precipitation and make the layer height H uniform. However, as a coloring bath, Ni, Co,
Since only a metal salt such as Sn is used, the resistance of the metal 13 deposited at the bottom of the pores 12 of the coating 11 is small, so the precipitation of the metal 13 occurs quickly, making it difficult to control the layer height H. be. Therefore, the amount of metal 13 deposited differs depending on the location, resulting in variations in the layer height H, resulting in poor throwing power and poor color tone reproducibility. It is particularly difficult to obtain good blue-based color tones, which are in high demand. By the way, as a method for obtaining good blue-based color tones, the method described in Japanese Patent Application Laid-Open No. 51-99640 is known. This method uses an electrolytic bath of phosphoric acid, chromic acid, or a mixed acid containing sulfuric acid, and
A DC voltage of 150 V is applied to form an anodic oxide film 21 having a branched porous layer as shown in FIG. 8, and metal 23 is deposited on the bottoms of the multi-branched layers 22. However, in this method, the applied DC voltage is high, which increases the industrial equipment cost. The applicant has already obtained Ni, Sn, Ca, Ba,
An application has been filed for a method for obtaining pastel colors by electrolytically coloring in a bath containing Al added to metal salts such as Ti, Zn, Mg, Cu, and Se (Patent Application No. 62
-42300 (Unexamined Japanese Patent Publication No. 63-210295). (Object of the invention) The present invention allows easy control of color tone,
Another object of the present invention is to provide a method for coloring an aluminum anodic oxide film that can also provide good throwing power. (Means for achieving the object) The method for coloring an aluminum anodic oxide film of the present invention includes re-anodizing the aluminum anodic oxide film in an electrolytic bath of phosphoric acid, pyrophosphoric acid, sulfuric acid, or a mixed acid thereof. , Al salt, Ti salt, Mg salt, Ba
salt, one or more kinds of salts among Ca salts, and Ni salt,
It is characterized by carrying out alternating current electrolytic treatment in an electrolytic coloring bath containing only one or more salts among Co salt, Zn salt, Fe salt, Sn salt, Cu salt, and Ag salt. A normal anodic oxidation method is used to form the aluminum anodic oxide film. That is, the aluminum anodic oxide film can be formed by electrolysis of inorganic acids such as sulfuric acid, phosphoric acid, and chromic acid, or organic acids such as oxalic acid, sulfosalicylic acid, and malonic acid, or alkaline aqueous solutions such as sodium hydroxide and trisodium phosphate. It is formed in a bath by electrolysis using direct current, alternating current, pulses, PR waves, or AC/DC superposition. This results in
A porous anodic oxide film 1 as shown in FIG. 1, which is a schematic cross-sectional view, is obtained. In the figure, 2 is a hole;
4 is a base material made of aluminum or its alloy, 5 is a barrier layer, and 6 is the bottom of the hole 2. The re-anodizing treatment is performed by electrolyzing in the same manner as the above-mentioned anodizing treatment in an electrolytic bath of phosphoric acid, pyrophosphoric acid, sulfuric acid, or a mixed acid thereof. As a result, the diameter L of the pores 2 in the film 1 (Fig. 1)
is enlarged, and a hole 2a as shown in FIG. 2 is obtained. Electrolytic coloring baths include Al salt, Ti salt, Mg salt, Ba salt,
One of Ca salts (hereinafter referred to as first group metal salts)
Salt or salts, Ni salt, Co salt, Zn salt, Fe
It contains only one or more kinds of salts among salts, Sn salts, Cu salts, and Ag salts (hereinafter referred to as second group metal salts). The types and concentrations of the metal salts in the first group and the second group are appropriately selected depending on the desired color tone. Generally the first
As the concentration of the metal salts in the group increases, the whiteness increases, and as the concentration of the metal salts in the second group increases, the color specific to the metal becomes darker. Electrolytic coloring is carried out in a bath by using, for example, carbon as a counter electrode and applying an alternating current voltage of about 15 to 25 V. (Function) When AC voltage is applied in the electrolytic coloring bath, the third
As shown in the figure, a white metal oxide (or metal hydrate) 7 based on the metal salt of the first group is precipitated in the pores 2 of the anodic oxide film 1, and at the same time
Metal 3 based on group metal salts is deposited. The metal 3 is obtained by being dispersed in the metal oxide (or metal hydrate) 7. Therefore, metal 3 does not precipitate rapidly, and the amount of metal 3 deposited is controlled on a minute-by-minute basis. Further, the metal 3 is uniformly deposited regardless of where the current flows easily or where it is difficult to flow in the film 1. That is, the tangle properties become good and a uniform color tone can be obtained. Further, due to the light scattering effect caused by the dispersed metal 3, particularly blue-based color tones can be obtained satisfactorily. (Effects of the Invention) The method for coloring an aluminum anodic oxide film of the present invention includes re-anodizing the aluminum anodic oxide film in an electrolytic bath of phosphoric acid, pyrophosphoric acid, sulfuric acid, or a mixed acid thereof, and then applying an Al salt, Ti salt, Mg salt, Ba
salt, one or more kinds of salts among Ca salts, and Ni salt,
The alternating current electrolytic treatment is performed in an electrolytic coloring bath containing only one or more of Co salt, Zn salt, Fe salt, Sn salt, Cu salt, and Ag salt, making it easy to control the color tone. Furthermore, it is possible to obtain a uniform color tone with good tangle properties. (Example) As shown in FIG. 4 and FIG.
The material) 30 was suspended on the electrolytic rod 34 of the electrolytic frame 32, and was anodized in a sulfuric acid bath to obtain an anodic oxide film of a predetermined thickness. [First Example] An anodic oxide film with a thickness of 9μ was obtained by the above method,
This was re-anodized in a 10% phosphoric acid bath at 20°C by applying a 16V DC voltage for 10 minutes. Next, as shown in Table 1, electrolytic coloring was carried out in baths of various compositions under various current conditions. Note that the applied voltage is alternating current. The right column of Table 1 shows the color tones obtained.

【表】 [第2実施例] 上記慢方法により12μの厚さの陽極酸化皮膜を
得、これを22℃、5%リン酸及び10%硫酸の混酸
浴中にて、20Vの直流電圧を5分間印加して再陽
極酸化処理する。次いで第2表に示すように、
種々の組成の浴中にて種々の通電条件により電解
着色を行なつた。なお印加する電圧は交流であ
る。第2表中の右欄には得られた色調を示す。
[Table] [Second Example] An anodic oxide film with a thickness of 12μ was obtained by the above-mentioned method, and this was heated at 22°C in a mixed acid bath of 5% phosphoric acid and 10% sulfuric acid, and a DC voltage of 20V was applied to the film for 50 minutes. Apply for a minute to re-anodize. Then, as shown in Table 2,
Electrolytic coloring was carried out in baths of various compositions under various current conditions. Note that the applied voltage is alternating current. The right column of Table 2 shows the color tones obtained.

【表】【table】

【表】 [第3実施例] 上記方法により14μの厚さの陽極酸化皮膜を
得、これを22℃、10%リン酸浴中にて、25Vの直
流電圧を7分間印加して再陽極酸化処理する。次
いで第3表に示すように、種々の組成の浴中にて
種々の通電条件により電解着色を行なつた。なお
印加する電圧は交流である。第3表中の右欄には
得られた色調を示す。
[Table] [Third Example] An anodic oxide film with a thickness of 14μ was obtained by the above method, and then re-anodized by applying a DC voltage of 25V for 7 minutes in a 10% phosphoric acid bath at 22°C. Process. Next, as shown in Table 3, electrolytic coloring was carried out in baths of various compositions under various current conditions. Note that the applied voltage is alternating current. The right column of Table 3 shows the color tones obtained.

【表】 以上の第1ないし第3実施例から明らかなよう
に、色調は分単位で変化している。従つて所望の
色調を得るためのコントロールが容易である。特
に各表に示すように、需要の多い青系統の色調が
良好且つ容易に得られる。 [比較例] 特開昭53−22834号に記載の方法により行なう。
即ち15%硫酸浴中でアルミニウム材を陽極酸化処
理して陽極酸化皮膜を形成した後、リン酸120g、
硫酸15gの浴中で、室温で20V、6分間の陽極処
理を施し、次いで第6図に示すような対極に
1dm2のカーボン41を設置した電解浴40中で、
交流処理を施す。電解浴40中の組成は、酒石酸
20g、硫酸ニツケル25g、硫酸第一スズ4g、硫
酸マグネシウム15gであり、条件はPH7、22℃
である。なおアルミニウム材42は第6図に示す
ような2dm2のコ字状のものである。通電条件、
及びそれにより得られたアルミニウム材42の表
側a、裏側bの色調を第4表に示す。
[Table] As is clear from the first to third examples above, the color tone changes on a minute-by-minute basis. Therefore, control to obtain a desired color tone is easy. In particular, as shown in each table, blue-based color tones, which are in high demand, can be obtained easily and favorably. [Comparative Example] The method described in JP-A-53-22834 is used.
That is, after anodizing the aluminum material in a 15% sulfuric acid bath to form an anodized film, 120 g of phosphoric acid,
Anodic treatment was performed in a bath of 15 g of sulfuric acid at 20 V for 6 minutes at room temperature, and then the counter electrode was applied as shown in Figure 6.
In an electrolytic bath 40 containing 1 dm2 of carbon 41,
Perform AC processing. The composition of the electrolytic bath 40 is tartaric acid
20g, 25g of nickel sulfate, 4g of stannous sulfate, 15g of magnesium sulfate, and the conditions were PH7 and 22℃.
It is. The aluminum material 42 has a U-shape of 2 dm 2 as shown in FIG. energizing conditions,
Table 4 shows the color tones of the front side a and back side b of the aluminum material 42 obtained thereby.

【表】 [第4実施例] 第6図と同じ対極41、アルミニウム材42を
用いて、硫酸アルミニウム、硫酸ニツケル各
0.1mol/の組成の電解着色浴40中で、20Vの
交流電圧を2分間、及び5分間印加した。2分間
では青味のある灰色が、また5分間では青色が、
アルミニウム材42のa,b両面に均一な色調で
得られた。 比較例及び第4実施例から明らかなように、比
較例においてはアルミニウム材42の電流の流れ
易いa側側と電流の流れ難いb側とでは、色調が
異なつているが、第4実施例においては色調は同
じである。即ち本発明の方法によれば、つきまわ
り性も良好となる。
[Table] [Fourth Example] Using the same counter electrode 41 and aluminum material 42 as in Fig. 6, aluminum sulfate and nickel sulfate were
An alternating current voltage of 20 V was applied for 2 minutes and 5 minutes in an electrolytic coloring bath 40 having a composition of 0.1 mol/mol. At 2 minutes, the color is a bluish gray, and at 5 minutes, the color is blue.
A uniform color tone was obtained on both sides a and b of the aluminum material 42. As is clear from the comparative example and the fourth example, in the comparative example, the color tone is different between the a side of the aluminum material 42 where the current flows easily and the b side where the current flows easily, but in the fourth example have the same color tone. That is, according to the method of the present invention, the throwing power is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に係るアルミニウム陽極
酸化皮膜を示す模式断面図、第2図は再陽極酸化
処理したアルミニウム陽極酸化皮膜を示す模式断
面図、第3図は着色された状態のアルミニウム陽
極酸化皮膜を示す模式断面図、第4図は電解処理
に用いる吊り具を示す正面略図、第5図は第4図
のV矢視図、第6図は比較例及び第4実施例で用
いる電解着色浴を示す模式断面図、第7図、第8
図はそれぞれ従来の方法により着色されたアルミ
ニウム陽極酸化皮膜を示す模式断面図である。1
…アルミニウム陽極酸化皮膜、2…孔、3…(析
出)金属。
Fig. 1 is a schematic cross-sectional view showing an aluminum anodized film according to the method of the present invention, Fig. 2 is a schematic cross-sectional view showing an aluminum anodized film subjected to re-anodizing treatment, and Fig. 3 is a colored aluminum anode. A schematic cross-sectional view showing an oxide film, FIG. 4 is a schematic front view showing a hanging tool used in electrolytic treatment, FIG. 5 is a view taken in the direction of the V arrow in FIG. 4, and FIG. Schematic cross-sectional diagrams showing the coloring bath, Figures 7 and 8
Each figure is a schematic cross-sectional view showing an aluminum anodic oxide film colored by a conventional method. 1
...Aluminum anodic oxide film, 2...pores, 3...(precipitated) metal.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム陽極酸化皮膜を、リン酸、ピロ
リン酸、硫酸、又はこれらの混酸の電解液中で再
陽極酸化処理した後、Al塩、Ti塩、Mg塩、Ba
塩、Ca塩の内の1種又は複数種の塩、及びNi塩、
Co塩、Zn塩、Fe塩、Sn塩、Cu塩、Ag塩の内の
1種又は複数種の塩のみを含む電解着色浴中で交
流電解処理することを特徴とするアルミニウム陽
極酸化皮膜の着色方法。
1 After re-anodizing the aluminum anodized film in an electrolyte of phosphoric acid, pyrophosphoric acid, sulfuric acid, or a mixed acid of these, Al salt, Ti salt, Mg salt, Ba
salt, one or more kinds of salts among Ca salts, and Ni salts,
Coloring of an aluminum anodic oxide film characterized by AC electrolytic treatment in an electrolytic coloring bath containing only one or more salts among Co salt, Zn salt, Fe salt, Sn salt, Cu salt, and Ag salt. Method.
JP1318290A 1990-01-23 1990-01-23 Coloring method for anodically oxidized aluminum film Granted JPH03219097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318290A JPH03219097A (en) 1990-01-23 1990-01-23 Coloring method for anodically oxidized aluminum film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318290A JPH03219097A (en) 1990-01-23 1990-01-23 Coloring method for anodically oxidized aluminum film

Publications (2)

Publication Number Publication Date
JPH03219097A JPH03219097A (en) 1991-09-26
JPH0450400B2 true JPH0450400B2 (en) 1992-08-14

Family

ID=11826039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318290A Granted JPH03219097A (en) 1990-01-23 1990-01-23 Coloring method for anodically oxidized aluminum film

Country Status (1)

Country Link
JP (1) JPH03219097A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432141A (en) * 1977-08-17 1979-03-09 Tahei Asada Color producing method of aluminum hard film layer
JPS54124841A (en) * 1978-03-20 1979-09-28 Nippon Light Metal Co Electrolytic pigmentation of aluminium or alloy thereof
JPS5635794A (en) * 1979-08-30 1981-04-08 Tateyama Alum Kogyo Kk Coloring method for aluminum or aluminum alloy
JPS5920760A (en) * 1982-07-28 1984-02-02 Nippon Air Brake Co Ltd Air brake gear
JPS6012437A (en) * 1983-07-04 1985-01-22 Canon Inc Sheet material carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432141A (en) * 1977-08-17 1979-03-09 Tahei Asada Color producing method of aluminum hard film layer
JPS54124841A (en) * 1978-03-20 1979-09-28 Nippon Light Metal Co Electrolytic pigmentation of aluminium or alloy thereof
JPS5635794A (en) * 1979-08-30 1981-04-08 Tateyama Alum Kogyo Kk Coloring method for aluminum or aluminum alloy
JPS5920760A (en) * 1982-07-28 1984-02-02 Nippon Air Brake Co Ltd Air brake gear
JPS6012437A (en) * 1983-07-04 1985-01-22 Canon Inc Sheet material carrier

Also Published As

Publication number Publication date
JPH03219097A (en) 1991-09-26

Similar Documents

Publication Publication Date Title
CA1131160A (en) Electrolytic colouring of anodised aluminium by means of optical interference effects
US4021315A (en) Process for electrolytic coloring of the anodic oxide film on aluminum or aluminum base alloys
US4022671A (en) Electrolytic coloring of anodized aluminum
US3704209A (en) Method for electrochemical coloring of aluminum and alloys
JPS633038B2 (en)
JPH0450400B2 (en)
JPH0747836B2 (en) Coloring method for aluminum or aluminum alloy materials
US4806226A (en) Process for electrolytically coloring aluminum material
JPH0579757B2 (en)
JP3391252B2 (en) Manufacturing method of electrodeposited aluminum
JPS63210295A (en) Coloring treatment of aluminum or aluminum alloy for developing pastel color
JPH11256394A (en) Production of colored product of anodized aluminum or aluminum alloy, and colored product produced by that
JPH01205093A (en) Coloring method for aluminum or aluminum alloy
JPS59190389A (en) Method for coloring aluminum or aluminum alloy
JPS63223199A (en) Method for electrolytically-coloring aluminum material
KR890001830B1 (en) Electrolytic coloring method of anodized film of aluminum of its alloy
JPS5920759B2 (en) Coloring method for aluminum or aluminum alloy
JPH0480396A (en) Method of coloring anodically oxidized coating on aluminum
JPH06240494A (en) Method for coloring anodically oxidized film of aluminum
JPS61110797A (en) Surface treatment of aluminum or aluminum alloy
JPS5948879B2 (en) Aluminum electrolytic coloring method
JP2879451B2 (en) Electrolytic coloring of aluminum material
JPS5816098A (en) Coloring method for aluminum or aluminum alloy
JPH0219492A (en) Electrolytic pigmenting solution for aluminum
JPS5925039B2 (en) Method for forming a colored anodic oxide film with improved durability on aluminum or aluminum alloys

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees